Homework 8: Verification, SMT, and Synthesis

17-355/17-665/17-819: Program Analysis
Jonathan Aldrich*

aldrich@cs.cmu.edu
Due: Tuesday, April 2 11:59 pm

100 points total

Assignment Objectives:

e Demonstrate understanding of specifications for verifying programs.
e Reason about satisfiability and EUF theory and implement a solution in SMT-LIB format.
e Develop an SMT formulation and implement the solution for an Inductive Synthesis problem.

Handin Instructions. Please submit the written assignment (Q1 and Q2) on Canvas as a PDF by
the due date. Name it [your-andrew-id]-hw8.pdf. Submit your solution to Q3 in a folder called
hw8 in your GitHub repository.

Question 1, Verifying with Dafny, (30 points). Dafny is a programming language with built-in
specification constructs. For example, Dafny lets you specify pre- and post conditions on meth-
ods, and will verify that your code meets the specification. Underneath the hood, Dafny dis-
charges SMT formulas based on the program and specifications, and validates correctness us-
ing, e.g., Z3. The online tutorial for Dafny is a good resource for examples and getting started:
https://risedfun.com/Dafny/tutorial/Guide. Note, however, that you do not need to write
or understand much Dafny to complete this question, which primarily concerns specification/verification.

Consider the BubbleSort program written in Dafny at https://risedfun.com/Dafny/
1x55. By writing specifications in Dafny, we can verify the correctness of bubble sort (i.e., that
it always returns a sorted list). Take some time to understand the program and the existing speci-
fications, then answer the following questions.

a) (5 points) The predicate sorted is incomplete. What should be substituted for __FIXME__ on
line 5?

b) (10 points) After adding the condition for part a), run Dafny again. Dafny still unable to prove

the program correct due to a loop invariant. It gives two errors: This loop invariant might

not hold on entryandThis loop invariant might not be maintained by the loop.
Correct the reported loop invariant so that Dafny no longer reports the case where the 1oop

invariant might not be maintained by the loop. Write out the code/invariant you

changed in your assignment, and explain in prose why the original loop invariant was insufficient.

*This homework was developed together with Claire Le Goues


https://rise4fun.com/Dafny/tutorial/Guide
https://rise4fun.com/Dafny/1xSS
https://rise4fun.com/Dafny/1xSS

c) (15 points) After fixing the loop invariant in part b), Dafny still reports that the correct loop
invariant might not hold on entry. Explain in prose why this is the case.

Dafny will verify the complete implementation with some changes that deal with the condition
on loop entry. One way is to add an additional invariant. Another way is to change the program
so that Dafny infers stronger conditions on variable(s).

Either add a single invariant or make a small change the program so that Dafny verifies the
program. Rerun Dafny and confirm that it verifies the program with no warnings. Describe the
change you made.

Question 2, SMT with EUF, (20 points).
a) (10 points) Show, using the congruence closure, whether the following Equality Logic with Un-
interpreted Functions (EUF) formula is satisfiable. Show each step merging equivalent terms.

f(g(0)) = g(f(0)) A f(g(f(y)) =0A f(y) =0Ag(f(0)) #0

b) (10 points) Give the SMT-LIB formula (i.e., a valid Z3 program that you can run online at ht t ps :
//risedfun.com/z3) to prove your answer to (a) is correct. Put your code in the answer, and
show the output of Z3.

Question 3, Inductive Synthesis, (50 points).

This task asks you to write a simple synthesizer for an expression that satisfies a collection
of input/output pairs. The instruction set consists of only four binary operators for bitvectors:
multiply, add, left bit shift,and bitwise or. Your expression has four inputs A, B, C,
D. Your task is to discover the right operators using the inputs such that it evaluates to the output.

Example. Suppose we have the input A=2,B=2,C=1,D =1, and the output 4. Two solutions
are possible, and represented with different trees ((A + B) * (C * D)) and (A * (B * (C * D))):

More generally, we want to discover the operators and expression tree such that the inputs
evaluate to the output.

a) (15 points) Develop a strategy to encode the general problem with SMT. Describe your approach
in a README . md in the hw8 folder in your repository.

b) (35 points) Implement your solution (using your SMT formulation) to synthesize the expres-
sion satisfying the input/output pairs using Z3. The input/output pairs are available with the
provided starter code (see Setup, next). Inputs correspond to the format (A, B, C, D).

Setup. You are free to use any programming language that interfaces with Z3. APIs exist for C,
Java, Python, OCaml, etc. See here. We provide starter code using Python on the course website.
Please refer to instructions in the recitation for Z3 (here) to set up Z3 with the Python APL


https://rise4fun.com/z3
https://rise4fun.com/z3
http://z3prover.github.io/api/html/index.html
http://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/
http://www.cs.cmu.edu/~aldrich/courses/17-355-19sp/resources/recitation08-notes.pdf

Description. You may assume that each input is used only once in the expression, and there are
four inputs. Le., the solution is guaranteed to use each of the inputs A, B, C, and D, and will only
use each of these values once. All values (inputs and outputs) are 16-bits wide. Note that inputs
can occur in any order (B << A is a possible subexpression).

Test. Check your answer from your Z3 solution by making the test .py file (in the same direc-
tory) pass. That is: translate your synthesized expression into Python and add it to the test func-
tion. If you choose not to use Python, write a function like test . py that tests your answer against
all the input/output pairs, and include instructions to run your solution in your README . md.

Guidelines. Permutations of binary trees correspond to the set of possible expression trees that
can be generated. Leaf nodes correspond to inputs, and we know there are four leaf nodes since
we have four inputs. Non-leaf nodes correspond to operators. Can you think of a way to encode
permutations of binary trees with the operators in a way that Z3 can tell you which combination
of operators satisfy the output?

Consider using boolean variables that correspond to operators which toggle whether an op-
erator is used or not in an expression. If you set up the constraints the right way, Z3 can tell
you which operators should be used to satisfy the solution (toggled “on”) and which ones should
be left out. This way, the Z3 solution consists of flags that correspond to the right operator for
satisfying the input/output relation.



