
01/25/19 Recitation Notes

17-355/17-665/17-819: Program Analysis (Spring 2019)
Jenna Wise

jlwise@andrew.cmu.edu

1 Reminders

• Homework 2 is due next Thursday, January 31, 2019 at 11:59pm. Homework instructions
and the LATEX helper files can be found on the course website

• If you want feedback on your in-class exercises, please let me know

• Office hours are weekly on Tuesday from 5-6pm in Jonathan’s office and Thursday from
1-3pm in Jenna’s office or by appointment

2 Lecture Review for Homework

2.1 Judgments & Inference Rules

2.1.1 Judgments

Judgments are statements written in a “metalanguage” — a language in which the symbols and
rules for manipulating another language (in our case the WHILE or WHILE3ADDR languages)
are formulated. For example, to formulate big-step operational semantics for WHILE (see Section
2.2.1 for more information about big-step operational semantics) we write and give meaning to
this statement, which manipulates program statements in the WHILE language:

〈S,E〉 ⇓ E′ for S ∈ Stmt and E,E′ ∈ V ar → Z

2.1.2 Inference Rules

An inference rule is made up of a set of judgments above the line, known as premises, and a judg-
ment below the line, known as the conclusion. The meaning of an inference rule is that the conclu-
sion holds if all of the premises hold:

premise1 premise2 . . . premisen
conclusion

An inference rule with no premises is an axiom, which is always true. We use sets of inference
rules to express various program semantics, as seen in Section 2.2.

1

http://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/

2.2 Program Semantics

A program’s semantics define its meaning. There are three main classes of formal semantics de-
notational, operational, and axiomatic. So far, we’ve covered operational semantics and its two
classes: big-step operational semantics and small-step operational semantics.

Operational semantics mimics, at a high level, the operation of a computer executing the pro-
gram.

Both big-step and small-step operational semantics depend on a program state E ∈ Var → Z,
which maps program variables to their corresponding integer values.

2.2.1 Big-step Operational Semantics

Big-step operational semantics specifies the entire execution of a program at runtime. Inference
rules define the big-step operational semantics for the WHILE language and these three main judg-
ments:

〈a,E〉 ⇓a n for a ∈ Aexp and integer literal n

〈P,E〉 ⇓b b for P ∈ Bexp and b ∈ {true, false}
〈S,E〉 ⇓ E′ for S ∈ Stmt

Each judgment above indicates complete execution of an arithmetic expression, boolean ex-
pression, or program statement (respectively) starting from program state E, which results in an
integer literal, the true or false boolean expression, or a potentially different program state E′

(respectively).

Big-step operational semantics for the WHILE language

〈a,E〉 ⇓a n

〈n,E〉 ⇓a n
big-int

〈x,E〉 ⇓a E(x)
big-var

〈a1, E〉 ⇓a n1 〈a2, E〉 ⇓a n2

〈a1 opa a2, E〉 ⇓a n1 opa n2
big-aop

〈P,E〉 ⇓b b where b ∈ {true, false}

〈b, E〉 ⇓b b
big-b

〈P,E〉 ⇓b b
〈not P,E〉 ⇓b ¬ b

big-not
〈P1, E〉 ⇓b b1 〈P2, E〉 ⇓b b2
〈P1 opb P2, E〉 ⇓b b1 opb b2

big-bop

〈a1, E〉 ⇓a n1 〈a2, E〉 ⇓a n2

〈a1 opr a2, E〉 ⇓b n1 opr n2
big-rop

〈S,E〉 ⇓ E′

2

〈skip, E〉 ⇓ E
big-skip

〈a,E〉 ⇓a n

〈x := a,E〉 ⇓ E[x 7→ n]
big-assign

〈S1, E〉 ⇓ E′ 〈S2, E
′〉 ⇓ E′′

〈S1;S2, E〉 ⇓ E′′
big-seq

〈P,E〉 ⇓b true 〈S1, E〉 ⇓ E′

〈if P then S1 else S2, E〉 ⇓ E′
big-iftrue

〈P,E〉 ⇓b false 〈S2, E〉 ⇓ E′

〈if P then S1 else S2, E〉 ⇓ E′
big-iffalse

〈P,E〉 ⇓b true 〈S,E〉 ⇓ E′ 〈while P do S,E′〉 ⇓ E′′

〈while P do S,E〉 ⇓ E′′
big-whiletrue

〈P,E〉 ⇓b false
〈while P do S,E〉 ⇓ E

big-whilefalse

2.2.2 Small-step Operational Semantics

Small-step operational semantics specifies the execution of a program at runtime one step at a time
until a final result or program configuration (〈skip, E〉) is reached (if it can be reached). Inference
rules define the small-step operational semantics for the WHILE language and these three main
judgments:

〈a,E〉 →a a′ for a, a′ ∈ Aexp

〈P,E〉 →b P
′ for P, P ′ ∈ Bexp

〈S,E〉 → 〈S′, E′〉 for S, S′ ∈ Stmt

Each judgment above indicates one step of execution of an arithmetic expression, boolean ex-
pression, or program statement (respectively) starting from program state E, which results in a
potentially different arithmetic expression, boolean expression, or program configuration (respec-
tively). The above judgments with→a,→b, and→ replaced by→∗a,→∗b , and→∗ respectively indi-
cate zero or more steps of execution of an arithmetic expression, boolean expression, or program
statement (respectively) starting from program state E, which results in a potentially different
arithmetic expression, boolean expression, or program configuration (respectively).

Small-step operational semantics for the WHILE language

〈a,E〉 →a a′

〈n,E〉 →a n
small-int 〈x,E〉 →a E(x)

small-var

〈a1, E〉 →a a′1
〈a1 opa a2, E〉 →a a′1 opa a2

small-aop-congruence-a1

〈a2, E〉 →a a′2
〈n opa a2, E〉 →a n opa a

′
2

small-aop-congruence-a2
〈n1 opa n2, E〉 →a n1 opa n2

small-aop

〈P,E〉 →b P ′

3

b ∈ {true, false}
〈b, E〉 →b b

small-b
〈P,E〉 →b P

′

〈not P,E〉 →b not P ′
small-not-congruence

b ∈ {true, false}
〈not b, E〉 →b ¬ b

small-not
〈P1, E〉 →b P

′
1

〈P1 opb P2, E〉 →b P
′
1 opb P2

small-bop-congruence-p1

b ∈ {true, false} 〈P2, E〉 →b P
′
2

〈b opb P2, E〉 →b b opb P
′
2

small-bop-congruence-p2

b1, b2 ∈ {true, false}
〈b1 opb b2, E〉 →b b1 opb b2

small-bop
〈a1, E〉 →a a′1

〈a1 opr a2, E〉 →b a
′
1 opr a2

small-rop-congruence-a1

〈a2, E〉 →a a′2
〈n opr a2, E〉 →b n opr a

′
2

small-rop-congruence-a2
〈n1 opr n2, E〉 →b n1 opr n2

small-rop

〈skip,E〉 final

〈skip, E〉 final
small-skip

〈S,E〉 → 〈S′,E′〉

〈a,E〉 →a a′

〈x := a,E〉 → 〈x := a′, E〉
small-assign-congruence

〈x := n,E〉 → 〈skip, E[x 7→ n]〉
small-assign

〈S1, E〉 → 〈S′1, E′〉
〈S1;S2, E〉 → 〈S′1;S2, E

′〉
small-seq-congruence

〈skip;S2, E〉 → 〈S2, E〉
small-seq

〈P,E〉 →b P ′

〈if P then S1 else S2, E〉 → 〈if P ′ then S1 else S2, E〉
small-if-congruence

〈if true then S1 else S2, E〉 → 〈S1, E〉
small-iftrue

〈if false then S1 else S2, E〉 → 〈S2, E〉
small-iffalse

〈while P do S,E〉 → 〈if P then (S; while P do S) else skip, E〉 small-while

2.2.3 Derivations

We can prove that concrete program expressions will evaluate to particular values and concrete
program statements will evaluate to particular program states (in the case of big-step operational
semantics) or configurations (in the case of small-step operational semantics). This is done by
chaining together rules of inference into derivations, for example:

〈4, E1〉 ⇓ 4
big-int

〈2, E1〉 ⇓ 2
big-int

〈4 ∗ 2, E1〉 ⇓ 8
big-aop

〈6, E1〉 ⇓ 6
big-int

〈(4 ∗ 2)− 6, E1〉 ⇓ 2
big-aop

4

Therefore, we have proven that (4 ∗ 2)− 6 evaluates to 2 starting in the program state E1.

2.2.4 Proof Techniques - Structural Induction

A precise language specification lets us precisely prove properties of our language or programs
written in it (including analyses that we write). Structural induction is the main proof technique
that we use to do this.
Structural Induction
is a special case of well-founded induction where a well-founded relation, ≺ ⊆ A × A, is defined
on the recursive structure of a program or derivation. Recall that well-founded induction says that
to prove ∀x ∈ A.P (x) it is enough to prove ∀x ∈ A.[∀y ≺ x ⇒ P (y)] ⇒ P (x); the base case arises
when there is no y ≺ x, and so the part of the formula within the brackets [] is vacuously true.

You can induct on the structure of an abstract syntax construct (ie. arithmetic expressions) or
you can induct on the structure of a derivation (which you will do in hw2).
Induction on the Structure of Derivations
Derivation trees are defined inductively and are built of sub-derivations, so we can induct on their
structure. To prove that property P holds for a program statement, we will prove that P holds for
all possible derivations of that statement. Such a proof consists of the following steps:

Base Case(s): Show that P holds for each atomic derivation rule with no premises (of the form S).
Inductive Case(s): For each derivation rule of the form

H1 ... Hn

S

By the induction hypothesis, P holds for Hi, where i = 1 . . . n. We then have to prove that the
property is preserved by the derivation using the given rule of inference.

Inversion: A key technique for induction on derivations is inversion. Because the number of forms
of rules of inference is finite, we can tell which inference rules might have been used last in the
derivation. For example, if D is the derivation that proves 〈while P do S,E〉 ⇓ E′, then (by
inversion) the last rule used in D was either the big-whiletrue rule or the big-whilefalse
rule.

Example Proof: In hw2 you will be partially proving by induction on the structure of derivations
that if a statement terminates, the big- and small-step semantics for WHILE will obtain equivalent
results, expressed formally as:

∀S ∈ Stmt. ∀E,E′ ∈ V ar → Z. 〈S,E〉 →∗ 〈skip, E′〉 ⇔ 〈S,E〉 ⇓ E′ (1)

You will also be able to assume that this property holds for arithmetic and boolean expressions
in WHILE, expressed formally as:

∀a ∈ AExp. ∀n ∈ Z. 〈a,E〉 →∗a n ⇔ 〈a,E〉 ⇓ n (2)
∀P ∈ Bexp. ∀b ∈ {true, false}. 〈P,E〉 →∗b b ⇔ 〈P,E〉 ⇓ b (3)

The 〈S,E〉 →∗ 〈skip, E′〉 ⇒ 〈S,E〉 ⇓ E′ direction of the proof of equation (1) requires Lemma
1 to be proven. The structure of the proof of this lemma and the proof for one inductive case (this
proof is by structural induction on the structure of a derivation) for this lemma will be shown
below:

5

Lemma 1.
∀S, S′ ∈ Stmt. ∀E,E′, E′′ ∈ V ar → Z. 〈S,E〉 → 〈S′, E′〉 and 〈S′, E′〉 ⇓ E′′ ⇒ 〈S,E〉 ⇓ E′′

Proof. By structural induction on the derivation of 〈S,E〉 → 〈S′, E′〉
*** We get to assume both the arbitrary 〈S,E〉 → 〈S′, E′〉 and 〈S′, E′〉 ⇓ E′′ judgments have

derivations which prove them for this proof, so we can perform structural induction on either
derivation tree; I chose the derivation of 〈S,E〉 → 〈S′, E′〉 (choosing the right one to find a proof
requires trial and error).

[BASE CASE(S)]

〈x := n,E〉 → 〈skip, E[x 7→ n]〉
small-assign

〈skip;S2, E〉 → 〈S2, E〉
small-seq

〈if true then S1 else S2, E〉 → 〈S1, E〉
small-iftrue

〈if false then S1 else S2, E〉 → 〈S2, E〉
small-iffalse

〈while P do S,E〉 → 〈if P then (S; while P do S) else skip, E〉 small-while

*** For each base case (inference rule) listed above, we would have to prove that given the
conclusion of the inference rule and 〈S′, E′〉 ⇓ E′′ adjusted for the rule, then we can arrive at
〈S,E〉 ⇓ E′′ adjusted for the rule.

[INDUCTIVE CASE:] 〈P,E〉 →b P ′

〈if P then S1 else S2, E〉 → 〈if P ′ then S1 else S2, E〉
small-if-congruence


We are given that 〈if P ′ then S1 else S2, E〉 ⇓ E′′.

By inversion on 〈if P ′ then S1 else S2, E〉 ⇓ E′′, we get

〈P ′, E〉 ⇓b true and 〈S1, E〉 ⇓ E′′ or
〈P ′, E〉 ⇓b false and 〈S2, E〉 ⇓ E′′

If 〈P ′, E〉 ⇓b true and 〈S1, E〉 ⇓ E′′ then

By (2) (from above homework description),
〈P ′, E〉 ⇓b true implies 〈P ′, E〉 →∗b true

Since 〈P,E〉 →b P
′ and 〈P ′, E〉 →∗b true, we get

〈P,E〉 →∗b true
By (2) (from above homework description),
〈P,E〉 →∗b true implies 〈P,E〉 ⇓b true

Since 〈P,E〉 ⇓b true and 〈S1, E〉 ⇓ E′′, we get
〈if P then S1 else S2, E〉 ⇓ E′′ by the big-iftrue inference rule

6

If 〈P ′, E〉 ⇓b false and 〈S2, E〉 ⇓ E′′ then

[Proof for this subcase is similar to the proof for the 〈P ′, E〉 ⇓b true subcase]

*** To finish the proof for the inductive cases, each inductive case (WHILE statement inference
rule with premise(s)) would need to be proved in a similar fashion as the
small-if-congruence case.

3 Other Homework Help

3.1 Typesetting in LATEX

You are welcome to use your favorite LATEX package(s) to typeset your homework 2 submission,
but I will accept scanned pdfs of handwritten solutions for homework 2.

If you prefer to use LATEX and do not have a favorite LATEX package, you may be interested in
mathpartir, which you can find on the course website. To see how to write some inference rules,

• Download and unzip the mathpartir.zip file on the course website

• Compile the example mathpartir.tex in the unzipped folder with, e.g., pdflatex

To use it for your assignment, include mathpartir.sty in your tex file (i.e.,
\usepackage {mathpartir}). Alternatively, you can also modify mathpartir.tex directly.

7

http://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/

	Reminders
	Lecture Review for Homework
	Judgments & Inference Rules
	Judgments
	Inference Rules

	Program Semantics
	Big-step Operational Semantics
	Small-step Operational Semantics
	Derivations
	Proof Techniques - Structural Induction

	Other Homework Help
	Typesetting in LaTeX

