
02/01/19 Recitation Notes

17-355/17-665/17-819: Program Analysis (Spring 2019)
Jenna Wise

jlwise@andrew.cmu.edu

1 Reminders

• Homework 3 is due next Thursday, February 7, 2019 at 11:59pm. Homework instructions
can be found on the course website

2 Lecture Review for Homework: Defining a Dataflow Analysis

A dataflow analysis computes some dataflow information at each program point in a control flow
graph. This information can be used to detect errors in programs, such as if a program contains
or may contain some division by zero(s). In fact, we can use a zero analysis (a particular dataflow
analysis) to reduce the number of false positives we would incur by performing a more general
division by zero analysis syntactically.
To define a dataflow analysis we need four things:

• a lattice pL,�q (Sec. 2.1)
• an abstraction function α (Sec. 2.2)
• initial dataflow analysis assumptions σ0 (Sec. 2.3)
• a flow function f (Sec. 2.4)

2.1 Lattice

We will use σ to denote dataflow information at each program point. σ typically maps variables
to abstract values taken from some set L (as is the case for a zero analysis or parity analysis):

σ P Var Ñ L

L represents the set of abstract values we are interested in tracking in the analysis, which varies
from one analysis to another. We require that these abstract values form a join-semilattice (lattice
for short).

2.1.1 Partial Order

We define a partial order � over abstract values, where l1 � l2 for l1, l2 P L means that l1 is at least
as precise as l2. Recall that a partial order is any relation that is:

• reflexive: @l : l � l
• transitive: @l1, l2, l3 : l1 � l2 ^ l2 � l3 ñ l1 � l3
• anti-symmetric: @l1, l2 : l1 � l2 ^ l2 � l1 ñ l1 � l2

1

http://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/

2.1.2 Join

A join operation, \, is helpful for generalizing the procedure of combining analysis results along
multiple paths of a dataflow analysis. It means that when taking two abstract values l1, l2 P L, the
result of l1 \ l2 is an abstract value lj such that l1 � lj and l2 � lj for the partial order � (lj is the
least upper bound of l1 and l2).

2.1.3 Join-semilattice

A set of values L that is equipped with a partial order �, and for which the least upper bound of
any two values in that ordering, l1\ l2, is unique and is also in L, is called a join-semilattice (lattice
for short). Any join-semilattice has a maximal element J (pronounced “top”). For all l, we have
the identity l � J and J\ l � J.

2.1.4 K Abstract Value & Meet

K plays a dual role to the value J: it sits at the bottom of the dataflow value lattice. For all l, we
have K � l and K\ l � l.

There is a greatest lower bound operator meet, [(for l1, l2 P L, the result of l1[l2 is an abstract
value lj such that lj � l1 and lj � l2 for the partial order �), which is dual to \. The meet of all
dataflow values is K.

2.1.5 Complete Lattice

A set of values L that is equipped with a partial order �, and for which both least upper bounds
\ and greatest lower bounds [exist in L and are unique, is called a complete lattice.

The theory of K and complete lattices allows us to avoid following a specific path during
a dataflow analysis by initializing σ at every instruction in the program, except at entry, to K,
indicating that the instruction there has not yet been analyzed. We can then always merge all input
values to a node, whether or not the sources of those inputs have been analysed, because we know
that anyK values from unanalyzed sources will simply be ignored by the join operator\, and that
if the dataflow value for that variable will change, we will get to it before the analysis is completed.

2.1.6 Parity Analysis Example

For example, we define a lattice for a parity analysis, which tracks whether each variable is odd or
even at each program point.

For this analysis, we define L to be the set te, o,J,Ku. The abstract value e represents all even
values (including 0) and o represents all odd values. J is the “top element” and abstract value
given to variables whose concrete value could be anything, even or odd, due to imprecision in
the analysis. K is the “bottom element” and abstract value given to variables that have not been
analyzed yet for classification.

For parity analysis, we can define the partial order, �, in two different ways:
1) Visually

2

2) Mathematically
@l P L. K � l � J.

Therefore,� is a partial order and (L,�) defines a complete lattice (and therefore, a join-semilattice).
Additionally, J and K can be proven to be the “top element” and “bot element” respectively.

2.2 Abstraction Function

Conceptually, each abstract value represents a set of one or more concrete values that may occur
when a program executes. We define an abstraction function α that maps each possible concrete
value of interest to an abstract value.

2.2.1 Parity Analysis Example

For parity analysis, we define αP : Z Ñ L so that all even integers (including 0) map to e and all
even integers (all other integers) map to o:

αP pnq � e where n mod 2 � 0

αP pnq � o where n mod 2 � 0

2.3 Initial Dataflow Analysis Assumptions

Note that a side question comes up when we begin analyzing the first program instruction: what
should we assume about the value of input variables? If we do not know anything about what
the value of a variable can be, a good choice is to assume it can be anything; That is, in the initial
environment σ0, input variables are mapped to J.

2.3.1 Parity Analysis Example

It makes the most sense for a parity analysis to map input variables (to the first program instruc-
tion) to J, since the value of these variables could be anything (even or odd).

3

2.4 Flow Function

The core of any program analysis is how individual instructions in the program are analyzed and
affect the analysis state σ at each program point. We define this using flow functions that map the
dataflow information at the program point immediately before an instruction to the dataflow in-
formation after that instruction. A flow function should represent the semantics of the instruction,
but abstractly, in terms of the abstract values tracked by the analysis.

2.4.1 Parity Analysis Example

For example, we define the flow functions fP for parity analysis on WHILE3ADDR as follows:

fP vx :� nwpσq �

#
σrx ÞÑ es where n mod 2 � 0

σrx ÞÑ os where n mod 2 � 0
(1)

fP vx :� ywpσq � σrx ÞÑ σpyqs (2)

fP vx :� y op zwpσq � σrx ÞÑ Js (3)

fP vgoto nwpσq � σ (4)

fP vif x � 0 goto nwpσq � σ (5)

(1) is for assignment to a constant. If we assign an even integer to a variable x, then we should
update the input dataflow information σ so that x maps to the abstract value e, and if we assign
an odd integer to a variable x, then we should update the input dataflow information σ so that x
maps to the abstract value o. Flow function (2) is for copies from a variable y to another variable
x: we look up y in σ, written σpyq, and update σ so that x maps to the same abstract value as y.

We start with a generic flow function for arithmetic instructions (3). Arithmetic can produce
either an even or odd value, so we use the abstract value J to represent our uncertainty. More
precise flow functions are available based on certain instructions or operands. For example, if we
multiply two operands one of which is even, then the result is definitely even. Similarly, if we
multiply two operands both of which are odd, then the result is definitely odd. Not so obvious,
is if one operand of multiplication is bottom and the other operand is odd (or top), then the result
should be bottom to ensure the highest level of precision. This is because once we analyze and
classify the bottom operand we could achieve a more precise result than top for x (we would still
need the generic case above for instructions that do not fit such special cases):

fP vx :� y � zwpσq � σrx ÞÑ es where σpyq � e_ σpzq � e

fP vx :� y � zwpσq � σrx ÞÑ os where σpyq � o^ σpzq � o

fP vx :� y � zwpσq � σrx ÞÑ Ks where σpyq � K ^ σpzq � o

fP vx :� y � zwpσq � σrx ÞÑ Ks where σpyq � K ^ σpzq � J

The flow function for branches ((4) and (5)) is trivial: branches do not change the state of the
machine other than to change the program counter, and thus the analysis result is unaffected.

However, we can provide a better flow function for conditional branches if we distinguish the
analysis information produced when the branch is taken or not taken. For example, for the true
condition of the flow function for conditional branches, we know that x is zero (and therefore
even) so we can update σ with the e lattice value. Conversely, in the false condition we know

4

nothing, x � 0 implies x may be even or odd, so we should propagate the information we already
know about x to be the most precise:

fP vif x � 0 goto nwT pσq � σrx ÞÑ es
fP vif x � 0 goto nwF pσq � σ

2.5 Running a Dataflow Analysis

The point of developing a dataflow analysis is to compute information about possible program
states at each point in a program. Even though this information contains approximations of values
of variables and is, therefore, inevitably imprecise in certain situations, in practice, well-designed
approximations can often allow dataflow analysis to compute quite useful information. For exam-
ple, for zero analysis with fully precise flow functions, whenever we divide some expression by a
variable x, we can determine in a lot of instances (more so than with a syntactic analysis) whether
x must be zero (the abstract value Z) and warn the developer. Imprecision is handled by warning
the developer that x may be zero in the case the abstract value of x is J.

Kildall’s worklist algorithm with the strongly-connected component and reverse postorder
heuristics is the most efficient and correct algorithm for executing dataflow analyses that we know
of from class. Therefore, we will simulate running dataflow analyses on programs using Kildall’s
worklist algorithm with the strongly-connected component and reverse postorder heuristics.
But first, here is the pseudocode for Kildall’s worklist algorithm:

for Instruction i in program
input[i] = K

input[firstInstruction] = initialDataflowInformation
worklist = { firstInstruction }

while worklist is not empty
take an instruction i off the worklist
output = flow(i, input[i])
for Instruction j in succs(i)

if output �� input[j]
input[j] = input[j] \ output
add j to worklist

2.5.1 Running Parity Analysis with Kildall’s Worklist Algorithm: An Example

We will simulate the parity analysis (defined previously) on the following program using Kildall’s
worklist algorithm with the strongly-connected component and reverse postorder heuristics. We
will use the most precise versions of the flow functions for parity analysis defined previously, eg.
the special cases for multiplication and conditional branches instead of their less precise generic
counterparts. We track and report the analysis information using a table with a column for the
program point, a column for the worklist, and a column for the abstract value of each variable.
Each row tracks the value after the execution of the corresponding statement. The rows show how
the analysis executes, examining one statement at a time:

5

1 : x :� 2
2 : y :� 3
3 : z :� 6
4 : if y � 0 goto 8
5 : x :� x � y
6 : y :� y � 1
7 : goto 4
8 : y :� x � z

Program Pt Worklist x y z
0 1 J J J
1 2 e J J
2 3 e o J
3 4 e o e
4 5, 8 e eT , oF e
5 6, 8 e o e
6 7, 8 e J e
7 4, 8 e J e
4 5, 8 e eT ,JF e
5 6, 8 e J e
6 8 e J e
8 H e e e

6

	Reminders
	Lecture Review for Homework: Defining a Dataflow Analysis
	Lattice
	Partial Order
	Join
	Join-semilattice
	 Abstract Value & Meet
	Complete Lattice
	Parity Analysis Example

	Abstraction Function
	Parity Analysis Example

	Initial Dataflow Analysis Assumptions
	Parity Analysis Example

	Flow Function
	Parity Analysis Example

	Running a Dataflow Analysis
	Running Parity Analysis with Kildall's Worklist Algorithm: An Example

