
Daikon:
Dynamic Analysis for Inferring Likely Invariants

Reading: Dynamically Discovering Likely
Program Invariants to Support Program
Evolution

17-355/17-665/17-819: Program Analysis
Jonathan Aldrich

2 May 2019 2

The Challenge

• Invariants are useful, but a pain to write
down

• What if analysis could do it for us?
• Problem: guessing invariants with static

analysis is hard
• Solution: guessing invariants by watching

actual program behavior is easy!
• But of course the guesses might be wrong…

2 May 2019 3

Inferring i ≤ n in Loop Invariant

void sum(int *b,int n) {

pre: n ≥ 0

i, s := 0, 0;

inv: 0 ≤ i ≤ n ⋀ s=∑0≤j<i

b[j]

do i ≠ n 

i, s := i+1, s+b[i]

post: s=sum(b[j], 0≤j<n)

}

• Possible relationships:

i<n i≤n i=n i>n i≥n

• Cull relationships with
traces

Trace: n=0

n i

2 May 2019 4

Inferring i ≤ n in Loop Invariant

void sum(int *b,int n) {

pre: n ≥ 0

i, s := 0, 0;

inv: 0 ≤ i ≤ n ⋀ s=∑0≤j<i

b[j]

do i ≠ n 

i, s := i+1, s+b[i]

post: s=sum(b[j], 0≤j<n)

}

• Possible relationships:

i<n i≤n i=n i>n i≥n

• Cull relationships with
traces

Trace: n=0

n i

0 0

X X

2 May 2019 5

Inferring i ≤ n in Loop Invariant

void sum(int *b,int n) {

pre: n ≥ 0

i, s := 0, 0;

inv: 0 ≤ i ≤ n ⋀ s=∑0≤j<i

b[j]

do i ≠ n 

i, s := i+1, s+b[i]

post: s=sum(b[j], 0≤j<n)

}

• Possible relationships:

i<n i≤n i=n i>n i≥n

• Cull relationships with
traces

Trace: n=1

n i

X X

2 May 2019 6

Inferring i ≤ n in Loop Invariant

void sum(int *b,int n) {

pre: n ≥ 0

i, s := 0, 0;

inv: 0 ≤ i ≤ n ⋀ s=∑0≤j<i

b[j]

do i ≠ n 

i, s := i+1, s+b[i]

post: s=sum(b[j], 0≤j<n)

}

• Possible relationships:

i<n i≤n i=n i>n i≥n

• Cull relationships with
traces

Trace: n=1

n i

1 0

1 1

X XX X

2 May 2019 7

Inferring i ≤ n in Loop Invariant

void sum(int *b,int n) {

pre: n ≥ 0

i, s := 0, 0;

inv: 0 ≤ i ≤ n ⋀ s=∑0≤j<i

b[j]

do i ≠ n 

i, s := i+1, s+b[i]

post: s=sum(b[j], 0≤j<n)

}

• Possible relationships:

i<n i≤n i=n i>n i≥n

• Cull relationships with
traces

Trace: n=2

n i

2 0

2 1

2 2

X XX X

2 May 2019 8

Results

• Inferred all invariants in Gries’ The
Science of Programming

• Shocking to research community
• Many people have applied static analysis to

the problem
• Static analysis is unsuccessful by

comparison

2 May 2019 9

Invariants Daikon can Infer
• x=c, x=a || x=b || x=c
• a  x  b
• x = a (mod b), x  a (mod b)
• x = a*y + b*z + c
• x = abs(y), x = min(y,z)
• x = y, x < y, x  y
• Invariants involving x+y or x-y
• Sequences

• Sorted, invariants over elements, membership, subsequence
• Derived variables

• first/last element, or sum/min/max of array
• element at an array index a[i]; a[0..i] and a[i..n]

• x,y,z are variables; a,b,c are constants
• All are easy to falsify with test cases

2 May 2019 10

Drawbacks

2 May 2019 11

Drawbacks

• Requires a reasonable test suite
• Invariants may not be true

• May only be true for this test suite, but falsified by another
program execution

• May detect uninteresting invariants
• Some may actually tell you about the test suite, not the

program (still useful)

• May miss some invariants
• Detects all invariants in a class, but not all interesting

invariants are in that class
• Only reports invariants that are statistically unlikely to be

coincidental

• Note: easier to reject false or uninteresting
invariants than to guess true ones!

2 May 2019 12

Invariants in SW Evolution

• Guess: loop adds chars
to pat on all executions
of stclose

• Inferred invariant
• lastj ≤ *j
• Thus jp=*j-1 could be

less than lastj and the
loop may not execute!

• Queried for examples
where lastj = *j
• When *j>100
• pat holds only 100

elements—this is an
array bounds error

2 May 2019 13

Invariants in SW Evolution

• Task
• Add + operator to

regular expression
language

• Goal
• Don’t violate existing

program invariants

• Check
• Inferred invariants for +

code same as for * code
• Except for invariants

reflecting different
semantics

2 May 2019 14

Benefits Observed

• Invariants describe properties of code
that should be maintained

• Invariants contradict expectations of
programmer, avoiding errors due to
incorrect expectations

• Simple inferred invariants allow
programmer to validate more complex
ones

2 May 2019 15

Costs

• Scalability
• Instrumentation slowdown ~10x

• unoptimized; later on-line work improves this
• Invariant inference

• Scales quadratically in # vars, linearly in trace
size

2 May 2019 16

Invariant Uses: Test Coverage

• Problem: When generating test cases, how do
you know if your test suite is comprehensive
enough?

• Generate test cases
• Observe whether inferred invariants change
• Stop when invariants don’t change any more
• Captures semantic coverage instead of code

coverage

Harder, Mellen, and Ernst. Improving test suites via operational
abstraction. ICSE ’03.

2 May 2019 17

Invariant Uses: Test Selection

• Problem: When generating test cases, how do
you know which ones might trigger a fault?

• Construct invariants based on “normal”
execution

• Generate many random test cases

• Select tests that violate invariants from normal
execution

Pacheco and Ernst. Eclat: Automatic generation and classification of
test inputs. ECOOP ’05.

2 May 2019 18

Invariant Uses: Component Upgrades

• You’re given a new version of a component—
should you trust it in your system?

• Generate invariants characterizing
component’s behavior in your system

• Generate invariants for new component
• If they don’t match the invariants of old component,

you may not want to use it!

McCamant and Ernst. Predicting problems caused by component
upgrades. FSE ’03.

2 May 2019 19

Invariant Uses: Proofs of Programs

• Problem: theorem-prover tools need help guessing invariants to
prove a program correct

• Solution: construct invariants with Daikon, use as lemmas in the
proof

• Results [1]
• Found 4 of 6 necessary invariants
• But they were the easy ones 

• Results [2]
• Programmers found it easier to remove incorrect invariants than to

generate correct ones
• Suggests that an unsound tool that produces many invariants may

be more useful than a sound tool that produces few

[1] Win et al. Using simulated execution in verifying distributed algorithms. Software
Tools for Technology Transfer, vol. 6, no. 1, July 2004, pp. 67-76.

[2] Nimmer and Ernst. Invariant inference for static checking: An empirical evaluation.
FSE ’02.

