
Lecture Notes:
Interprocedural Analysis

15-819O: Program Analysis
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

Lecture 8

1 Interprocedural Analysis

Interprocedural analysis concerns analyzing a program with multiple pro-
cedures, ideally taking into account the way that information flows among
those procedures.

1.1 Default Assumptions

Our first approach assumes a default lattice value for all arguments La and
a default value for procedure results Lr

We check the assumption holds when analyzing a call instruction or a
return instruction (trivial if La � Lr � J)

We use the assumption when analyzing the result of a call instruction or
starting the analysis of a method. For example, we have σ0 � tx ÞÑ La | x P
Varu.

Here is a sample flow function for call and return instructions:

fvx :� gpyqwpσq � rx ÞÑ Lrsσ where σpyq � La

fvreturn xwpσq � σ where σpxq � Lr

1

We can apply zero analysis to the following function, using La � Lr �
J:

1 : procedure divByXpx : intq : int
2 : y :� 10{x
3 : return y

4 : procedure mainpq
5 : z :� 5
6 : w :� divByXpzq

We can avoid the error by using a more optimistic assumption La �
Lr � NZ. But then we get a problem with the following program:

1 : procedure doublepx : intq : int
2 : y :� 2 � x
3 : return y

4 : procedure mainpq
5 : z :� 0
6 : w :� doublepzq

1.2 Local vs. global variables

The above analysis assumes we have only local variables. If we have global
variables, we must make conservative assumptions about them too. As-
sume globals should always be described by some lattice value Lg at pro-
cedure boundaries. We can extend the flow functions as follows:

fvx :� gpyqwpσq � rx ÞÑ Lrsrz ÞÑ Lg | z P Globalssσ
where σpyq � La ^ @z P Globals : σpzq � Lg

fvreturn xwpσq � σ
where σpxq � Lr ^ @z P Globals : σpzq � Lg

2

1.3 Annotations

An alternative approach is using annotations. This allows us to choose
different argument and result assumptions for different procedures. Flow
functions might look like:

fvx :� gpyqwpσq � rx ÞÑ annotvgw.rsσ where σpyq � annotvgw.a

fvreturn xwpσq � σ where σpxq � annotvgw.r

Now we can verify that both of the above programs are safe. But some
programs remain difficult:

1 : procedure doublepx : int @Jq : int @J
2 : y :� 2 � x
3 : return y

4 : procedure mainpq
5 : z :� 5
6 : w :� doublepzq
7 : z :� 10{w

Annotations can be extended in a natural way to handle global vari-
ables.

1.4 Interprocedural Control Flow Graph

An approach that avoids the burden of annotations, and can capture what a
procedure actually does as used in a particular program, is building a con-
trol flow graph for the entire program, rather than just one procedure. To
make this work, we handle call and return instructions specially as follows:

• We add additional edges to the control flow graph. For every call to
function g, we add an edge from the call site to the first instruction of
g, and from every return statement of g to the instruction following
that call.

• When analyzing the first statement of a procedure, we generally
gather analysis information from each predecessor as usual. How-
ever, we take out all dataflow information related to local variables
in the callers. Furthermore, we add dataflow information for param-
eters in the callee, initializing their dataflow values according to the
actual arguments passed in at each call site.

3

• When analyzing an instruction immediately after a call, we get
dataflow information about local variables from the previous state-
ment. Information about global variables is taken from the return
sites of the function that was called. Information about the variable
that the result of the function call was assigned to comes from the
dataflow information about the returned value.

Now the example described above can be successfully analyzed. How-
ever, other programs still cause problems:

1 : procedure doublepx : int @Jq : int @J
2 : y :� 2 � x
3 : return y

4 : procedure mainpq
5 : z :� 5
6 : w :� doublepzq
7 : z :� 10{w
8 : z :� 0
9 : w :� doublepzq

1.5 Context Sensitive Analysis

Context-sensitive analysis analyzes a function either multiple times, or
parametrically, so that the analysis results returned to different call sites
reflect the different analysis results passed in at those call sites.

We can get context sensitivity just by duplicating all callees. But this
works only for non-recursive programs.

A simple solution is to build a summary of each function, mapping
dataflow input information to dataflow output information. We will ana-
lyze each function once for each context, where a context is an abstraction
for a set of calls to that function. At a minimum, each context must track
the input dataflow information to the function.

Let’s look at how this approach allows the program given above to be
proven safe by zero analysis.

[Example given in class]
Things become more challenging in the presence of recursive functions,

or more generally mutual recursion. Let us consider context-sensitive in-
terprocedural constant propagation analysis of the factorial function called
by main. We are not focused on the intraprocedural part of the analysis so
we will just show the function in the form of Java or C source code:

4

i n t f a c t (i n t x) {
i f (x == 1)

re turn 1 ;
e l s e

re turn x ∗ f a c t (x�1) ;
}
void main () {

i n t y = f a c t (2) ;
i n t z = f a c t (3) ;
i n t w = f a c t (getInputFromUser ()) ;

}
We can analyze the first two calls to fact using the following algorithm:

begin ()
// i n i t i a l contex t i s main () with argument assumptions
contex t = get the i n i t i a l program contex t
analyze (contex t)

analyze (contex t)
newResults = i n t r a p r o c e d u r a l (contex t)
resultsMap . put (context , newResults)
re turn newResults

// c a l l e d by i n t r a p r o c e d u r a l a n a l y s i s of ” contex t ”
analyzeCal l (context , c a l l I n f o) : Analys isResul t

c a l l e e C o n t e x t = computeCalleeContext (context , c a l l i n f o)
r e s u l t s = getResu l t sFor (c a l l e e C o n t e x t)
re turn r e s u l t s

ge tResu l t sFor (contex t)
r e s u l t s = resultsMap . get (contex t)
i f (r e s u l t s != bottom)

return r e s u l t s ;
e l s e

re turn analyze (contex t)

computeCalleeContext (ca l l ingContext , c a l l i n f o)
// c a l l i n g contex t i s j u s t the input information
return c a l l i n f o . input Info

The resultsMap and the function getResultsFor() acts as a cache for anal-

5

ysis results, so that when fib(3) invokes fib(2), the results from the prior call
fib(2) can be reused.

For the third call to fib, the argument is determined at runtime and so
constant propagation uses J for the calling context. In this case the recur-
sive call to fib() also has J as the calling context. But we cannot look up the
result in the cache yet as analysis of fib() with J has not completed. Thus
the algorithm above will attempt to analyze fib() with J again, and it will
therefore not terminate.

We can solve the problem by applying the same idea as in intraprocedu-
ral analysis. The recursive call is a kind of a loop. We can make the initial
assumption that the result of the recursive call is K, which is conceptually
equivalent to information coming from the back edge of a loop. When we
discover the result is a higher point in the lattice then K, we reanalyze the
calling context (and recursively, all calling contexts that depend on it). The
algorithm to do so can be expressed as follows:

begin ()
// i n i t i a l contex t i s main () with argument assumptions
contex t = get the i n i t i a l program contex t
analyze (contex t)
while contex t = w o r k l i s t . remove ()

analyze (contex t)

analyze (contex t)
o ldResul t s = resultsMap . get (contex t)
newResults = i n t r a p r o c e d u r a l (contex t)
i f (newResults != o ldResul t s)

resultsMap . put (context , newResults)
f o r c t x in ca l l ingContex tsOf (contex t)

w o r k l i s t . add (c t x)
re turn newResults

// c a l l e d by i n t r a p r o c e d u r a l a n a l y s i s of ” contex t ”
analyzeCal l (context , c a l l I n f o) : Analys isResul t

c a l l e e C o n t e x t = computeCalleeContext (context , c a l l i n f o)
r e s u l t s = getResu l t sFor (c a l l e e C o n t e x t)
add contex t to ca l l ingContex tsOf (c a l l e e C o n t e x t)
re turn r e s u l t s

ge tResu l t sFor (contex t)

6

i f (contex t i s c u r r e n t l y being analyzed)
re turn bottom

r e s u l t s = resultsMap . get (contex t)
i f (r e s u l t s != bottom)

return r e s u l t s ;
e l s e

re turn analyze (contex t)

The following example shows that the algorithm generalizes naturally
to the case of mutually recursive functions:

bar () { i f (∗) re turn 2 e l s e re turn foo () }
foo () { i f (∗) re turn 1 e l s e re turn bar () }

main () { foo () ; }
The description above considers differentiates calling contexts by the

input dataflow information. A historical alternative is to differentiate con-
texts by their call string: the call site, it’s call site, and so forth. In the limit,
when considering call strings of arbitrary length, this provides full context
sensitivity.

Dataflow analysis results for contexts based on arbitrary-length call
strings are as precise as the results for contexts based on separate analy-
sis for each different input dataflow information. The latter strategy can
be more efficient, however, because it reuses analysis results when a func-
tion is called twice with different call strings but the same input dataflow
information.

In practice, both strategies (arbitrary-length call strings vs. input
dataflow information) can result in reanalyzing each function so many
times that performance becomes unacceptable. Thus multiple contexts
must be combined somehow to reduce the number of times each function is
analyzed. The call-string approach provides an easy, but naive, way to do
this: call strings can be cut off at a certain length. For example, if we have
call strings “a b c” and “d e b c” (where c is the most recent call site) with a
cutoff of 2, the input dataflow information for these two call strings will be
merged and the analysis will be run only once, for the context identified by
the common length-two suffix of the strings, “b c”. We can illustrate this by
redoing the analysis of the fibonacci example. The algorithm is the same as
above; however, we use a different implementation of compteCalleeCon-
text that computes the call string suffix and, if it has already been analyzed,
merges the incoming dataflow analysis information with what is already
there:

7

computeCalleeContext (ca l l ingContext , c a l l i n f o)
l e t o l d C a l l S t r i n g = c a l l i n g C o n t e x t . c a l l S t r i n g
l e t newCallStr ing = s u f f i x (o l d C a l l S t r i n g ++ c a l l i n f o . s i t e ,

CALL STRING CUTOFF)
l e t newContext = new Context (newCallString , c a l l i n f o . input Info)

// look f o r a previous a n a l y s i s with the same c a l l s t r i n g
// context i d e n t i t y (and map lookup) i s determined
// by the c a l l s t r i n g
i f (resultsMap . containsKey (newContext))

l e t oldContext = resultsMap . findKey (newContext) ;
i f (newContext . input Info �� oldContext . input Info)

// f o r c e r e a n a l y s i s with jo ined input information
resultsMap . removeKey (newContext)
newContext . input Info = newContext . input Info

\ oldContext . input Info

return newContext

Although this strategy reduces the overall number of analyses, it does
so in a relatively blind way. If a function is called many times but we only
want to analyze it a few times, we want to group the calls into analyzis
contexts so that their input information is similar. Call string context is a
hueristic way of doing this that sometimes works well. But it can be waste-
ful: if two different call strings of a given length happen to have exactly the
same input analysis information, we will do an unnecessary extra analysis,
whereas it would have been better to spend that extra analysis to differen-
tiate calls with longer call strings that have different analysis information.

Given a limited analysis budget, it is smarter to use hueristics that are
directly based on input information. Unfortunately these hueristics are
harder to design, but they have the potential to do much better than a call-
string based approach. We will look at some examples from the literature
to illustrate this later in the course.

8

