
Lecture Notes:
Object-Oriented Call Graph Construction

15-819O: Program Analysis
Jonathan Aldrich

jonathan.aldrich@cs.cmu.edu

Lecture 11

1 Class Hierarchy Analysis

Analyzing object-oriented programs is challenging in much the same way
that analyzing functional programs is challenging: it is not obvious which
function is called at a given call site. In order to construct a precise call
graph, an analysis must determine what the type of the receiver object is at
each call site. Therefore, object-oriented call graph construction algorithms
must simultaneously build a call graph and compute aliasing information
describing to which objects (and thereby implicity to which types) each
variable could point.

The simplest approach is class hierarchy analysis. This analysis uses the
type of a variable, together with the class hierarchy, to determine what
types of object the variable could point to. Unsurprisingly, this analysis is
very imprecise, but it can be computed very efficiently: the analysis takes
Opn � tq time, because it visits n call sites and at each call site traverses a
subtree of size t of the class hierarchy.

2 Rapid Type Analysis

An improvement to class hierarchy analysis is rapid type analysis, which
eliminates from the hierarchy classes that are never instantiated. The anal-
ysis iteratively builds a set of instantiated types, method names invoked,
and concrete methods called. Initially, it assumes that main is the only
concrete method that is called, and that no objects are instantiated. It then

1

analyzes concrete methods known to be called one by one. When a method
name is invoked, it is added to the list, and all concrete methods with that
name defined within (or inherited by) types known to be instantiated are
added to the called list. When an object is instantiated, its type is added
to the list of instantiated types, and all its concrete methods that have a
method name that is invoked are added to the called list. This proceeds
iteratively until a fixed point is reached, at which point the analysis knows
all of the object types that may actually be created at run time.

Rapid type analysis can be considerably more precise than class hierar-
chy analysis in programs that use libraries that define many types, only a
few of which are used by the program. It remains extremely efficient, be-
cause it only needs to traverse the program once (in Opnq time) and then
build the call graph by visiting each of n call sites and considering a subtree
of size t of the class hierarchy, for a total of Opn � tq time.

3 0-CFA Style Object-Oriented Call Graph Construc-
tion

Object-oriented call graphs can also be constructed using a pointer anal-
ysis such as Andersen’s algorithm, either context-insensitive or context-
sensitive. The context-sensitive versions are called k-CFA by analogy with
control-flow analysis for functional programs. The context-insensitive ver-
sion is called 0-CFA for the same reason. Essentially, the analysis proceeds
as in Andersen’s algorithm, but the call graph is built up incrementally as
the analysis discovers the types of the objects to which each variable in the
program can point.

Even 0-CFA analysis can be considerably more precise than Rapid Type
Analysis. For example, in the program below, RTA would assume that any
implementation of foo() could be invoked at any program location, but O-
CFA can distinguish the two call sites:

c l a s s A { A foo (A x) { re turn x ; } }
c l a s s B extends A { A foo (A x) { re turn new D () ; } }
c l a s s D extends A { A foo (A x) { re turn new A () ; } }
c l a s s C extends A { A foo (A x) { re turn t h i s ; } }

// in main ()
A x = new A () ;
while (. . .)

2

x = x . foo (new B ()) ; // may c a l l A. foo , B . foo , or D. foo
A y = new C () ;
y . foo (x) ; // only c a l l s C . foo

3

