
Lecture Notes:
Dataflow Analysis Examples

15-819O: Program Analysis
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

Lecture 3

1 Constant Propagation

While zero analysis was useful for simply tracking whether a given vari-
able is zero or not, constant propagation analysis attempts to track the con-
stant values of variables in the program, where possible. Constant propa-
gation has long been used in compiler optimization passes in order to turn
variable reads and computations into constants, where possible. However,
it is generally useful for analysis for program correctness as well: any client
analysis that benefits from knowing program values (e.g. an array bounds
analysis) can leverage it.

For constant propagation, we want to track what is the constant value,
if any, of each program variable. Therefore we will use a lattice where the
set LCP is ÚYtJ,Ku. The partial order is @l P LCP : K � l^ l � J. In other
words, K is below every lattice element and J is above every element, but
otherwise lattice elements are incomparable.

In the above lattice, as well as our earlier discussion of the lattice for
zero analysis, we considered a lattice to describe individual variable val-
ues. We can lift the notion of a lattice to cover all the dataflow informition
available at a program point. This is called a tuple lattice, where there is an
element of the tuple for each of the variables in the program. For constant
propagation, the elements of the set σ are maps from Var to LCP , and the
other operators and J{K are lifted as follows:

1



σ P Var Ñ LCP

σ1 �lift σ2 iff @x P Var : σ1pxq � σ2pxq
σ1 \lift σ2 � tx ÞÑ σ1pxq \ σ2pxq | x P Varu

Jlift � tx ÞÑ J | x P Varu
Klift � tx ÞÑ K | x P Varu

We can likewise define an abstraction function for constant propaga-
tion, as well as a lifted version that accepts an environment E mapping
variables to concrete values. We also define the initial analysis information
to conservatively assume that initial variable values are unknown. Note
that in a language that initializes all variables to zero, we could make more
precise initial dataflow assumptions, such as tx ÞÑ 0 | x P Varu:

αCP pnq � n
αliftpEq � tx ÞÑ αCP pEpxqq | x P Varu
σ0 � Jlift

We can now define flow functions for constant propagation:

fCP vx :� nwpσq � rx ÞÑ nsσ

fCP vx :� ywpσq � rx ÞÑ σpyqsσ

fCP vx :� y op zwpσq � rx ÞÑ σpyq oplift σpzqsσ
where n oplift m � n op m
and n oplift J � J (and symmetric)
and n oplift K � n (and symmetric)

fCP vgoto nwpσq � σ

fCP vif x � 0 goto nwT pσq � rx ÞÑ 0sσ
fCP vif x � 0 goto nwF pσq � σ

fCP vif x   0 goto nwpσq � σ

We can now look at an example of constant propagation:

1 : x :� 3
2 : y :� x� 7
3 : if z � 0 goto 6
4 : z :� x� 2
5 : goto 7
6 : z :� y � 5
7 : w :� z � 2

2



We would compute dataflow analysis information as follows. In this
table we will use track the worklist and show updates using additional
rows to show the operation of the algorithm:

stmt worklist x y z w
0 1 J J J J
1 2 3 J J J
2 3 3 10 J J
3 4,6 3 10 0T ,JF J
4 5,6 3 10 5 J
5 6,7 3 10 5 J
6 7 3 10 5 J
7 H 3 10 5 3

2 Reaching Definitions

Reaching definitions analysis determines, for each use of a variable, which
assignments to that variable might have set the value seen at that use. Con-
sider the following program:

1 : y :� x
2 : z :� 1
3 : if y � 0 goto 7
4 : z :� z � y
5 : y :� y � 1
6 : goto 3
7 : y :� 0

In this example, definitions 1 and 5 reach the use of y at 4.

Exercise 1. Which definitions reach the use of z at statement 4?

Reaching definitions can be used as a simpler but less precise version of
constant propagation, zero analysis, etc. where instead of tracking actual
constant values we just look up the reaching definition and see if it is a
constant. We can also use reaching definitions to identify uses of undefined
variables, e.g. if no definition from the program reaches a use.

For reaching definitions, we will use a new kind of lattice: a set lattice.
Here, a dataflow lattice element will be the set of definitions that reach the
current program point. Assume that DEFS is the set of all definitions in

3



the program. The set of elements in the lattice is the set of all subsets of
DEFS—that is, the powerset of DEFS, written PDEFS.

What should � be for reaching definitions? The intuition is that our
analysis is more precise the smaller the set of definitions it computes at a
given program point. This is because we want to know, as precisely as
possible, where the values at a program point came from. So � should
be the subset relation �: a subset is more precise than its superset. This
naturally implies that \ should be union, and that J and K should be the
universal set DEFS and the empty set H, respectively.

In summary, we can formally define our lattice and initial dataflow in-
formation as follows:

σ P PDEFS

σ1 � σ2 iff σ1 � σ2
σ1 \ σ2 � σ1 Y σ2

J � DEFS
K � H
σ0 � H

Instead of using the empty set for σ0, we could use an artificial reaching
definition for each program variable (e.g. x0 as an artificial reaching defini-
tion for x) to denote that the variable is either uninitialized, or was passed
in as a parameter. This is convenient if it is useful to track whether a vari-
able might be uninitialized at a use, or if we want to consider a parameter
to be a definition.

We will now define flow functions for reaching definitions. Notation-
ally, we will write xn to denote a definition of the variable x at the program
instruction numbered n. Since our lattice is a set, we can reason about
changes to it in terms of elements that are added (called GEN) and ele-
ments that are removed (called KILL) for each statement. This GEN/KILL
pattern is common to many dataflow analyses. The flow functions can be
formally defined as follows:

fRDvIwpσq � σ �KILLRDvIw YGENRDvIw

KILLRDvn : x :� ...w � txm|xm P DEFSpxqu

KILLRDvIw � H if I is not an assignment

GENRDvn : x :� ...w � txnu

GENRDvIw � H if I is not an assignment

4



We would compute dataflow analysis information for the program shown
above as follows:

stmt worklist defs
0 1 H
1 2 ty1u
2 3 ty1, z1u
3 4,7 ty1, z1u
4 5,7 ty1, z4u
5 6,7 ty5, z4u
6 3,7 ty5, z4u
3 4,7 ty1, y5, z1, z4u
4 5,7 ty1, y5, z4u
5 7 ty5, z4u
7 H ty7, z1, z4u

3 Live Variables

Live variable analysis determines, for each program point, which variables
might be used again before they are redefined. Consider again the follow-
ing program:

1 : y :� x
2 : z :� 1
3 : if y � 0 goto 7
4 : z :� z � y
5 : y :� y � 1
6 : goto 3
7 : y :� 0

In this example, afger instruction 1, y is live, but x and z are not. Live
variables analysis typically requires knowing what variable holds the main
result(s) computed by the program. In the program above, suppose z is the
result of the program. Then at the end of the program, only z is live.

Live variable analysis was originally developed for optimizatoin pur-
poses: if a variable is not live after it is defined, we can remove the defi-
nition instruction. For example, instruction 7 in the code above could be
optimized away, under our assumption that z is the only program result of
interest.

5



We must be careful of the side effects of a statement, of course. Assign-
ing a variable that is no longer live to null could have the beneficial side
effect of allowing the garbage collector to collect memory that is no longer
reachable—unless the GC itself takes into consideration which variables
are live. Sometimes warning the user that an assignment has no effect can
be useful for software engineering purposes, even if the assignment can-
not safely be optimized away. For example, eBay found that FindBugs’s
analysis detecting assignments to dead variables was useful for identifying
unnecessary database calls1.

For live variable analysis, we will use a set lattice to track the set of live
variables at each program point. The lattice is similar to that for reaching
definitions:

σ P PVar

σ1 � σ2 iff σ1 � σ2
σ1 \ σ2 � σ1 Y σ2

J � Var
K � H

What is the initial dataflow information? This is a tricky question. To
determine the variables that are live at the start of the program, we must
reason about how the program will execute. But this is in fact the purpose
of dataflow analysis. On the other hand, it is quite clear which variables
are live at the end of the program: just the variable(s) holding the program
result.

Consider how we might use this information to compute other live vari-
ables. Suppose the last statement in the program assigns the program result
z, computing it based on some other variable x. Intuitively, that statement
should make x live immediately above that statement, as it is needed to
compute the program result z—but z should now no longer be live. We
can use similar logic for the second-to-last statement, and so on. In fact,
we can see that live variable analysis is a backwards analysis: we start with
dataflow information at the end of the program and use flow functions to
compute dataflow information at earlier statements.

Thus, for our “initial” dataflow information—and note that “initial”
means the beginning of the program analysis, but the end of the program—
we have:

1see Ciera Jaspan, I-Chin Chen, and Anoop Sharma, Understanding the value of program
analysis tools, OOPSLA practitioner report, 2007

6



σend � tx | x holds part of the program resultu

We can now define flow functions for live variable analysis. We can do
this simply using GEN and KILL sets:

KILLLV vIw � tx | I defines xu

GENLV vIw � tx | I uses xu

We would compute dataflow analysis information for the program shown
above as follows. Note that we iterate over the program backwords, i.e. re-
versing control flow edges between instructions. For each instruction, the
corresponding row in our table will hold the information after we have
applied the flow function—that is, the variables that are live immediately
before the statement executes:

stmt worklist defs
end 7 tzu

7 3 tzu
3 6,2 tz, yu
6 5,2 tz, yu
5 4,2 tz, yu
4 3,2 tz, yu
3 2 tz, yu
2 1 tyu
1 H txu

7


