Lecture Notes:
The WHILE Language and WHILE3ADDR
Representation

15-8190: Program Analysis
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

Lecture 2

1 The WHILE Language

In this course, we will study the theory of analyses using a simple program-
ming language called WHILE, along with various extensions. The WHILE
language is at least as old as Hoare’s 1969 paper on a logic for proving
program properties (to be discussed in a later lecture). It is a simple im-
perative language, with assignment to local variables, if statements, while
loops, and simple integer and boolean expressions.

We will use the following metavariables to describe several different
categories of syntax. The letter on the left will be used as a variable rep-
resenting a piece of a program, while on the right, we describe the kind of
program piece that variable represents:

S statements

a arithmetic expressions
x,y program variables

n number literals

P boolean predicates

The syntax of WHILE is shown below. Statements S can be an assign-
ment z := q, a skip statement which does nothing (similar to a lone semi-
colon or open/close bracket in C or Java), and if and while statements
whose condition is a boolean predicate P. Arithmetic expressions a include
variables z, numbers n, and one of several arithmetic operators, abstractly

represented by op,. Boolean expressions include true, false, the negation of
another boolean expression, boolean operators opy, applied to other boolean
expressions, and relational operators op, applied to arithmetic expressions.

S = xi=a
| skip
\ S1; So
| if P then S; else S
| while P do S

a =T

| n

| a1 OPq G2
opa = 4| =]/
P n= true
| false
| not P
| Py opy Ps
\ a1 Opr a2
op, == and|or

opr = < | < | =] > | >

2 WHILE3ADDR: A Representation for Analysis

We could define the semantics of WHILE directly—and indeed we will
do so when studying Hoare Logic.! For program analysis, however, the
source-like definition of WHILE is somewhat inconvenient. Even a simple
language such as WHILE can be complex to define. For example, WHILE
has three separate syntactic forms—statements, arithmetic expressions, and
boolean predicates—and we would have to define the semantics of each
separately. A simpler and more regular representation of programs will
help make our formalism simpler.

As a starting point, we will eliminate recursive arithmetic and boolean
expressions and replace them with simple atomic statement forms, which
are called instructions after the assembly language instructions that they
resemble. For example, an assignment statement of the form w = z xy + 2

!The supplemental Nielson et al. text also defines the semantics of the WHILE language
given here.

will be rewritten as a multiply instruction followed by an add instruction.
The multiply assigns to a temporary variable ¢1, which is then used in the
subsequent add:

t1=x*y
w=t + 2

As the translation from expressions to instructions suggests, program
analysis is typically studied using a representation of programs that is not
only simpler, but also lower-level than the source WHILE language. Typi-
cally high-level languages come with features that are numerous and com-
plex, but can be reduced into a smaller set of simpler primitives. Working at
the lower level of abstraction thus also supports simplicity in the compiler.

Control flow constructs such as if and while are similarly translated into
simpler goto and conditional branch constructs that jump to a particular
(numbered) instruction. For example, a statement of the form if P then S
else S would be translated into:

1: if P then goto 4
2: Sy

3: gotod

4: 5

5: rest of program...

The translation of a statement of the form while P do S is similar:

1: ifnot P goto 4
2: S

3: gotol

4: rest of program...

This form of code is often called 3-address code, because every instruc-
tion is of a simple form with at most two source operands and one result
operand. We now define the syntax for 3-address code produce from the
WHILE language, which we will call WHILE3ADDR. This language consists
of a set of simple instructions that load a constant into a variable, copy from
one variable to another, compute the value of a variable from two others,
or jump (possibly conditionally) to a new address n. A program is just a
map from addresses to instructions:

I = I:=n

| z=y

| xi=yopz

| goto n

| if z op, 0 goto n
o = |-kl
op, = < | =

P € N—I

Formally defining a translation from a source language such as WHILE
to a lower-level intermediate language such as WHILE3ADDR is possible,
but it is more appropriate for the scope of a compilers course. For the pur-
poses of this course, the examples above should suffice as intuition. We
will proceed by first formalizing program analysis in WHILE3ADDR, then
having a closer look at its semantics in order to verify the correctness of the
program analysis.

