
Assignment 2 (Programming):
Dataflow Analysis

15-819O: Program Analysis
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

Due: Monday, February 4, 2013 (11:59 pm)

80 points total

Assignment Objectives:

• Implement a dataflow analysis in a code framework built based on
the concepts of flow functions and lattices.

Handin Instructions. Turn in a zip file electronically via Blackboard for As-
signment 2. The zip file should contain an Eclipse project with your analy-
sis implementation. At the top level in the project should be output.xxx - a
screenshot in some common graphics format.

1 Sign Analysis Implementation

In this assignment, you will implement your sign analysis for the Java pro-
gramming language using Soot’s dataflow analysis capabilities. You may
choose to use some other dataflow analysis engine and/or some other lan-
guage; if you want to do so, contact the instructor to discuss whether any
aspects of the assignment need to be adapted.

In Java, integer variables are separate from variables that hold refer-
ences, booleans, floating point values, etc. Your implementation need only
track information for variables of type int. Your analysis only needs to track
the sign of local variables. Any use of fields, arrays, method parameters or
results can be considered to have unknown sign.

1



You should implement your analysis by defining a class to represent
your lattice. Your dataflow analysis will need to define the operations for
your lattice, as well as the flow functions. Don’t forget to ensure that your
lattice handles equals() and hashCode() correctly!

In order to drive the flow analysis, use a BodyTransformer that creates
a flow analysis for each method body. Inside the BodyTransformer, use
tags to report the values of variables used as array indexes–e.g. whether
they are definitely negative (an error) or possibly negative (conceptually a
warning).

Your analysis should cover variable copies, integer constants, addition,
subtraction, and multiplication as precisely as possible given your lattice.
You are not required to correctly analyze other operations, though your
analysis should not crash.

Question 1 (20 points).

Run your analysis on TestSign.java. Turn in a screenshot show-
ing the tags generated for TestSign. When capturing the screen-
shot, resize the window if necessary to show all the code. Do
not change TestSign.java.

Question 2 (60 points).

Turn in your analysis code. Your code should follow the basic
design described above.

We reserve the right to run your analysis code on examples
other than TestSign.java, looking both for accuracy of the anal-
ysis and its robustness (i.e. it should not throw unexpected ex-
ceptions when run on a larger codebase).

2


