
Lecture Notes:
Pointer Analysis

15-819O: Program Analysis
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

Lecture 9

1 Motivation for Pointer Analysis

In programs with pointers, program analysis can become more challenging.
Consider constant-propagation analysis of the following program:

1 : z :� 1
2 : p :� &z
3 : �p :� 2
4 : print z

In order to analyze this program correctly we must be aware that at
instruction 3 p points to z. If this information is available we can use it in a
flow function as follows:

fCP v�p :� ywpσq � rz ÞÑ σpyqsσ where must-point-topp, zq

When we know exactly what a variable x points to, we say that we have
must-point-to information, and we can perform a strong update of the target
variable z, because we know with confidence that assigning to �p assigns
to z. A technicality in the rule is quantifying over all z such that p must
point to z. How is this possible? It is not possible in C or Java; however, in
a language with pass-by-reference, for example C++, it is possible that two
names for the same location are in scope.

Of course, it is also possible that we are uncertain to which of several
distinct locations p points. For example:

1

1 : z :� 1
2 : if pcondq p :� &y else p :� &z
3 : �p :� 2
4 : print z

Now constant propagation analysis must conservatively assume that z
could hold either 1 or 2. We can represent this with a flow function that
uses may-point-to information:

fCP v�p :� ywpσq � rz ÞÑ σpzq \ σpyqsσ where may-point-topp, zq

2 Andersen’s Points-To Analysis

Two common kinds of pointer analysis are alias analysis and points-to anal-
ysis. Alias analysis computes a set S holding pairs of variables pp, qq, where
p and q may (or must) point to the same location. On the other hand, points-
to analysis, as described above, computes a relation points-topp, xq, where
p may (or must) point to the location of the variable x. We will focus our
study in this lecture on points-to analysis, and will begin with a simple but
useful approach originally proposed by Andersen.

Our initial setting will be C programs. We are interested in analyzing
instructions that are relevant to pointers in the program. Ignoring for the
moment memory allocation and arrays, we can decompose all pointer op-
erations into four instruction types: taking the address of a variable, copy-
ing a pointer from one variable to another, assigning through a pointer, and
dereferencing a pointer:

I ::� ...
| p :� &x
| p :� q
| �p :� q
| p :� �q

Andersen’s points-to analysis is a context-insensitive interprocedural
analysis. It is also a flow-insensitive analysis, that is an analysis that (un-
like dataflow analysis) does not take into consideration the order of pro-
gram statements. Context- and flow-insensitivity are used to improve the
performance of the analysis, as precise pointer analysis can be notoriously
expensive in practice.

2

We will formulate Andersen’s analysis by generating set constraints
which can later be processed by a set constraint solver using a number of
technologies. Constraint generation for each statement works as given in
the following set of rules. Because the analysis is flow-insensitive, we do
not care what order the instructions in the program come in; we simply
generate a set of constraints and solve them.

vp :� &xw ãÑ lx P p
address-of

vp :� qw ãÑ p � q
copy

v�p :� qw ãÑ �p � q
assign

vp :� �qw ãÑ p � �q
dereference

The constraints generated are all set constraints. The first rule states
that a constant location lx, representation the address of x, is in the set of
location pointed to by p. The second rule states that the set of locations
pointed to by p must be a superset of those pointed to by q. The last two
rules state the same, but take into account that one or the other pointer is
dereferenced.

A number of specialized set constraint solvers exist and constraints in
the form above can be translated into the input for these. The dereference
operation (the � in �p � q) is not standard in set constraints, but it can be
encoded—see Fähndrich’s Ph.D. thesis for an example of how to encode
Andersen’s points-to analysis for the BANE constraint solving engine. We
will treat constraint-solving abstractly using the following constraint prop-
agation rules:

3

p � q lx P q

lx P p
copy

�p � q lr P p lx P q

lx P r
assign

p � �q lr P q lx P r

lx P p
dereference

We can now apply Andersen’s points-to analysis to the program above.
Note that in this example if Andersen’s algorithm says that the set p points
to only one location lz , we have must-point-to information, whereas if the
set p contains more than one location, we have only may-point-to informa-
tion.

We can also apply Andersen’s analysis to programs with dynamic
memory allocation, such as:

1 : q :� malloc1pq
2 : p :� malloc2pq
3 : p :� q
4 : r :� &p
5 : s :� malloc3pq
6 : �r :� s
7 : t :� &s
8 : u :� �t

In this example, the analysis is run the same way, but we treat the mem-
ory cell allocated at each malloc or new statement as an abstract location
labeled by the location n of the allocation point. We can use the rules:

vp :� mallocnpqw ãÑ ln P p
malloc

We must be careful because a malloc statement can be executed more
than once, and each time it executes, a new memory cell is allocated. Unless
we have some other means of proving that the malloc executes only once,
we must assume that if some variable p only points to one abstract malloc’d
location ln, that is still may-alias information (i.e. p points to only one of the
many actual cells allocated at the given program location) and not must-
alias information.

4

Analyzing the efficiency of Andersen’s algorithm, we can see that all
constraints can be generated in a linear Opnq pass over the program. The
solution size is Opn2q because each of the Opnq variables defined in the
program could potentially point to Opnq other variables.

We can derive the execution time from a theorem by David McAllester
published in SAS’99. There areOpnq flow constraints generated of the form
p � q, �p � q, or p � �q. How many times could a constraint propagation
rule fire for each flow constraint? For a p � q constraint, the rule may fire
at most Opnq times, because there are at most Opnq premises of the proper
form lx P p. However, a constraint of the form p � �q could cause Opn2q
rule firings, because there are Opnq premises each of the form lx P p and
lr P q. With Opnq constraints of the form p � �q and Opn2q firings for
each, we have Opn3q constraint firings overall. A similar analysis applies
for �p � q constraints. McAllester’s theorem states that the analysis with
Opn3q rule firings can be implemented inOpn3q time. Thus we have derived
that Andersen’s algorithm is cubic in the size of the program, in the worst
case.

2.1 Field-Sensitive Analysis

The algorithm above works in C-like languages for pointers to single mem-
ory cells. However, what about when we have a pointer to a struct in C,
or an object in an object-oriented language? In this case, we would like the
pointer analysis to tell us what each field in the struct or object points to.

A simple solution is to be field-insensitive, treating all fields in a struct
as equivalent. Thus if p points to a struct with two fields f and g, and we
assign:

1 : p.f :� &x
2 : p.g :� &y

A field-insensitive analysis would tell us (imprecisely) that p.f could
point to y.

In order to be more precise, we can track the contents each field of each
abstract location separately. In the discussion below, we assume a setting
in which we cannot take the address of a field; this assumption is true for
Java but not for C. We can define a new kind of constraints for fields:

5

vp :� q.fw ãÑ p � q.f
field-read

vp.f :� qw ãÑ p.f � q
field-assign

Now assume that objects (e.g. in Java) are represented by abstract loca-
tions l. We can process field constraints with the following rules:

p � q.f lq P q lf P lq.f

lf P p
field-read

p.f � q lp P p lq P q

lq P lp.f
field-assign

If we run this analysis on the code above, we find that it can distinguish
that p.f points to x and p.g points to y.

3 Steensgaard’s Points-To Analysis

For large programs, a cubic algorithm is too inefficient. Steensgaard pro-
posed an pointer analysis algorithm that operates in near-linear time, sup-
porting essentially unlimited scalability in practice.

The first challenge in designing a near-linear time points-to analysis is
finding a way to represent the results in linear space. This is nontrivial
because over the course of program execution, any given pointer p could
potentially point to the location of any other variable or pointer q. Repre-
senting all of these pointers explicitly will inherently take Opn2q space.

The solution Steensgaard found is based on using constant space for
each variable in the program. His analysis associates each variable p with
an abstract location named after the variable. Then, it tracks a single points-
to relation between that abstract location p and another one q, to which it
may point. Now, it is possible that in some real program p may point to
both q and some other variable r. In this situation, Steensgaard’s algorithm
unifies the abstract locations for q and r, creating a single abstract location
representing both of them. Now we can track the fact that p may point to
either variable using a single points-to relationship.

For example, consider the program below:

6

1 : p :� &x
2 : r :� &p
3 : q :� &y
4 : s :� &q
5 : r :� s

Andersen’s points-to analysis would produce the following graph:

x

p

r

y

q

s

But in Steensgaard’s setting, when we discover that r could point both
to q and to p, we must merge q and p into a single node:

x

pq

r

y

s

Notice that we have lost precision: by merging the nodes for p and q
our graph now implies that s could point to p, which is not the case in the
actual program. But we are not done. Now pq has two outgoing arrows, so
we must merge nodes x and y. The final graph produced by Steensgaard’s
algorithm is therefore:

7

xy

pq

r s

Now let us define Steensgaard’s analysis more precisely. We will study
a simplified version of the analysis that does not consider function pointers.
The analysis can be specified as follows:

vp :� qw ãÑ joinp�p, �qq
copy

vp :� &xw ãÑ joinp�p, xq
address-of

vp :� �qw ãÑ joinp�p, ��qq
dereference

v�p :� qw ãÑ joinp��p, �qq
assign

With each abstract location p, we associate the abstract location that p
points to, denoted �p. Abstract locations are implemented as a union-find1

data structure so that we can merge two abstract locations efficiently. In the
rules above, we implicitly invoke find on an abstract location before calling
join on it, or before looking up the location it points to.

The join operation essentially implements a union operation on the ab-
stract locations. However, since we are tracking what each abstract location
points to, we must update this information also. The algorithm to do so is
as follows:

j o i n (e1 , e2)
i f (e1 == e2)

re turn
e1next = ∗e1
e2next = ∗e2

1See any algorithms textbook

8

unify (e1 , e2)
j o i n (e1next , e2next)

Once again, we implicitly invoke find on an abstract location before
comparing it for equality, looking up the abstract location it points to, or
calling join recursively.

As an optimization, Steensgaard does not perform the join if the right
hand side is not a pointer. For example, if we have an assignment vp :� qw
and q has not been assigned any pointer value so far in the analysis, we
ignore the assignment. If later we find that q may hold a pointer, we must
revisit the assignment to get a sound result.

Steensgaard illustrated his algorithm using the following program:

1 : a :� &x
2 : b :� &y
3 : if p then
4 : y :� &z
5 : else
6 : y :� &x
7 : c :� &y

His analysis produces the following graph for this program:

c b

y a

xz

Rayside illustrates a situation in which Andersen must do more work
than Steensgaard:

1 : q :� &x
2 : q :� &y
3 : p :� q
4 : q :� &z

After processing the first three statements, Steensgaard’s algorithm will
have unified variables x and y, with p and q both pointing to the unified
node. In contrast, Andersen’s algorithm will have both p and q pointing

9

to both x and y. When the fourth statement is processed, Steensgaard’s
algorithm does only a constant amount of work, merging z in with the
already-merged xy node. On the other hand, Andersen’s algorithm must
not just create a points-to relation from q to z, but must also propagate that
relationship to p. It is this additional propagation step that results in the
significant performance difference between these algorithms.

Analyzing Steensgaard’s pointer analysis for efficiency, we observe that
each of n statements in the program is processed once. The processing is
linear, except for find operations on the union-find data structure (which
may take amortized time Opαpnqq each) and the join operations. We note
that in the join algorithm, the short-circuit test will fail at mostOpnq times—
at most once for each variable in the program. Each time the short-circuit
fails, two abstract locations are unified, at cost Opαpnqq. The unification
assures the short-circuit will not fail again for one of these two variables.
Because we have at most Opnq operations and the amortized cost of each
operation is at most Opαpnqq, the overall running time of the algorithm is
near linear: Opn � αpnqq. Space consumption is linear, as no space is used
beyond that used to represent abstract locations for all the variables in the
program text.

Based on this asymptotic efficiency, Steensgaard’s algorithm was run
on a 1 million line program (Microsoft Word) in 1996; this was an order
of magnitude greater scalability than other pointer analyses known at the
time.

Steensgaard’s pointer analysis is field-insensitive; making it field-
sensitive would mean that it is no longer linear.

4 Adding Context Sensitivity to Andersen’s Algo-
rithm

We can define a version of Andersen’s points-to algorithm that is context-
sensitive. In the following approach, we analyze each function separately
for each calling point. The analysis keeps track of the current context, the
calling point n of the current procedure. In the constraints, we track sep-
arate values for each variable xn according to the calling context n of the
procedure defining it, and we track separate values for each memory lo-
cation lkn according to the calling context n active when that location was
allocated at new instruction k. The rules are as follows:

10

n $ p :� newk A

lkn P pn
new

n $ p :� q ln P qn
ln P pn

copy

n $ x.f :� y lx P xn ly P yn
ly P lx.f

field-read

n $ x :� y.f ly P yn lz P ly.f

lz P xn
field-assign

n $ fkpyq ly P yn vfpzq � ew P Program

ly P zk k $ e
call

To illustrate this analysis, imagine we have the following code:

i n t e r f a c e A { void g () ; }
c l a s s B implements A { void g () { . . . } }
c l a s s C implements A { void g () { . . . } }
c l a s s D {

A f (A a1) { re turn a1 ; }
}

// in main ()
D d1 = new D () ;
i f (. . .) {

A x = d1 . f (new B ()) ;
x . g () // which g i s c a l l e d ?

e l s e
A y = d1 . f (new C ()) ;

y . g () // which g i s c a l l e d ?

The analysis produces the following aliasing graph:

11

d1 OD

a1b

OB

x

a1c

OC

y

In this example, tracking two separate versions of the variable a1 is suf-
ficient to distinguish the objects of type B and C as they are passed through
method f, meaning that the analysis can accurately track which version of
g is called in each program location.

Call-string context sensitivity has its limits, however. Consider the fol-
lowing example, adapted from notes by Ryder:

i n t e r f a c e X { void g () ; }
c l a s s Y implements X { void g () { . . . } }
c l a s s Z implements X { void g () { . . . } }
c l a s s A {

X x ;
void setX (X v) { helper (v)h ; }
void helper (X vh) { x = vh ; }
X getX () { re turn x ; }

}

// in main ()
A a1 = new A () ; // a l l o c a t e s Oa1
A a2 = new A () ; // a l l o c a t e s Oa2
a1 . setX (new Y ()) Y ; // a l l o c a t e s OY
a2 . setX (new Z ()) Z ; // a l l o c a t e s OZ
X x1 = a1 . getX () ;
X x2 = a2 . getX () ;

12

x1 . g () ; // which g () i s c a l l e d ?
x2 . g () ; // which g () i s c a l l e d ?

If we analyze this example with a 1-CFA style call-string sensitive
pointer analysis, we get the following analysis results:

Context Variable Location Notes
 a1 Oa1
 a2 Oa2
Y this Oa1
Y v OY
h this Oa1
h vh OY

Oa1 x OY
Z this Oa2
Z v OZ
h this Oa1,Oa2 updated
h vh OY, OZ updated

Oa1 x OY, OZ updated
Oa2 x OY, OZ
 x1 OY, OZ
 x1 OY, OZ

Essentially, because of the helper method, one function call’s worth of
context sensitivity is insufficient to distinguish the calls to setX and helper
for the objects Oa1 and Oa2. We could fix this by increasing context sen-
sitivity, e.g. by going to a 2-CFA analysis that tracks call strings of length
two. This has a very high cost in practice, however; 2-CFA does not scale
well to large object-oriented programs.

A better solution comes from the insight that in the above example, call-
strings are really tracking the wrong kind of context. What we need to do
is distinguish between Oa1 and Oa2. In other words, the call chain does
not matter so much; we want to be sensitive to the receiver object.

An alternative approach based on this idea is called object-sensitive
analysis. It uses for the context not the call site, but rather the receiver ob-
ject. In this case, we index everything not by a calling point n but instead
by a receiver object l. The rules are as follows:

13

l $ p :� newk A

lkl P pl
new

l $ p :� q ll P ql
ll P pl

copy

l $ x.f :� y lx P xl ly P yl
ly P lx.f

field-read

l $ x :� y.f ly P yl lz P ly.f

lz P xl
field-assign

l $ x.fpyq lx P xl ly P yl vfpzq � ew P Program

lx P thislx ly P zlx lx $ e
call

Now if we reanalyze the example above, we get:

Context Variable Location
 a1 Oa1
 a2 Oa2

Oa1 v OY
Oa1 vh OY
Oa1 x OY
Oa2 v OZ
Oa2 vh OZ
Oa2 x OZ
 x1 OY
 x1 OZ

In practice, object-sensitive analysis appears to be the best approach
to context sensitivity in the pointer or call-graph construction analysis of
object-oriented programs. Intuitively, it seems that organizing a program
around objects makes the objects themselves the most interesting thing to
analyze.

The state of the art implementation technique for points-to analysis of
object-oriented programs was presented by Bravenboer and Smaragdakis
in OOPSLA 2009. Their approach generates declarative Datalog code to
represent the input program, and a datalog evaluation engine solves what

14

are essentially declarative constraints to get the analysis result.
In an more recent POPL 2011 paper analyzing object-sensitivity,

Smaragdakis, Bravenboer, and Lhoták demonstrate that it is more effec-
tive than call-string sensitivity. They also propose a technique known as
type-sensitive analysis which tracks only the type of the receiver (and, for
depths ¥ 2, the type of the object that created the reciever, etc.), and show
that type-sensitive analysis is nearly as precise as object-sensitive analysis
and much more scalable.

15

