17-355/17-655/17-819: Program Analysis

Recitation Exercises

February	15.	2019	9

Andrew ID:	
------------	--

1. Consider the following (incorrect) flow function for **parity analysis**:

$$f_P[x:=y*z](\sigma) = \sigma[x | -> e]$$

Specify an input state $c_i=E$, n for the unsound flow function and show using that input state that the flow function is not locally sound. Part of specifying the input state is indicating which instruction n is referring to.

2. Prove the $\sigma(y) = o \wedge \sigma(z) = o$ case of the monotonicity case for $f_P[x := y * z](\sigma)$ as defined in the recitation notes.

3.	Prove the other half of the local soundness case for $f_P[x := y * z](\sigma)$ as defined in the recitation notes. The recitation notes get the proof started and prove the k is even case. You should finish the proof by proving the k is odd case.		