02/22/19 Recitation Notes

17-355/17-665/17-819: Program Analysis (Spring 2019)
Jenna Wise
jlwise@andrew.cmu.edu

1 Reminders

e Homework 6 is due Tuesday, March 5, 2019 at 11:59pm. There is a checkpoint due next
Thursday, February 28, 2019 at 11:59pm. Instructions can be found on the course website

2 Implementing an Interprocedural Analysis in Soot

2.1 Interprocedural Control Flow Graph in Soot

! We perform interprocedural analyses on control flow graphs that model the control flow of entire
programs rather than single functions or methods.

These graphs contain additional edges for handling call and return instructions. For every call
to function g, we add an edge from the call site to the first instruction of g, and from every return
statement of g to the instruction following that call.

2.1.1 CallGraphs

Control flow graphs are referred to in Soot as CallGraphs. They can be accessed through the envi-
ronment class (Scene) only in whole program mode. To make sure that your analysis is running in
whole program mode use the wjap pack (you were using the jap pack in previous assignments):

PackManager.v () .getPack ("wjap") .add (new Transform (ANALYSIS_NAME,
SignAnalysis.instance()));

Once your analysis is set-up to run in whole program mode, it can access the application’s
(program’s) CallGraph through the Scene via the getCallGraph() method:

Scene v = Scene.v();
CallGraph cg = v.getCallGraph();

The CallGraph class and other associated constructs are located in the soot.jimple.toolkits.callgraph
package.
2.1.2 CallGraph Representation

A call graph in Soot is a collection of edges representing all known method invocations. Each edge
in the call graph contains four elements:

1Some of the information and text in this section comes from the Soot Survivor’s Guide (linked in Sec. 3 below),
Section 7 on pages 30-33

http://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/

1. Source method
Source statement (if applicable)

Target method

L

The kind of edge (the different kinds of edges are e.g. for static invocation, virtual invocation
and interface invocation)

The call graph has methods to query for the edges coming into a method, edges coming out of
method and edges coming from a particular statement:

¢ edgesInto(method)
e edgesOutOf(method)
e edgesOutOf(statement)

Each of these methods return an Iterator over Edge constructs. Soot provides three so-called
adapters for iterating over specific parts of an edge:

e Sources iterates over source methods of edges
¢ Units iterates over source statements of edges
o Targets iterates over target methods of edges

For example, in order to iterate over all possible calling methods of a particular method, we could
use the code:

public void printPossibleCallers (SootMethod target) {
CallGraph cg = Scene.v () .getCallGraph();

Iterator sources = new Sources (cg.edgesInto(target));
while (sources.hasNext ()) {
SootMethod src = (SootMethod) sources.next ();

System.out.println(target + " might be called by " + src);

2.2 Context Sensitive Analysis for Recursive Procedures

We introduce context sensitivity to allow us to return analysis results to a caller that reflect the
analysis results passed into the callee. We must also deal with the challenge of recursive functions
or more generally, mutual recursion. The algorithm discussed in the rest of this section is a context
sensitive analysis that handles mutual recursion/recursive functions (it is recommended that you
implement a version of this algorithm for hw6).

2.2.1 Algorithm Overview

The algorithm overview is written in comments in the algorithm presentation below.

Listing 1: Context Sensitive Analysis for Recursive Procedures Algorithm

type Context
val fp, : Function // function to be analyzed
val input : L // input data flow information to the function f,

type Summary // summary of the results from analyzing a context

val input : L // input data flow information to the function f,
// contained in a context we analyzed
val output : L // output data flow information from the function f,

// after analyzing the context it is in

val worklist : Set[Context]
val analyzing : Stack[Context] // keeps track of the contexts being
// analyzed; stack type due to
// nested function calls
val results : Map[Context, Summary] // data flow analysis results;
// maps a context to the summary
// of the results from analyzing it
val callers : Map[Context, Set[Context]] // maps a context to
// 1its calling contexts

function AnalyzeProgram
// initial context to be analyzed is the program entry method
(main) with T input dataflow information
worklist = { Context (main, T) }

// keep analyzing contexts in the worklist as long as it is not
empty; removing them from the worklist before analyzing them
while NotEmpty (worklist) do
ctx = Remove (worklist)
Analyze (ctx)
end while
end function

// analyze the context, ctx, intraprocedurally

// ctx should be on the analyzing stack only while it is being analyzed

// 1f the new output data flow result for ctx after analyzing it is
more general than the cached output data flow result for ctx, then
the new output data flow result for ctx is cached in place of the
currently cached result and the callers of ctx are added to the

worklist
function Analyze(ctx, o;) // o0; 1s the input dataflow info in ctx
0, = results[ctx].output

Push (analyzing, ctx)

o/ = Intraprocedural (ctx)

[0
Pop (analyzing)
if ol £ o, then
results[ctx] = Summary (g;, 0, 0))
for ¢ € callers[ctx] do
Add (worklist, c)
end for
end if

end function

// we need to define a precise flow function to handle method/function
call instructions in our intraprocedural analysis
// this flow function computes the callee’s context and then
determines the data flow analysis result from analyzing the
callee’s context
// the data flow analysis result from analyzing the callee’s context
is used to compute the output information of the flow function,
which is the input information to the flow function modified to map
x to the data flow analysis result from analyzing the callee’s
context
// this flow function also adds ctx as a caller to the calleeCtx
function Flow ([n:z:= f(y)], ctx, o;) // o0; here is the input info
// to this flow function
Oin = [formal(f) — oi(y)] // 0 maps the formal parameters of f to
// their abstract values in o;
calleeCtx = GetCtx(f, ctx, n, o)
0, = ResultsFor(calleeCtx, oOin)
Add(callers[calleeCtx], ctx)
return o;[x - ofresult]]
end function

// o0; is the input data flow info for ctx
function ResultsFor (ctx, o;)
o = results[ctx].output
// if there is cached output info for the current context, ctx,
that isn’t bottom and the cached input info for ctx is more
general or equal to the argument (new) input info for ctx then
the result of analyzing ctx is its cached output info
if 0# L A0; E results[ctx].input then
return o
end if
// if the cached output info for ctx is bottom or ctx’s new input
info is more general than what is cached, then replace the
cached input info for ctx with the argument (new) input info
for ctx
results[ctx].input = results[ctx].input u o;
// 1f we are already analyzing ctx, then make the result of
analyzing ctx again bottom; otherwise, analyze ctx and return

the result (note that this is a recursive call to Analyze)
if ctx € analyzing then
return 1 // has similar benefits to using ol for initial
// data flow values on the back edges of loops
else
return Analyze (ctx)
end if

end function

// return the context constructed for f based on f and ogy,, where o,
is defined as above

function GetCtx (f, callingCtx, n, o)
return Context (f, o)

end function

2.2.2 Algorithm Implementation Advice for Sign/Parity/Zero Analyses

***Note: that this is just advice and you may choose to implement the algorithm differently, if you
implement it at all

Listing 2: Data Type Advice

// Note: that I have chosen to not implement Context and GetCtx in
such a way that limits context-sensitivity (see the lecture notes
on Interprocedural Analysis for more information)

type Context

val fp: Function
val input: L // L = Map<Local, LatticeType>
// int locals/params to f, mapped to correct abstract
value
type Summary
val input: L // L = Map<Local, LatticeType>
// int locals/params to f, mapped to correct abstract
value
val output: L // L = LatticeType
// merged abstract values for int
// fn return values
// after intraprocedural analysis of f,

function GetCtx (f, callingCtx, n, o)

return Context (£, o)
end function

Other Algorithm Implementation Advice:

e Itis recommended to implement Context and Summary classes, which must have equals(Object
obj) and hashcode() methods implemented

e Itis recommended that method/function calls to which an ActiveBody is not available (out-
side the scope of the analysis) Top should be returned and the callee is not analyzed, ie. int
x = Integer.parselnt(”5”)

3 Helpful Soot Resources

e Soot Wiki
— Soot Wiki: Implementing an Intraprocedural Analysis in Soot

The Soot Survivor’s Guide

Sable Thesis detailing Soot, includes a useful description of the JIMPLE intermediate repre-
sentation

Soot’s Javadocs

https://github.com/Sable/soot/wiki
https://github.com/Sable/soot/wiki/Implementing-an-intra-procedural-data-flow-analysis-in-Soot
http://www.brics.dk/SootGuide/sootsurvivorsguide.pdf
https://courses.cs.washington.edu/courses/cse501/01wi/project/sable-thesis.pdf
https://soot-build.cs.uni-paderborn.de/public/origin/develop/soot/soot-develop/jdoc/

	Reminders
	Implementing an Interprocedural Analysis in Soot
	Interprocedural Control Flow Graph in Soot
	CallGraphs
	CallGraph Representation

	Context Sensitive Analysis for Recursive Procedures
	Algorithm Overview
	Algorithm Implementation Advice for Sign/Parity/Zero Analyses

	Helpful Soot Resources

