
Lecture Notes:
Control Flow Analysis for Functional

Languages

15-819O: Program Analysis
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

Lecture 10

1 Analysis of Functional Programs

We now consider analysis of functional programs. Consider an idealized
functional language, similar to the core of Scheme or ML, based on the
lambda calculus. We can define a grammar for expressions in the language
as follows:

e ::� λx.e
| x
| e1 e2
| n
| e� e
| ...

The grammar includes a definition of an anonymous function λx.e,
where x is the function argument and e is the body of the function. The
function can include variables x or function calls e1 e2, where e1 is the func-
tion to be invoked and e2 is passed to that function as an argument. (In an
imperative language this would more typically be written e1pe2q but we
follow the functional convention here). We evaluate a function call pλx.eq v
with some value v as the argument by substituting the argument v for all
occurrences of x in the body e of the function. For example, pλx.x � 1q 3
evaluates to 3� 1, which of course evaluates further to 4.

1

A more interesting execution example would be pλf.f 3qpλx.x�1q. This
first evaluates by substituting the argument for f , yielding pλx.x � 1q 3.
Then we invoke the function getting 3� 1 which again evaluates to 4.

Let us consider an analysis such as constant propagation applied to this
language. Because functional languages are not based on statements but
rather expressions, it is appropriate to consider not just the values of vari-
ables, but also the values that expressions evaluate to. We can consider
each expression to be labeled with a label l P Lab. Our analysis information
σ, then, maps each variable and label to a lattice value. The definition for
constant propagation is as follows:

σ P Var Y Lab Ñ L

L � Ú�J

We can now define our analysis by defining inference rules that gener-
ate constraints which are later solved:

vnwl ãÑ αpnq � σplq
const

vxwl ãÑ σpxq � σplq
var

In the rules above the constant or variable value flows to the program
location l. The rule for function calls is a bit more complex, though. In a
functional language, functions are passed around as first-class values, and
so it is not always obvious which function we are calling. Although it is
not obvious, we still need some way to figure it out, because the value a
function returns (which we may hope to track through constant propaga-
tion analysis) will inevitably depend on which function is called, as well as
the arguments.

The consequence of this is, to do a good job of constant propagation—
or, in fact, any program analysis at all—in a functional programming lan-
guage, we must determine what function(s) may be called at each applica-
tion in the program. Doing this is called control flow analysis.

In order to perform control flow analysis alongside constant propaga-
tion, we extend our lattice as follows:

L � Ú�J� Ppλx.eq

2

Thus the analysis information at any given program point, or for any
program variable, may be an integer n, or J, or a set of functions that could
be stored in the variable or computed at that program point. We can now
generate and use this information with the following rules for function def-
initions and applications:

vewl0 ãÑ C

vλx.el0wl ãÑ tλx.eu � σplq Y C
lambda

ve1w
l1 ãÑ C1 ve2w

l2 ãÑ C2

vel11 el22 w
l
ãÑ C1 Y C2 Y @λx.el00 P σpl1q : σpl2q � σpxq ^ σpl0q � σplq

apply

The first rule just states that if a literal function is declared at a program
location l, that function is part of the lattice value σplq computed by the
analysis for that location. Because we want to analyze the data flow inside
the function, we also generate a set of constraints C from the function body
and return those constraints as well.

The rule for application first analyzes the function and the argument
to extract two sets of constraints C1 and C2. We then generate a condi-
tional constraint, saying that for every literal function λx.e0 that the analy-
sis (eventually) determines the function may evaluate to, we must generate
additional constraints capture value flow from the formal function argu-
ment to the actual argument variable, and from the function result to the
calling expression.

Let us consider analysis of the second example program given above.
We start by labeling each subexpression as follows: ppλf.pfa 3bqcqepλx.pxg�
1hqiqjqk. We can now apply the rules one by one to analyze the program:

3

Var Y Lab L by rule
e λf.f 3 lambda
j λx.x� 1 lambda
f λx.x� 1 apply
a λx.x� 1 var
b 3 const
x 3 apply
g 3 var
h 1 const
i 4 add
c 4 apply
k 4 apply

2 m-Calling Context Sensitive Control Flow Analysis
(m-CFA)

The simple control flow analysis described above—known as 0-CFA,
where CFA stands for Control Flow Analysis and the 0 indicates context
insensitivity—works well for simple programs like the example above, but
it quickly becomes imprecise in more interesting programs that reuse func-
tions in several calling contexts. The following code illustrates the problem:

let add � λx. λy. x� y
let add5 � padd 5qa5

let add6 � padd 6qa6

let main � padd5 2qm

This example illustrates the functional programming idea of currying,
in which a function such as add that takes two arguments x and y in se-
quence can be called with only one argument (e.g. 5 in the call labeled a5),
resulting in a function that can later be called with the second argument
(in this case, 2 at the call labeled m). The value 5 for the first argument in
this example is stored with the function in the closure add5. Thus when the
second argument is passed to add5, the closure holds the value of x so that
the sum x� y � 5� 2 � 7 can be computed.

The use of closures complicates program analysis. In this case, we cre-
ate two closures, add5 and add6, within the program, binding 5 and 6 and
the respective values for x. But unfortunately the program analysis cannot
distinguish these two closures, because it only computes one value for x,

4

and since two different values are passed in, we learn only that x has the
value J. This is illustrated in the following analysis. The trace we give be-
low has been shortened to focus only on the variables (the actual analysis,
of course, would compute information for each program point too):

Var Y Lab L notes
add λx. λy. x� y

x 5 when analyzing first call
add5 λy. x� y

x J when analyzing second call
add6 λy. x� y
main J

We can add precision using a context-sensitive analysis. One could, in
principle, use either the functional or call-string approach to context sen-
sitivity, as described earlier. However, in practice the call-string approach
seems to be used for control-flow analysis in functional programming lan-
guages, perhaps because in the functional approach there could be many,
many contexts for each function, and it is easier to place a bound on the
analysis in the call-string approach.

We will add context sensitivity by making our analysis information σ
track information separately for different call strings, denoted by ∆. Here
a call string is a sequence of labels, each one denoting a function call site,
where the sequence can be of any length between 0 and some bound m (in
practice m will be in the range 0-2 for scalability reasons):

σ P pVar Y Labq �∆ Ñ L

∆ � Labn¤m

L � Ú�J� Pppλx.e, δqq

When a lambda expression is analyzed, we now consider as part of the
lattice the call string context δ in which its free variables were captured.

We can then define a set of rules that generate constraints which, when
solved, provide an answer to control-flow analysis, as well as (in this case)
constant propagation:

5

δ $ vnwl ãÑ αpnq � σpl, δq
const

δ $ vxwl ãÑ σpx, δq � σpl, δq
var

δ $ vλx.el0wl ãÑ tpλx.e, δqu � σpl, δq
lambda

δ $ ve1w
l1 ãÑ C1 δ $ ve2w

l2 ãÑ C2 δ1 � suffix pδ��l,mq
C3 �

�
pλx.e

l0
0 ,δ0qPσpl1,δq

σpl2, δq � σpx, δ1q ^ σpl0, δ
1q � σpl, δq

^ @y P FV pλx.e0q : σpy, δ0q � σpy, δ1q
C4 �

�
pλx.e

l0
0 ,δ0qPσpl1,δq

C where δ1 $ ve0w
l0 ãÑ C

δ $ vel11 el22 w
l
ãÑ C1 Y C2 Y C3 Y C4

apply

These rules contain a call string context δ in which the analysis of each
line of code is done. The rules const and var are unchanged except for in-
dexing σ by the current context δ. The lambda rule now captures the context
δ along with the lambda expression, so that when the lamda expression is
called the analysis knows in which context to look up the free variables.

Finally, the apply rule has gotten more complicated. A new context δ is
formed by appending the current call site l to the old call string, then tak-
ing the suffix of length m (or less). We now consider all functions that may
be called, as eventually determined by the analysis (our notation is slightly
loose here, because the quantifier must be evaluated continuously for more
matches as the analysis goes along). For each of these, we produce con-
straints capturing the flow of values from the formal to actual arguments,
and from the result expression to the calling expression. We also produce
constraints that bind the free variables in the new context: all free variables
in the called function flow from the point δ0 at which the closure was cap-
tured. Finally, in C4 we collect the constraints that we get from analyzing
each of the potentially called functions in the new context δ1.

A final technical note: because the apply rule results in analysis of the
called function, if there are recursive calls the derivation may be infinite.
Thus we interpret the rules coinductively.

We can now reanalyze the earlier example, observing the benefit of con-
text sensitivity. In the table below,
 denotes the empty calling context (e.g.
when analyzing the main procedure):

6

Var / Lab, δ L notes
add,
 pλx. λy. x� y,
q
x, a5 5

add5,
 pλy. x� y, a5q
x, a6 6

add6,
 pλy. x� y, a6q
main,
 7

Note three points about this analysis. First, we can distinguish the val-
ues of x in the two calling contexts: x is 5 in the context a5 but it is 6 in
the context a6. Second, the closures returned to the variables add5 and add6
record the scope in which the free variable x was bound when the closure
was captured. This means, third, that when we invoke the closure add5 at
program point m, we will know that x was captured in calling context a5,
and so when the analysis analyzes the addition, it knows that x holds the
constant 5 in this context. This enables constant propagation to compute a
precise answer, learning that the variable main holds the value 7.

3 Uniform k-Calling Context Sensitive Control Flow
Analysis (k-CFA)

m-CFA was proposed recently by Might, Smaragdakis, and Van Horn as
a more scalable version of the original k-CFA analysis developed by Shiv-
ers for Scheme. While m-CFA now seems to be a better tradeoff between
scalability and precision, k-CFA is interesting both for historical reasons
and because it illustrates a more precise approach to tracking the values of
variables bound in a closure.

The following exmaple illustrates a situation in which m-DFA may be
too imprecise:

let adde � λx.
let h � λy. λz. x� y � z
let r � h 8
in r

let t � padde 2qt

let f � padde 4qf

let e � pt 1qe

When we analyze it with m-CFA, we get the following results:

7

Var / Lab, δ L notes
adde,
 pλx...,
q

x, t 2
y, r 8
x, r 2 when analyzing first call

t,
 pλz. x� y � z, rq
x, f 4
x, r J when analyzing second call

f,
 pλz. x� y � z, rq
t,
 J

The k-CFA analysis is like m-CFA, except that rather than keeping track
of the scope in which a closure was captured, the analysis keeps track of the
scope in which each variable captured in the closure was defined. We use
an environment η to track this. Note that since η can represent a separately
calling context for each variable, rather than merely a single context for
all variables, it has the potential to be more accurate, but also much more
expensive. We can represent the analysis information as follows:

σ P pVar Y Labq �∆ Ñ L

∆ � Labn¤k

L � Ú�J� Ppλx.e, ηq

η P Var Ñ ∆

Let us briefly analyze the complexity of this analysis. In the worst case,
if a closure captures n different variables, we may have a different call
string for each of them. There are Opnkq different call strings for a program
of size n, so if we keep track of one for each of n variables, we haveOpnn�kq
different representations of the contexts for the variables captured in each
closure. This exponential blowup is why k-CFA scales so badly. m-CFA
is comparatively cheap—there are “only” Opnkq different contexts for the
variables captured in each closure—still expoential in k, but polynomial in
n for a fixed (and generally small) k.

We can now define the rules for k-CFA. They are similar to the rules
for m-CFA, except that we now have two contexts: the calling context δ,
and the environment context η tracking the context in which each variable
is bound. When we analyze a variable x, we look it up not in the current

8

context δ, but the context ηpxq in which it was bound. When a lambda is
analyzed, we track the current environment η with the lambda, as this is the
information necessary to determine where captured variables are bound.
The application rule is actually somewhat simpler, because we do not copy
bound variables into the context of the called procedure:

δ, η $ vnwl ãÑ αpnq � σpl, δq
const

δ, η $ vxwl ãÑ σpx, ηpxqq � σpl, δq
var

δ, η $ vλx.el0wl ãÑ tpλx.e, ηqu � σpl, δq
lambda

δ, η $ ve1w
l1 ãÑ C1 δ, η $ ve2w

l2 ãÑ C2 δ1 � suffix pδ��l, kq
C3 �

�
pλx.e

l0
0 ,η0qPσpl1,δq

σpl2, δq � σpx, δ1q ^ σpl0, δ
1q � σpl, δq

C4 �
�

pλx.e
l0
0 ,η0qPσpl1,δq

C where δ1, η0 $ ve0w
l0 ãÑ C

δ, η $ vel11 el22 w
l
ãÑ C1 Y C2 Y C3 Y C4

apply

Now we can see how k-CFA analysis can more precisely analyze the
latest example program. In the simulation below, we give two tables: one
showing the order in which the functions are analyzed, along with the call-
ing context δ and the environment η for each analysis, and the other as
usual showing the analysis information computed for the variables in the
program:

function δ η

main
 H
adde t tx ÞÑ tu

h r tx ÞÑ t, y ÞÑ ru
adde f tx ÞÑ fu

h r tx ÞÑ f, y ÞÑ ru
λz.... e tx ÞÑ t, y ÞÑ r, z ÞÑ eu

9

Var / Lab, δ L notes
adde,
 pλx...,
q

x, t 2
y, r 8
t,
 pλz. x� y � z, tx ÞÑ t, y ÞÑ ruq
x, f 4
f,
 pλz. x� y � z, tx ÞÑ f, y ÞÑ ruq
z, e 1
t,
 11

Tracking the definition point of each variable separately is enough to
restore precision in this program. However, programs with this structure—
in which analysis of the program depends on different calling contexts for
bound variables even when the context is the same for the fucntion even-
tually called—appear to be rare in practice. Might et al. observed no ex-
amples among the real programs they tested in which k-CFA was more
accurate than m-CFA—but k-CFA was often far more costly. Thus at this
point the m-CFA analysis seems to be a better tradeoff between efficiency
and precision, compared to k-CFA.

10

