EXAMPLE 423

Representing Numbers

4.6 Formal Definitions and Reasoning c-1

Formal Definitions and Reasoning

One of the goals of this course is to teach formal (i.e. mathematical) reasoning
about programming languages and compilers. In fact, here at CMU that is an
explicit goal of the Logic and Languages constrained elective category. Today we’ll
learn some basic intellectual tools that we’ll use to formally define aspects of a
programming language or compiler, and to reason about those formal definitions.
Tomorrow in recitation, you’ll learn about a proof assistant tool, SASyLF, that
will help you write down those definitions and proofs in a rigorous way and can
automatically check them for mistakes.

You might ask about the title of this course: what’s pragmatic about formalism
and proof? Perhaps surprisingly, a lot! Writing little formalisms like the ones
we’ll learn in this class were used to figure out how to correctly add generics to
Java—types like List<Int>. More recently, the WebAssembly platform, which for
example allows safely and efficiently running C programs in browers, was defined
entirely using a formal specification. We can be certain that if we have formalized a
design and proved it correct, it won’t have certain flaws—like security vulnerabilities
in the case of mobile code in Java or WebAssembly. That’s a very pragmatic thing
for end users to care about! Based on the recent history, it’s likely that future
programming languages will be defined in terms of formalisms like the ones you’ll
be learning. More broadly, learning how to formalize definitions and do proofs is
a skill that can help you think more precisely about the semantics of the languages
you work in and the programs you write.

4.6.] Formalizing Numbers and Arithmetic

Before tackling programming languages, let’s look at something simpler. We’ll
start by defining natural numbers, i.e. the non-negative integers that we use to
count with: 0,1,2,.... To reason about numbers, we need to represent them
somehow. We will use abstract syntax to do this—defined using the same tools
(abstract grammars) that are using to define the abstract syntax of programming
languages.

Natural numbers can be defined inductively: a number is either zero or a
successor of some other number. For example, the number one is the successor of
zero, and the number two is the successor of one. We can define this syntactically
as follows. Let z represent the number zero. And if n is a number, then s 7 is the
successor of that number. Using an abstract grammar, this can be written as:

n— z|sn
Now we can represent the number 3 with the string “s s s z.” But instead of

thinking about strings, we’d like to think of this as an abstract syntax tree, with
the s elements forming the root and (single) branch, and z at the leaf.

c-2 Chapter 4 Program Semantics

EXAMPLE 424

Formalizing Addition

Now that we have formalized natural numbers, we’d like to reason about them.
Most interesting properties of numbers rely on operators such as addition. Let’s
start by writing down some formal syntax for relating an addition expression to
its result. We’ll do that with a judgment of the form n; + n, = n3, which means
exactly what it looks like: that when you add the number 7, to the number #,,
you get the number n3. Let’s call this judgment “sum.” In the sum judgment, n,
1y, and 13 are metavariables: we will replace them with actual numbers when we
instantiate the judgment. For example, if #; is 0 (or “z”’) and n, is 1 (or “s z”)
then n; will be 1 (again, “s z” in our formalization). Note that we are using a
convention that metavariables are named after the nonterminal representing their
syntactic category: n; is a number (the subscript 1 distinguishes it from other
numbers in the same judgment).

Of course, the judgment n; +n, = n; is true if we instantiateitas z+s z = s z,
but it’s not true if we instantiate it in other ways. For example, z + z = s z is not
true. We can define when a judgment is true using inference rules. An inference
rule is written as follows:

<

P P ... P,

rule-name
C

Where P, ... P, are judgments called premises and C is a judgment called the
conclusion. We write the name of the rule to the right of the line. The inference
rule means that if all the premises are true, then the conclusion is true. A special
case of an inference rule is an axiom, which is a rule that has no premises. Let’s
write an axiom for adding zero to a number:

sum-z
z+n=n

This rule states that if you add z (zero) to any number #, the result is n. We
name the rule sum-z, which helps us remember that it defines the sum judgment
for the case where we are adding zero to a number.

Of course, we also need to define addition when we are adding numbers other
than zero. Let’s therefore define another rule:

ny + n; = ns

(Sl’ll) +n, = sn3

sum-s

We’ll call this rule sum-s, because it’s the successor case of sum. If we have
established that n; + n, = n3, then we know that we can add 1 to both sides, thus
(Sl’ll) + 1y = sns.

You might think that we need more rules—what if the second number is zero?
But in fact these are all the rules we need to define addition for natural numbers.
As we will see, we can use inductive reasoning to show other interesting properties
of addition, such as that for all numbers n, n + z = n.

exampLe 4.25
Derivationof 1 +2 =3

4.6.2 Derivations and Provability c-3

4.6.) Derivations and Provability

How can we prove concrete facts like 1 + 2 = 3 using this system? First
of all, let’s encode the numbers in our system. 1 + 2 = 3 can be written as
sz+ssz=ss sz Nowwe can use inference rules to conclude what we
need. We’'ll build a derivation tree, which has the thing we want to prove at the
bottom, and applies rules to each judgment until we get to axioms at the leaves of
the tree. For our example fact, the derivation will look like this:

—_——————— sum-z
Z+ssz=ssz

sum-s
sz+ssz=s8s8sz

You can read the reasoning from the top down. We can apply the axiom sum-z,
instantiating the number n with s s z, to conclude thatz + s s z=s s z. We
can then use that as a premise of the rule sum-s: n; will be z, n, willbe s s z, and
ns will be s s z. If we plug 1y, n,, and #; into the conclusion of the sum-s rule,
we get the desired result: s z+s s z=s s s z.

We say that a judgment] is provable if there exists a well-formed derivation that
has J as its conclusion. Well-formed means that every step in the derivation is a
valid instance of one of the inference rules in our formal system.

4.6.3 Mathematical Induction

Now, we’d like to prove some properties! Let’s start with the property we men-
tioned earlier: for all n, n + z = n. This is “obviously” true in mathematics, but is
it true in our formalization of addition? Let’s find out!

We’ll use a technique called mathematical induction to do this. Mathematical
Induction is a technique for properties about natural numbers. One such property
is the one above: that adding zero to any number # yields that same number, n.

In a proof by induction, we show that some property P is true in two parts. In
the first part, called the base case, we show that the property is true for the number
0—which we can write as P(0).!

In the second part, called the inductive case, we show that when the property is
true for some number k, then it must be true for the number k + 1. More formally,
we show that P(k) implies P(k + 1). Together, these show that the property is true
for every natural number n. We know this must be true because for a given n
we can apply the base case plus n instances of the inductive case to show that the
property is true. The nice thing is that we do not have to actually construct the
concrete proofs for each individual n (which is good because there are an infinite

I Sometimes we want to prove a property for all numbers greater than 1, in which case our base case
is P(1). In general induction can start with any fixed number, in which case we prove the property
for all numbers greater than or equal to the starting number.

c-4 Chapter 4 Program Semantics

EXAMPLE 426

Proof that the sum of

numbers 1...nis

n(n+1)
2

number of such #’s, and the concrete proofs get larger with each n). One generic
proof suffices to prove the property for all numbers.

To illustrate induction, let’s prove a property from algebra: the sum of numbers
from 1 to n, which we can write formally as Z?:l i, is equal to @ We want to
prove this property for all n > 1. In a proof by induction, we can start from either
0 or 1; since the property we want to prove is about natural numbers grater than
or equal to 1, our base case will be n = 1.

We check the property for the base case P(1), which we can get by substituting

1 for n in the statement of the property. Here, the sum of numbers from 1 to 1,
written 2}21 i, is just 1, so the property we need to proveis 1 = 51;’—” We can

simplify 1 = w = % = 2 = 1 and we are done with the base case.
Now for the inductive case, we assume that the property holds for some arbitrary

number k, and we need to prove it for the number k + 1. We assume P(k), which is

that Zi-;l i= k(kz—H) We need to prove P(k+1), which is that Zi:ll i= (kH)ZM

Starting with our assumption, we can add k+ 1 to both sides to get Zi-;l i+k+1=
Hk;r—lz +k+1. on the left we merge k+ 1 into the sum to get Zi:ll i= Hk;—lz +k+1.

On the right we rewrite k + 1 as the fraction L;“z and combine it with the existing

fraction to get Zi-:ll i= w Now we multiply out k(k + 1) on the right

to get Zi: li= % We simplify to get Zi:ll i= % Now we factor
to get Zi:ll i= M;km which is what we had to show, so we have proved the
inductive case and also finished the proof.

For reasoning about programming languages—as well as the simpler case of
addition for natural numbers—we’ll use a variant of induction called structural
induction. Structural induction works over some inductively defined structure:
like our natural number syntax. The base cases are the base case of our syntax:
for natural numbers, that’s z. So to prove some property P(n) for all n, the base
case will be to show that P(z) holds. Then, for the inductive case, we show that
we can prove that P(n) holds if we assume P(#’) holds for all #’ that are smaller
than n. What does it mean for 7’ to be smaller than n? In structural induction,
1’ is smaller than n if #’ is a substructure of . In the case of natural numbers, if
n = sn', then #’ is clearly a substructure of n, in the sense that it is a subtree of
the abstract syntax tree that represents #. This also matches our intuition from
mathematical intuition over natural numbers: sn’ means n’ + 1 and so 7 is greater
than #’. Just as in mathematical induction we reason from smaller numbers to
larger ones, in structural induction we reason from smaller structures to larger
structures.

Another way to look at this is that we are doing induction over trees. We
complete an inductive proof by first proving base cases that cover all the possible
leaves of the tree (our numbers form trees with a single linear branch, so there is
only one leaf, i.e. z) and then proving inductive cases that apply to interior notes
(in the case of numbers, this is the case where we assume the property for a subtree
n and prove it for one node up the tree, sn). The inductive case moves the proof

EXAMPLE 427

Proof thatn +z = z

EXAMPLE 428

Proving that if we add one
to the right of a sum, we
add one to the result

4.6.4 Induction Over Derivations c-5

up the tree one step at a time, until we’ve proved the property for a whole number
such as s s s z. The nice thing is, we can write a generic case of the proof for sn,
without knowing exactly what 7 is, and then apply that case multiple times. Thus
we can prove a property of s s s z with only two cases (one for z and one for
s), rather than four—the case for s can conceptually be “applied” three times to
work up first to s z, then s s z,and finally s s s z.

Later, when we prove properties of expressions that have numbers, variables,
addition, and multiplication, we can work in a similar way: proving base cases
for numbers and variables and inductive cases for addition (which adds two
subexpressions) and multiplication (which multiplies two subexpressions) we have
proved a property for expressions of arbitrary size that are build out of these parts.

Let’s take the simple case of zero/successor numbers first, and prove the property
that for all n, n + z = n. We can give this property a name, sum-z-rh, for it is a
property of the sum judgment when you add z on the right hand side of 4. The
proof is by structural induction on #:

Base case (n = z): We need to show that z 4+ z = z. We can prove this by applying
the sum-z rule where n = z:

sum-z
z+z=2z

Inductive case (n = sn’): We need to show that n + z = n. Rewriting in terms of
n', we have sn’ + z = sn’. Now, we are allowed to assume that the property we
are proving is true for substructures of n. We call this assumption the induction
hypothesis. One such substructure is #’. Thus we have n’ + z = n’ by applying
the induction hypothesis to n’. Now we can finish the proof by applying the rule
SUM-s:

n+z=n

————, sum-s
sn +z = sn

Of course, this is not a complete derivation, but that’s OK. When we assume
the induction hypothesis, we are really assuming there is some derivation D that
can be used to prove that n’ + z = n’. What we did in the last step is apply the
rule sum-s with the conclusion of the entire derivation D as its premise, giving us
an extended derivation with the desired conclusion. This kind of proof is often
called an constructive proof because the proof conceptually constructs a complete
derivation of the thing that is being proved.

4.6.4 Induction Over Derivations

Syntax definitions are inductive structures—but so are derivations. That means we
can do induction over them. This is useful to prove many properties. For example,
consider the property that’s symmetric to sum-s: for all n;, 1, and n3 such that

c-6

Chapter 4 Program Semantics

1y + ny = n3, we have nl 4+ s n, = s n3. Let’s call this sum-s-rh (it’s a property
of the sum judgment when you add an s to the right hand side of the +) You can
actually prove this by induction on #;, but it’s a bit complicated to do so. Let’s
instead assume there is some derivation D of n; + n, = n3, and do induction over
that derivation. The derivation D must end with the application of some rule:
either sum-z or sum-s, since those are the only two rules that can be used to derive
a sum judgement. We’ll finish the proof by considering each rule as a case.

—— sum-z .
Case 7 rn=n : If we are applying rule sum-z, then n; must be z, and

n, and n3 must be the same number 7, because otherwise it doesn’t match the rule.
Plugging the substituion [z /n;, n/n,, n/ns] into the thing we have to show, we get
z + s n = s n as the desired result. Here the notation [z/n;,n/n,, ...| means
substitute z for n;, n for n,, etc. But we can just use the sum-z rule to show this:

—_— sum-z
Z+sn=sn

which finishes our case.

m' +ny =ny . o
Case S > sum-s : Once again, we have a substitution: if we are
S N +Hy =8 N3
using the sum-s rule to derive n; + n, = n3, then n; must be s n,’ (for some
number #,") and similarly #n; must be some number s n;’. Now, notice that if
the derivation D ended with the above application of sum-s, there must be some
derivation D’ of the property n,"+n, = n3’ that is in the premise of the rule. D’ isa
subderivation of D: it’s a part of the derivation of D. We are doing induction on the
derivation D, so we can assume the induction hypothesis about any subderivation,
in particular the subderivation D’. Thus we have n," + s n, = s n3' by applying
the induction hypothesis to D'.
Notice that now we can use rule sum-s as follows:

n1'+s 1’1228113/

7 sum-s
s N +sn=ss ns

But notice that this result, s n," + s n, = s s n3’, is exactly what you get
if you apply the substitution [s #;’/n;, s n3’/n3) to the thing we were trying to
prove, which was n; + s n, = s n3. Thus we are done!

Once we have proved a property like sum-s-rh, we can use it just like a rule
to prove other theorems. For example, we might want to prove that + is com-
mutative. We can do so using structural induction, the rules sum-z and sum-s,
and the theorems above: sum-z-rh and sum-s-rh. In fact, theorems like “+ is
commutative” are the interesting ones; properties like sum-z-rh are mostly useful
to prove commutativity, and so we call them lemmas: properties that are useful in
proving a more interesting theorem.

EXAMPLE 429

Defining example
properties of expressions:
how many literals and
operators they contain

EXAMPLE 430

Proving that in any
expression, the number of
literals is one greater than
the number of operators

4.6.5 Proofs by Induction Over Syntax c-7

4.6.5 Proofs by Induction Over Syntax

Proofs about numbers are fun, but can we prove things about programs? Consider
the following grammar for expressions:

e — n|x|etel|exe

Let’s define the literals of an expression to be all the #’s and x’s within it, and
let’s define the operators to be all the +’s and *’s within it. An interesting property
is that the number of literals is always the number of operators plus one. Can we
prove it?

First, let’s define some rules that formalize the notion of literals and operators.
First of all, we have a judgment Lit(e) = n for defining the literals of an expression
e. The rules are:

Lit(n) =1 1"
Litx) = 1 bt
Lit(el) =m Lit(ez) =n, N +n=mn;
; Lit+
Lit(e; + &) = n3
Litley) =m Litlex) =m2 m+m =ns
Lit*

Lit(ey x e) = n3

We can also define rules for an operator judgment, Ops(e) = n:

Ops(n) =0 Ops-n
— Ops-
Ops(x) =0 psx
Ops(er) =n1 Ops(ex) =m m+m+1=mns3 Ops+
Ops(er + e;) = n3
Ops(er) =m Ops(e) =n m+m+1=nmn;3

‘
Ops(er * ;) = n3 Ops

If we assume that numbers 1 are defined as before, we can take 0 as an abbrevia-
tion for z and 1 as an abbreviation for s z. In the rest of this subsection, I’ll use
numbers as in math, but remember that we could define and reason about them
entirely using rules like sum-s.

Now let’s prove the property. For all expressions e, Lit(e) = Ops(e) + 1. We'll
prove it by induction on e. This induction is a bit more interesting because e is
tree-structured...the syntax e; + e, has two smaller bits of syntax within it, e; and
e;. So when we do the inductive step for the case of e; + e,, we can apply the
induction hypothesis twice: once for e; and once for e,. This is OK because both e;
and e, are subtrees of e; + e,. The proof goes by case analysis on the last syntactic
production used to construct e:

c-8 Chapter 4 Program Semantics

Casee = x:

Lit(x) = 1 by rule Lit-x

Ops(x) = 0 by rule Ops-x

So Lit(x) = 1 = Ops(x) + 1 = 0+ 1 = 1 (as mentioned above, we are doing
the math in one step, rather than appealing to the judgments defining +)

Case e = n: Lit(n) = 1 by rule Lit-n

Ops(n) = 0 by rule Ops-n

So Lit(n) = 1 = Ops(n) +1 = 0+ 1 = 1 (note: this case is analogous to that
for e = x)

Casee = e; + e;: Lit(e;) = Ops(e;) + 1 by the induction hypothesis applied to e;
Lit(e;) = Ops(e;) + 1 by the induction hypothesis applied to e,
Lit(e; + e;) = Lit(e;) + Lit(e;) by the rule Lit+
Ops(e; + e;) = Ops(e;) + Ops(ey) + 1 by the rule Ops+
So Lil’(el +€2) = Lit(@l) +Lit(€2) = Op5(61)+ 1+ OPS(EZ) +1= OpS(el +€2) +1
which is the result we needed to prove.

Case ¢ = ey * e;: The proof is analogous to the case for e; + e,, above.
This concludes the proof.

