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Abstract

Teaching and learning formal programming language theory
is hard, in part because it’s easy to make mistakes and hard
to find them. Proof assistants can help check proofs, but their
learning curve is too steep to use in most classes, and is a
barrier to researchers too.

In this paper we present SASyLF, an LF-based proof as-
sistant specialized to checking theorems about programming
languages and logics. SASyLF has a simple design philoso-
phy: language and logic syntax, semantics, and meta-theory
should be written as closely as possible to the way it is done
on paper. We describe how we designed the SASyLF syntax
to be accessible to students learning type theory, and how
students can understand its semantics directly in terms of the
theory they are taught in class. SASyLF can express proofs
typical of an introductory graduate type theory course. SA-
SyLF proofs are generally very explicit, but its built-in sup-
port for variable binding provides substitution properties for
free and avoids awkward variable encodings. We describe
preliminary experience teaching with SASyLF.

Categories and Subject Descriptors F.4.1 [Mathematical
Logic]: Mechanical theorem proving

General Terms Design, Documentation, Human Factors,
Languages, Theory, Verification

1. Introduction

Teaching and doing research in formal language theory is
hard. By formal language theory, in this context, we mean
formalizing a language through operational semantics and
typing rules, or formalizing a logic as a set of inference rules,
and then proving meta-theorems such as type soundness (for
languages) or admissibility of cut (for logics).

The difficulties with teaching and learning formal lan-
guage theory are closely related to difficulties inherent in
doing research in the field: it can be extremely tedious to
state things formally and precisely without making small
syntactic errors, but these minor errors can conceal signifi-
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cant flaws. There has recently been a great deal of energy di-
rected towards the promotion of computer-verified proof as
a means to cope with the minutiae inherent in much of for-
mal language theory, for instance (Aydemir et al. 2005, 2008).

We believe a similar effort is due in the practice of teach-
ing formal language theory, which raises an additional set
of challenges. To learn effectively, students must focus on
higher-level concepts like induction, yet many mistakes are
made at a much lower level, e.g. skipping a step in a proof or
applying an inference rule when the facts used do not match
the rule’s premises. Students may not even recognize they
have made a mistake, and so do not seek out help. They only
learn of their mistake a week or two later, when the TA hands
back a paper splashed with red ink. At that point, the stu-
dent may have forgotten why the mistake was made, and
the learning opportunity is lost. A tool that could provide
immediate feedback would help students get it right in the first
place, and also help them to realize when they need to ask an
instructor for help with the more challenging concepts.

Proof assistants like Isabelle/HOL (Nipkow et al. 2002),
Coq (Bertot and Castran 2004), and Twelf (Pfenning and
Schürmann 1999) have been used to formalize language se-
mantics and prove meta-theorems. However, even in the re-
search community, mechanically checked proofs are the ex-
ception rather than the rule. This may be partly a produc-
tivity issue, but the steep learning curve of these tools, and
the non-trivial techniques for encoding program semantics
in them, likely play a role. The Ott tool (Sewell et al. 2007)
allows users to write down language syntax and semantics
in a convenient paper-like notation, but does not support ex-
pressing or proving theorems—this must be done in a sepa-
rate tool, and users must pay the cost of learning it. Unfor-
tunately, due to learning curve issues, the use of these assis-
tants in teaching formal language theory is rare, despite the
help they could in theory be to students.

In this paper, we present the SASyLF (“Sassy Elf”) theo-
rem proving assistant. SASyLF has a simple design philoso-
phy: language and logic syntax, semantics, and meta-theory
should be written as closely as possible to the way it is done
on paper. Proofs are very explicit, for the benefit of teaching.
Error messages are given in terms of the source proof, not
in terms of the assistant’s underlying theory. Finally, SASyLF
is specialized for reasoning about languages, programs, and
logics—more generally, any system with variable binding.
Variable binding is a persistent source of complication for
proving language meta-theorems in most theorem proving
systems because it must be encoded in some way, presenting
yet another barrier to using proof assistants in coursework.



The logical framework LF (Harper et al. 1993) avoids the
need to encode variable binding by building variables into
the formal system, allowing languages to be formalized us-
ing higher-order abstract syntax. SASyLF is based on LF type
theory and also builds in the notion of variable binding,
but uses a familiar surface syntax and (partly as a conse-
quence) is restricted to second-order abstract syntax for us-
ability. The name reflects that it is a Second-order Abstract
Syntax Logical Framework. As a result of SASyLF’s design,

proofs are clean, simple, and look almost exactly as they do
on paper.

Contributions. The contributions of this paper include:

• We describe a concrete notation for expressing language
syntax, semantics, and meta-theory. Our notation for syn-
tax and semantics, though developed independently, is
close to that of Ott, presumably because both systems
mimic paper definitions. However, we provide a more di-
rect notation for the scope of variable binding and avoid
potentially confusing artifacts related to theorem provers.
Our meta-theory notation is new but is based closely on
standard paper notations, such as are used in courses at
our university and others.

• We describe how our proof assistant can be used to
express and verify proofs by induction over the struc-
ture of derivations. We describe the semantics of SA-
SyLF constructs from the perspective of a student user
of the system; internally, SASyLF’s semantics rely on
previous foundational work in the Twelf proof assis-
tant (Schürmann 2000).

• We describe preliminary experience suggesting that the
tool is usable and useful in educational practice, and can
express proofs typical of an introductory graduate type
theory course.

Outline. In the next section, we explain the rationale behind
the design of SASyLF. Section 3 describes the SASyLF proof
assistant from a user’s point of view. Section 4 discusses
our implementation, and section 5 covers our experience
with the tool and describes the result of a limited controlled
experiment using SASyLF in an educational context. Finally,
Section 6 discusses related work.

2. Design Goals

In order to be most useful in an educational context, SASyLF
was designed to meet the following goals and design charac-
teristics:

Low Adoption Barrier. Few instructors are willing to spend
much time in class introducing a tool, even a very useful
one. Thus, to be adopted, SASyLF must be designed so that
students can pick it up on their own, or with at most a
recitation section spent on the tool.

Familiar Syntax. To facilitate a low adoption barrier, SA-
SyLF’s syntax is designed to be as close as possible to the no-
tation often used in programming language theory. The Ott
tool took the same approach for describing syntax and infer-
ence rules, but perhaps even more important in our context
is that proofs are done in the same consistent syntax. While
Ott provides significant value, students who will be writing
metatheoretic proofs will still have to pay the cost of learning
the syntax of another tool.

Familiar Mathematical Context. SASyLF’s design is in-
tended to minimize dependency on and mathematical con-
text other than that covered in a programming language
course. SASyLF, for example, builds in no set theory; its en-
tire formalism is based on inference rules, induction over
these, and variable binding, all of which are taught in pro-
gramming language theory courses. While set theory is often
covered anyway in these courses, by not relying on it we re-
tain a much simpler syntax and tool interface.

Support for variable binding. In most proof assistants, vari-
able binding is supported through one of two encodings that
substantially complicate the metatheory compared to what
is done on paper. One option is encoding variables using
de Bruijn indices—natural numbers that indicate how many
binding sites lie between the variable’s definition and the
current use point—but this encoding is unintuitive and re-
quires cumbersome numerical manipulations. Another op-
tion is using atomic names for variables, which is more natu-
ral, but which introduces the need to test alpha-equivalence
all over the place—an idea which is built into paper proofs.

In contrast, like Twelf, SASyLF builds in the concept of
variable binding, avoiding awkward encodings, and ensur-
ing that alpha-equivalent terms are identical. Instructors who
want to study encodings for pedagogical purposes can still
do so in SASyLF, simply by not using the built-in bindings,
but after this study is complete students can move forward
with the more natural variable binding support.

Simple, Explicit Tool Interface. Many proof assistants sup-
port sophisticated and customizable proof tactics that pro-
vide expert users enormous leverage in writing proofs—but
this design comes at the cost of forcing every user of the tool
to learn the unfamiliar tactic concepts and how to use them.

In contrast, SASyLF has a very simple tool interface—run
the tool on a file and get an “OK” or a list of errors. There are
no tactics, only low-level steps like “apply a rule” or “per-
form case analysis” that are already taught in programming
language theory courses. The proof notation is therefore very
detailed and explicit, which increases the overhead of the
tool, but also contributes to to student learning by ensuring
they think about and write down each step of the proof.

Simplicity vs. productivity. The potential cost of a simple
interface is tedious detail for advanced users. SASyLF is fo-
cused on novice users, so this is less of a drawback than it
might be, but it is still an issue for students proving more
complicated theorems. We could add simple tactics like auto-
mated proof search, but we hesitate to do so because novices
could use it as a shortcut and thereby avoid learning the ba-
sic details of proofs. Instead, we are developing an integrated
development environment that will help both novice and ex-
pert users write boilerplate code. For example, it will allow
students to drag a rule into a case analysis and have the syn-
tactic structure of the case for that rule generated automati-
cally.

Incremental proof development. In order to achieve rapid
feedback, students need to check their work after writing a
small portion of a proof or making small changes. SASyLF
allows students to omit any part of a proof by justifying a fact
as “unproved.” The system will check the rest of the proof as
if that fact had been proved. A warning is given to ensure
that students don’t forget to complete the proof later.



terminals fn unit value

syntax

e ::= fn x : tau => e[x]
| x
| e e
| "(" ")"

tau ::= unit
| tau -> tau

Gamma ::= *
| Gamma, x : tau

Figure 1. Syntactic definitions for the λ-calculus in SASyLF

Local checking and localized errors. In Twelf, a derivation
is built up functionally by applying one rule directly to the
result of another. SASyLF essentially converts a Twelf-style
proof into let-normal form, explicitly binding each interme-
diate fact established by the student. This results in a more
verbose proofs, but also makes it very easy to localize error
messages. Instead of a unification failure that could be due to
a mistake anywhere in a derivation tree, SASyLF can localize
the error message to an individual rule application, and can
then potentially give very good error messages.

3. The SASyLF Proof Assistant

In this section we describe the syntax and informal semantics
of the SASyLF meta-logic, using the simply typed λ-calculus
as an illustrative example.

3.1 Syntax

Figure 1 shows the header and syntax declarations for the
simply-typed lambda calculus in SASyLF. The terminals
declaration declares identifiers that are used as terminals in
the target language grammar. This information is not strictly
necessary, as we could infer terminals, but declaring them
explicitly helps us detect errors like misspellings better for
students.

The syntax block declares a grammar for all the syntac-
tic constructs of the language and accompanying theoreti-
cal constructs like typechecking contexts Γ. The grammar is
given in a conventional BNF form. On the left hand side of
each production is the “name” that will identify that syntac-
tic form. In Figure 1, for example, expressions are given the
identifying name e and types are given the identifying name
tau . We use the notation e[x] to denote that x is a vari-
able that is bound in e. This is a notation that may be more
familiar from logic, where the formula ∀x.(B ∧ A[x]) repre-
sents that the bound variable x is bound in A but not in B.
Whenever there is such a binding form, the variable should
be mentioned elsewhere in the production (the x in fn x :
tau ... ), and that is inferred to be the binding occurrence
of the variable. SASyLF observes that x is one of the cases in
the grammar for e and thus concludes that x is an expression
variable, that is to say a variable in the syntactic class e, and
therefore that the construct fn x : tau => e[x] contains
a subexpression with a bound expression variable.

Parentheses are special in SASyLF—they are used to dis-
ambiguate the way that expressions should be parsed—so to
use the ML notation for the unit expression in the target lan-
guage we must quote the parentheses in SASyLF, indicating

judgment value: e value

------------- val-unit
"(" ")" value

------------------------- val-fn
fn x1 : tau => e1[x1] value

judgment step: e -> e

e1 -> e1’
--------------- c-app-l
e1 e2 -> e1’ e2

e1 value
e2 -> e2’
------------------- c-app-r
(e1 e2) -> (e1 e2’)

e2 value
-------------------------------- r-app
(fn x : tau => e[x]) e2 -> e[e2]

Figure 2. Operational semantics for the λ-calculus in SA-
SyLF

that they should be treated as terminals. Other symbols, like
: , =, and > are automatically assumed to be terminals when
they occur.

We define types tau and contexts Gammaexactly as one
might do it in a paper. We will see later that the form of
Gammais specially chosen to enable it to be treated as the
LF context in the underlying theory of the tool.

3.2 Operational Semantics

The operational semantics of the λ-calculus are shown in
Figure 2. We first define a judgment for values, giving the
judgment a name (value ) followed by a syntactic form
(e value ). Then inference rules defining the judgment are
given. Each rule is a series of premises, one per line, followed
by a horizontal line, the name of the rule, and the conclu-
sion. SASyLF checks that each of the premises and conclu-
sion can parse as one of the judgment forms in the system
(perhaps one that is yet to be defined—judgments may be re-
cursive). We want SASyLF to deal with grammars that may
be ambiguous, since we don’t want parsing knowledge to
be a prerequisite for students to use SASyLF. Therefore we
use a GLR parsing algorithm (Tomita 1987) that can parse
strings against an ambiguous grammar as long as that par-
ticular string’s parse tree is unambiguous.1

Rules are interpreted schematically. In the rules in Fig-
ure 2, the instances of e1 , e2 , e1’ , or e2’ are treated as
schematic variables (or metavariables) that can stand for any
expression, that is to say any inhabitant of the syntactic class
e.

The rules for single-step evaluation in Figure 2 show how
premises are declared, as well as how parentheses may be
used to clarify how a string should be parsed. The beta re-
duction rule r-app also illustrates how substitution is ex-

1 Precedence declarations could be supported in future work, al-
though they may be confusing to students who have not taken a
course that covers parsing.



judgment has-type: Gamma |- e : tau
assumes Gamma

---------------------- t-unit
Gamma |- "("")" : unit

----------------------- t-var
Gamma, x:tau |- x : tau

Gamma, x1:tau |- e[x1] : tau’
----------------------------------------- t-fn
Gamma |- fn x : tau => e[x] : tau -> tau’

Gamma |- e1 : tau’ -> tau
Gamma |- e2 : tau’
------------------------- t-app
Gamma |- e1 e2 : tau

Figure 3. Typing rules for the λ-calculus in SASyLF

pressed. In one part of the rule, we see that x is bound in
e. On the right hand side of the reduction, we substitute e2
for all occurrences of x in e. This corresponds again using
the convention for substitution in logic.2 Since variable bind-
ing is built into SASyLF, the semantics of substitution are
capture-avoiding by definition.

3.3 Typing Rules

The typing rules for the simply-typed λ-calculus are shown
in Figure 3. The has-type judgment is declared just like
previous judgments, except that the assumes declaration
tells SASyLF that Gammais not merely a syntactic form, but
is intended to represent a context with typing assumptions.
As discussed later, the tool checks that Gammais indeed used
as a proper typing context, and in consequence, provides
basic properties like substitution, exchange, and weakening
for free.

Rules t-unit and t-var are standard. Rule t-fn shows
that bound variable names like x are not significant; we have
renamed x as x1 in the premise for illustrative purposes.
However, the name of a variable or metavariable determines
what syntactic category that variable or metavariable be-
longs to. A metavariable consists of the identifier for its syn-
tactic form (in the case of expressions, this identifier is “e”)
with an optional suffix consisting of any number followed by
zero or more primes. In the typing rules in Figure 3, we have
have e and e1 as metavariables for expressions (members of
the syntactic class e), while the metavariables tau and tau’
are type metavariables (members of the syntactic class tau ).
In the same way, variables like x must be based on variable
names used in the syntax, and they are given types that re-
flect the syntactic categories they are a part of (e.g. x is an
expression variable). In the future we plan to support names-
paces to allow a file to rely on declarations from another file
without worrying about name clashes.

2 We could use the substitution syntax typical of programming lan-
guages: {e2/x}e, but it is slightly more syntactically cumbersome
and the logic syntax has the advantage of making binding explicit as
well as substitution. The representation e[e2] also has the benefit of
being closer to the underlying LF theory that performs substitution
as application.

3.4 Rules for Variable Binding and Contexts

Like Twelf, SASyLF builds in the concept of variable bind-
ing and hypothetical judgments. If constructs such as vari-
able binding (e.g. e[x] ) and hypothetical judgments (e.g.
assumes Gammaabove) are used, they must follow well-
formedness rules (discussed below). Following these rules
gives us the following standard properties of hypothetical
judgments, taken from (Harper 2008):

• Reflexivity. Every judgment is a consequence of itself:
Γ, J ⊢ J . This is the definition of a hypothetical judgment.

• Weakening. If Γ ⊢ J then Γ, J1 ⊢ J . Additional assump-
tions cannot interfere with an existing derivation.

• Limited exchange. If Γ, J1, J2 ⊢ J and J2 does not use
variables bound in J1, then Γ, J2, J1 ⊢ J . That is, ordering
of hypotheses is immaterial, as long as variable binding
requirements are respected.

• Contraction. If Γ, J1, J1 ⊢ J then Γ, J1 ⊢ J . Since we can
use a hypothesis multiple times, it does not need to be
repeated.

• Substitution. If Γ, J1 ⊢ J and Γ ⊢ J1 then Γ ⊢ J . Here we
take the derivation of J1 and substitute it in for any uses
of the assumption in the derivation of J .

Properties like weakening and substitution are very com-
mon lemmas in programming language proofs, and so it is
nice to get them for free. As with Twelf, support for these
properties biases the proof assistant towards encoding log-
ics and languages that admit these properties—encoding sys-
tems like linear logic that do not have weakening is still pos-
sible but may not benefit as much from SASyLF’s built-in
binding support.

To make our reasoning sound, however, the rules of the
system must be structured in a way that justifies these prop-
erties. We enforce a standard set of rules for well-formed hy-
pothetical judgments, also taken from (Harper 2008):

• All variables used in a judgment must be bound, either in
a surrounding binding form within that judgment, or else
within some hypothesis in the context Γ.

• A context must represent a list of judgments. We en-
force this by requiring the form of any context declared
in an assumes clause (typically named Gammabut the
name is not significant) to have a base case that defines
neither a variable nor a judgment, and a set of recur-
sive cases that use Gammain exactly one location and
bind exactly one variable. There may be more than one
such case, for example in the polymorphic lambda calcu-
lus Gammatypically includes cases Gamma, x:tau and
Gamma, t:type .

For each recursive case, there must be a rule similar to
t-var above that shows what judgment the case corre-
sponds to. These rules must have Gamma unrolled once
(with the relevant recursive case), and must use the vari-
able bound in the recursive case in the rest of the judg-
ment. Semantically, the t-var rule allows us to interpret
that x:tau in Gammahas the semantic meaning that what-
ever expression e is later bound to the variable x , there
must be a proof of Gamma |- e : tau . This will justify
that our has-type judgment is preserved when substi-
tuting e for x .

• A hypothetical judgment in the premise of an inference
rule may only use a context Γ′ which is an extension of the



theorem preservation: forall dt: * |- e : tau
forall ds: e -> e’
exists * |- e’ : tau.

dt’ : * |- e’ : tau by induction on ds :
case rule

d1 : e1 -> e1’
-------------------- c-app-l
d2 : e1 e2 -> e1’ e2

is
dt’ : * |- e’ : tau by case analysis on dt :

case rule
d3 : * |- e1 : tau’ -> tau
d4 : * |- e2 : tau’
-------------------------- t-app
d5 : * |- (e1 e2) : tau

is
d6 : * |- e1’ : tau’ -> tau

by induction hypothesis on d3, d1
dt’ : * |- e1’ e2 : tau by rule t-app on d6, d4

end case
end case analysis

end case

case rule... // case for rule c-app-r is similar

case rule
d1 : e2 value
---------------------------------------- r-app
d2 : (fn x : tau’ => e1[x]) e2 -> e1[e2]

is
dt’ : * |- e’ : tau by case analysis on dt :

case rule
d4 : * |- fn x : tau’ => e1[x] : tau’’ -> tau
d5 : * |- e2 : tau’’
--------------------------------------------- t-app
d6 : * |- (fn x : tau’ => e1[x]) e2 : tau

is
dt’ : * |- e’ : tau by case analysis on d4 :

case rule
d7: * , x:tau’ |- e1[x] : tau
------------------------------------------- t-fn
d8: * |- fn x : tau’ => e1[x] : tau’ -> tau

is
d9: * |- e1[e2] : tau by substitution on d7, d5

end case
end case analysis

end case
end case analysis

end case
end induction
end theorem

Figure 4. Preservation proof for the λ-calculus in SASyLF

context Γ in the conclusion (i.e. it must have all the same
assumptions but may have some more as well). As an ex-
ception, we allow premises that have no context in cases
where an argument based on subordination (discussed
later) can show that no variables in Γ could possibly be
used in that premise.

3.5 Theorems and Proofs

Figure 4 shows the proof of type preservation for the simply-
typed λ-calculus in SASyLF (one case is elided). SASyLF sup-
ports theorems of the form “for all ≪list of metavariables and
judgments≫ there exists ≪judgment≫.” SASyLF shares this
limitation with Twelf,3 and while it limits what SASyLF can
prove, experience with Twelf shows that this form of theo-
rem is still useful for a lot of programming language theory,

3 Twelf allows multiple judgments in the exists clause, something
SASyLF can encode and which we plan to support in the future.

and it corresponds to proofs that are naturally expressed by
induction and case analysis on derivations.

Syntactically, one must give a name for the theorem and
for the derivation of each input judgment. The derivation
names (dt and ds ) are used to refer to judgments within the
proof.

A proof is a list of judgments, each with a justification. The
preservation theorem uses induction, induction hypothesis,
case analysis, application of inference rules, and substitution
as justifications.

The preservation proof begins by stating the judgment we
want to prove, * |- e’ : tau , giving it the name dt’ ,
and stating that it is justified by induction over the derivation
of the evaluation judgment ds .

We immediately do a case analysis on the rules used to
derive this judgment. Each case in the case analysis is in-
troduced with one of the rules that could be used to gener-
ate ds . The rule is stated using fresh metavariables that are
bound in the body of the case (e1 , e2 , and e1’ in the case
of c-app-l ). SASyLF matches the conclusion of the rule to
the judgment we are case-analyzing, and determines that e
has been substituted with e1 e2 and that e’ has been sub-
stituted with e1’ e2 .

We proceed to further case analyze on the typing deriva-
tion dt . Since we know that e=e1 e2 there is only one pos-
sible case, rule t-app . SASyLF will try all the other rules but
will discover that their conclusions don’t match the form e1
e2 ; if any of them matched, SASyLF would report an error
stating which rule needs to be added to the case analysis.

In these two nested cases, we have learned that
e1 -> e1’ and * |- e1 : tau’ -> tau . We therefore
can apply the induction hypothesis, naming the two facts
just mentioned with their names d1 and d3 . SASyLF checks
that the derivations used to instantiate the “forall” clauses of
the theorem in fact match those clauses, and checks that the
resulting derivation d6 : * |- e1’ : tau’ -> tau is
in fact what you get from applying the theorem to those
inputs. SASyLF also verifies that the derivation passed in for
the argument of the theorem we are doing induction over,
e1 -> e1’ , is a subderivation of the thing we analyzed by
induction, e -> e’ .

Finally, SASyLF checks that the last step in the proof
of each case (and of the main theorem) is a statement of
the thing we are trying to prove, namely * |- e’ : tau
(where in this case e’=e1’ e2 ). We get this by applying rule
t-app to the derivations we got from the second case anal-
ysis and the induction hypothesis. SASyLF performs checks
similar to those for the induction hypothesis, except of course
that the subderivation check is not relevant.

The case for evaluating the argument of an application
is similar, so it isn’t shown in Figure 4. However, the beta
rule case is interesting because it involves an application of
substitution. After case analyzing on the application rule,
we further case analyse on the typing rule (which must be
t-app again, though with the arguments in a different form)
and then on the typing rule for the function.

An interesting point about how SASyLF checks the proof
is illustrated by the fact that when case analyzing rule t-app
we know that the function type is tau’ -> tau , but we do
not know until the later case analysis that the argument x of
the function has type tau’ . All we know is that it is some
type tau’’ . The case analysis of the function typing with
rule t-fn proves that tau’’=tau’ , since otherwise the rule
could not be applied.



Now, with derivation d7 we have learned that

* , x:tau’ |- e1[x] : tau , and we know from d5
that * |- e2 : tau’ . From the properties of hypotheti-
cal judgments we know that if Γ, J1 ⊢ J and Γ ⊢ J1 then
Γ ⊢ J (Harper 2008). We appeal to this property with the
claim that

* |- e1[e2] : tau by substitution on d7, d5
SASyLF checks that d5 matches the judgment represented by
the hypothesis x:tau’ , which is given by rule t-var .

In addition to the proof justifications shown here, the
tool supports others including use of a lemma, weaken-
ing, exchange, contraction, assumption/previous (when we
just need to cite an input or previous derivation), and “un-
proved” (when we want to postpone proving one branch of
a derivation but want to verify the rest of the proof anyway).
We have considered adding “by solve” which would auto-
matically search for a derivation, but this poses challenges in
terms of giving away a derivation to students in an educa-
tional setting.

4. Implementation

An open-source implementation of the SASyLF proof assis-
tant is available at:

http://www.sasylf.org/

The core of the implementation is complete, including the
checks for rule application, case analysis, and case coverage.
The system passes all the examples in this paper, plus the ex-
amples in the distribution (discussed below). However, there
are a few checks that are not yet implemented, including the
checks for substitution, weakening, exchange, and contrac-
tion.

We initially began implementing SASyLF in Standard ML,
because Twelf is written in Standard ML and we hoped to
translate SASyLF input into Twelf and use the existing proof
checker. However, while fleshing out this strategy we dis-
covered that using Twelf directly would make it difficult to
achieve our goal of giving good, localized error messages
to the student user. SASyLF proofs are written in a func-
tional programming style, but Twelf proofs are in a logic pro-
gramming style. SASyLF can give good error messages in
part because proofs are in a kind of let-normal form, with
each intermediate step in a derivation named explicitly and
separately checkable for errors. Twelf, as a logic program-
ming language, has no “let” construct, and would force us
to compile away these lets, making it difficult to reconstruct
which step in the proof led to a Twelf error. Furthermore,
SASyLF supports nested, one-level-at-a-time case analysis,
while Twelf supports case analysis many levels deep but only
at the top level of a logic definition, meaning that significant
transformation would be necessary and error messages re-
lated to missing cases would be difficult to patch back into
SASyLF.

To get good error messages, we therefore decided to reim-
plement the Twelf checks—which while technically complex,
are not large in size due to the few constructs in the LF the-
ory. We chose the Java programming language because of
the good libraries and frameworks available, most notably
for IDEs (Eclipse in this case) and parser generators (javacc),
which are unavailable or of lower quality in Standard ML.
The choice of Java made certain aspects of the implementa-
tion painful, especially the unification algorithm, which suf-
fers greatly from the lack of pattern matching in Java. How-
ever, unification is only 1700 of 13000 lines of code in the sys-
tem, and there were some advantages to Java even beyond

the good libraries and the availability of Java programmers
to contribute to the project. For example, elements of the AST
could implement multiple interfaces simultaneously because
of Java’s subtyping support, which helped avoid duplicated
code in many cases. Overall, our reimplementation certainly
came at a cost, but it also avoided significant challenges in
translating error messages between two systems, saved sub-
stantial parsing effort due to use of a good parser generator,
and will make integration with an eventual IDE much easier.

Despite this reimplementation, our checker translates SA-
SyLF input into LF type theory, and then proceeds essentially
as Twelf does, recasting induction over the structure of de-
riviations as induction over canonical forms of LF. The in-
ternal format of theorems in the SASyLF prover represents
syntax and judgments in LF just as Twelf does. Proofs are
represented differently, however, essentially as functions in
let-normal form that accept input derivations, perform case
analysis as necessary, and produce output derivations, possi-
bly by making recursive calls (uses of the induction hypoth-
esis). Our internal representation is very close to the func-
tional M+

2 meta-logic described in Schürmann’s thesis on
Twelf (Schürmann 2000), except that his representation lacks
a let form while our representation is in let-normal form. We
thus follow M+

2 closely in our checker, benefiting from the
existing proof of soundness for M+

2 .
Although some cleanup work is needed, the implemen-

tation could eventually serve another educational role: illus-
trating, through a translation from paper-proof syntax into
the LF type theory, the formal underpinnings of common no-
tation and some of the basic ideas behind LF-based theorem
provers.

5. Evaluation

5.1 Case Studies

The distribution includes several SASyLF examples. The
first, in lambda.slf, is a formalization of the simply-typed λ-
calculus, with progress and preservation theorems, as pre-
sented in the running example for this paper. Although sub-
stitution is built into SASyLF, we also prove an explicit sub-
stitution theorem in the normal inductive way, to show how
it can be done. Substitution is also interesting because we are
verifying a property in a non-empty context, unlike progress
and preservation.

Two files provide formalizations of Hoare’s WHILE lan-
guage using a semantics with an explicit environment (which
actually does not take advantage of SASyLF’s variable bind-
ing support). The file while1.slf contains a simple derivation
showing how a WHILE program executes in a big-step se-
mantics, while while2.slf proves a Factorial function correct
with respect to the semantics. In both cases, we assume an or-
acle for the arithmetic, using “unproved” for all mathemati-
cal judgments.

The file lambda-loc.slf contains the untyped lambda cal-
culus with locations added and a store well-formedness rule.
This example is interesting because preservation of store
well-formedness requires an explicit substitution lemma, as
well as a strengthening lemma that shows that expressions in
the store cannot depend on variables bound in the context.

We also include sum.slf, a axiomatization of addition and
a proof that addition is commutative. All these proofs check
without errors, and without warnings except for the warn-
ings about the unformalized arithmetic in the WHILE proofs.

Finally, we have developed a candidate solution to Part
2A of the POPLmark challenge, suggesting that SASyLF can



prove many theorems covered even in more advanced grad-
uate courses. We believe Part 2B will also be feasible in SA-
SyLF; Parts 1A and 2A will require the implementation of
mutual induction (not expected to be hard to add since the
type theory has already been worked out in Twelf). Part 3
would require automated search for derivations, which is
potentially in conflict with our educational goals of explicit
proofs without tactics, but may be useful educationally in
that it allows students to easily experiment with their opera-
tional semantics.

5.2 Controlled Experiment

We performed a limited, controlled experiment to determine
whether SASyLF can aid students in learning about formal
modeling and proofs about programs. The setting of the
study was the first author’s Analysis of Software Artifacts
class, which teaches both formal (e.g. proofs) and informal
(e.g. testing) approaches to analyzing software. This setting
was not an ideal test of SASyLF, because formal language
theory makes up only a small part of the course (one assign-
ment), and because one of the most important features of SA-
SyLF, variable binding, was not exercised in any significant
way. The experiment was optional in the course because the
tool was immature, meaning we had fewer participants than
would be ideal. Finally, we were only able to compare SA-
SyLF against a control of no tool use; since this is the most
common case today, we decided this was a more appropriate
control than comparing to other tools. Despite these limita-
tions, we believe the study has the potential to shed light on
the value of SASyLF.

Methodology. We recruited 34 volunteers for the study from
among class members. Of these, 17 were assigned to use
the tool for their assignment, and 17 were assigned to do
the assignment on paper (acting as a control group). The
assignment had three parts. First, students were to show a
derivation of how simple programs in Hoare’s WHILE lan-
guage execute using big-step semantics. Second, students
were to prove inductively, based on the same semantics, that
a program that multiplies through repeated addition is cor-
rect. Third, students were to use Hoare Logic to prove that
the same multiplication program meets its pre- and post-
condition specification. While these examples illustrated the
ability of SASyLF to check students’ work, they made little
use of variable binding, a concept that was not a focus in this
course (the Hoare Logic example does use variable binding
but it is treated as a black box).

Students in both cases did the same problems, and had
the same access to examples and expert help. The tool group
received a starting file with the proper judgments formal-
ized and some worked examples; the tool was able to verify
the correctness of their derivations (but used “unproved” for
arithmetic judgments). The control group received PDF and
LaTeX sources for the same judgments and worked exam-
ples. The tool group received no specific training in the tool
other than annotated example files, although short demon-
strations were requested and given to many students at office
hours.

The outcomes we measured included performance on re-
lated midterm exam questions; subjective confidence in for-
mal ability before and after the assignment; and qualitative
impressions about the usability and benefits of the tool.

5.3 Experimental Outcomes: Qualitative

We experienced a relatively high dropout rate for students
in the tool group. Of the 17 students in this group, 9 used
the tool all the way through the study, and 3 additional
students turned in at least part of the assignment in the
tool notation. The other 5 students dropped use of the tool
entirely. Three students gave a reason for dropping use of
the tool: two said it took too much time, the third said it
was too difficult to gradually draft a proof using the tool and
paper made this process easier. Other general issues with the
tool raised included usability problems, challenges getting
program literals to parse (perhaps an issue with our GLR
parsing strategy), and a high learning curve for the tool.

Of the 12 tool users who completed their post surveys, 7
would like to use the tool again on a similar assignment, 1
did not answer, and 4 would prefer not to use the tool on a
future assignment. Of the 4 who did not want to use the tool
again, 3 would consider it if the usability problems they saw
were fixed.

The above results suggest that there are significant usabil-
ity issues with the tool, many of which involved the chal-
lenge of learning the tool’s syntax. Despite this, a majority
of participants were successful at using the tool, and most
students either preferred using the tool for assignments or
would consider it if these issues were resolved.

We asked members of the control group whether they en-
countered situations where they were unsure whether their
proof was correct, and if there were situations where they
wished they had earlier feedback on errors in their proof. 14
of the 16 control group members who submitted post sur-
veys cited specific examples of each of these situations. A
number of students mentioned small mistakes or typograph-
ical errors as issues they were worried about. One student
also said that “errors...discovered after completing [one draft
of the assignment] caused heavy rework.”

Although not all of these situations would necessarily be
remedied by a tool, these responses do suggest that there is
substantial room to help students by confirming the correct-
ness of a proof or providing earlier feedback on errors.

In the tool post-survey, we asked if students felt the tool
increased or decreased their confidence that their proofs
were correct; 12 of 13 students said it was increased, the other
student said there was no effect. We asked if the tool helped
or hindered in finding errors in proofs; 11 of 13 students said
the tool helped, and 2 said there was no effect. We asked if the
tool directly helped students to learn concepts in the course,
or if it was a barrier; 6 students said it helped, 5 students said
there was no effect, and 2 students said the tool was a barrier.

Overall, our qualitative results suggest that, despite sig-
nificant usability problems with the beta version of the tool,
a number of students found the tool helpful and would use
it again.

5.4 Student Experiences.

Paper and Tool Use. Many students used a hybrid strategy
where they would prototype their proofs on paper and then
formalize them in the tool. One student said “On trickier
proofs I had to go to paper to clearly state what I was try-
ing to prove.... [When using the checker] instead of thinking
about how to make a beautiful statement that reveals some-
thing true, I was just concerned with jamming the nuts and
bolts together until the checker was happy.” These comments
suggest there is a need for a more natural proof interface,
and perhaps the ability to do proofs at a higher level of ab-



straction. Some students also did not understand how to use
“unproved” to check partial proofs, and therefore felt their
proofs had to be perfect before running the tool—pointing
to the need for at least minimal training or suggestions for
using the tool. At the same time, other users found that the
tool added significant value. One said, “I actually did the en-
tire assignment on paper first and then moved over to using
the tool. I found the paper approach really easy. But once I
started using the tool I started understanding the concepts
better.”

Readability of proofs in the tool was an issue. One student
said “The tool found problems with my proof. However, the
proof in the tool was less readable, so I am less confident that
my manual inspection found bugs the checker missed.” (our
prototype checker still had a few missing checks) This com-
ment suggests the need for better visualizations of proofs—
at a minimum, syntax highlighting, but perhaps output in
LaTeX or a graphical depiction of a derivation tree. Several
students felt that a tree-like presentation of a derivation was
easier to read than the linear format supported by the tool.

One student noted a trade-off between the confidence
provided by the tool and the additional time it took to use
the tool: “I am more confident that I applied the concepts
correctly. However, I think using the tool was more time con-
suming. I think I might have learned more if given more com-
plex examples to work out on paper.” Providing a graphical
interface for manipulating proofs was suggested by several
students, and such an interface might reduce the time over-
head of using the tool.

Tool Feedback. Several students felt they benefited from ear-
lier feedback from the tool: “The tool provided earlier feed-
back so I did not face situation where I wished I had feedback
earlier.” Most tool students still did have times when they
wished they had better feedback, for example real-time feed-
back on syntax errors and incorrect rule applications, rather
than continually rerunning the tool, which was “disruptive
and annoying.” IDE integration could help with such issues.

Most students also still had some questions that were
unanswered by the tool, because the tool messages indicate
that there is a problem but are not always able to point
to why the problem exists. One student said, “It helped in
finding errors, but often the errors it found were because of
typos and cut-and-paste mistakes, which I wouldn’t have if
I had done it on paper.” On the other hand, other students
were satisfied with the tool, one saying “Most questions I had
could be solve by the output from the tool.”

One area for improvement would be positive feedback
from the tool that judgments are correct. One student said
“A graphical interface that showed which judgments were
definitely OK would assure me.”

Effect on Student Thoughts. Use of the tool did seem to have
some effect on how students thought about problems, help-
ing them to make important distinctions in the proof. One
student said, “I ran into a lot of situations where I was think-
ing, ’gee, now do I need to prove 1+1=2, or rather than i+1=2
when i=1?”’ While this student was expressing some frus-
tration, the statement shows the student was thinking about
a distinction that many students simply gloss over on pa-
per, sometimes resulting in incorrect proofs. Other students
felt that the tool gave them the ability to think at a higher
level: “With more confidence in the logical flow of my proof,
I could spend more time on the larger picture.”

Summary. Overall, the comments provided by students pro-
vide insight into a number of ways in which the tool con-
tributed to their learning process. We also received a number
of concrete suggestions for improving the tool, which we in-
tend to implement in future work.

5.5 Experimental Outcomes: Quantitative

We collected several quantitative measures in the experi-
ment. The effect of the tool, if present, was too small to be sta-
tistically significant with our sample size. Without claiming
it is conclusive, we nevertheless report the data we found,
recognizing that at best it suggests hypotheses to be verified
in more comprehensive, future studies.

The midterm exam had a question asking students to pro-
duce a derivation of execution in the WHILE language, and a
question asking students to derive intermediate assertions in
a Hoare Logic proof of the correctness of a WHILE program.
Both tasks were similar to what students did on the home-
work. The 9 students who had successfully completed the
entire assignment with the tool did an average of one point
better on these questions, than the 17 students in the control
group (statistically insignificant, p-value 0.26).

It is possible that only the best students completed the
assignment with the tool. However, the 1 point difference
persists even if we compare a subset of the control group
that is matched in terms of academic program and grade in a
previous formal course, to the students in the tool group.

We also measured confidence with formal mathematics
and proofs, on a scale of 1-5 from very unconfident to very
confident. We measured the difference in confidence before
and after the case study, comparing all students in the tool
group (including those who dropped out, as long as they
turned in their post-survey form) with students in the control
group. We found that on average the tool group’s confidence
increased by an average of 0.08 points, while the control
group’s confidence decreased by an average of 0.21 points
(statistically insignificant, p-value 0.25).

The 5 students who completed the assignment entirely
using the tool and reported their time (many students did
not report time, although we asked them to) spent about
2 hours longer than the 14 control group students who re-
ported their time (statistically insignificant, p-value 0.11).
This effect could easily be due to chance, but it is possible
that the tool encouraged or required students to spend more
time on the assignment, which may have in turn affected the
other outcomes of the study.

In summary, our quantitative outcomes were not statisti-
cally significant, but they do suggest areas for investigation
in future studies.

6. Related Work

Educational Tools for Mathematics. Barland et al. argue that
the increasing demand for reliable software systems creates
a pressing need for a stronger focus on logic in computer
science education, and suggest an integrated, tool-supported
educational approach (Barland et al. 2000). They argue that
tool support is key to reaching students with a broader range
of learning styles (Tobias 1992).

Many tools have been developed for teaching mathemat-
ics. One example, similar to our work in intent but for dif-
ferent areas of math, is the EPGY Theorem Proving Environ-
ment, which was used to help students learn to do proofs
in geometry, linear algebra, number theory, and other top-
ics (Sommer and Nuckols 2004). This tool is aimed at helping



students write theorems according to standard mathemati-
cal practice, verifying student reasoning and automatically
proving side conditions that are routinely omitted in stan-
dard practice. The tool provides a graphical user interface
with menu-based interaction.

Educational Tools for Logic. Along similar lines, a number
of tools have been developed to aid in the teaching of log-
ical reasoning. Generally, they allow the structured applica-
tion of inference rules by a student in order to complete a
proof. Many also provide a graphical user interface display-
ing proof trees, inference rules, and giving help as needed
(see, for example, (Scheines and Sieg 1994), or (Goldson and
Reeves 1993) for a survey). A fairly rich collection of tools
is Hyperproof, Tarski’s World, and Turing’s World which
integrates deductive and semantic reasoning (Barwise and
Etchemendy 1998). In particular, it recognizes the importance
of counterexamples and the connection between domains
and the logical formalisms describing them.

Previous work, however, pays little attention to the com-
putational interpretation of logic or applications to program-
ming languages, which is central to our work.

Educational Tools for Program Semantics. The Tutch tool
for constructive logic allows students to write down a proof
very similarly to the way they write down a program and
then have it analyzed by a checker separately for correctness
very similarly to the the way a program is compiled (Abel
et al. 2001). This analogy to programming proved to be
very helpful, and anecdotal evidence and course evaluations
strongly suggest the important role this tool has played in
the students learning experience. It has been used in a multi-
disciplinary junior-level logic class at Carnegie Mellon (com-
puter science, mathematics, and philosophy) since 2000.

Matthews et al have developed a tool for specifying and
experimenting with operational semantics using contextual
rewriting rules (Matthews et al. 2004). This has been bene-
ficial in the presentation of the Scheme language, especially
as it forces one to be formal about evaluation strategies and
their interaction with effects. The visual interface allows stu-
dents to animate the operational semantics and experience
the reduction rules in action, making an abstract formalism
tangible. The DrScheme tool supports proofs of language
properties indirectly through an interface to ACL2 (Eastlund
et al. 2007).

Tools have been developed to support compiler or inter-
preter development using ideas from operational semantics,
including ASF+SDF (van den Brand et al. 2002) and the Re-
lational Meta Language (RML) (Pettersson 1995), and oth-
ers. However, we are not aware of studies applying these in
an educational setting, nor do these tools explicitly support
proofs about programs written in the logic.

Logical Frameworks and Twelf. Our work is generally based
on the principles of a logical framework (Pfenning 2001),
a meta-language in which one can specify and the rea-
son with deductive systems. More specifically, we build on
the approach embodied in Twelf (Pfenning and Schürmann
1999). Twelf has been successful as a research tool, and has
also been utilized as a teaching tool. Frank Pfenning has
taught several senior undergraduate and graduate courses
in the theory of programming languages and written a text-
book (Pfenning), currently undergoing revision, that utilize
Twelf in an educational setting.

However, Twelf is not quite ready for use in lower-level
undergraduate courses. Despite (and in some cases because

of) its extremely uniform and minimalistic style, teaching the
tool to students occupies several valuable weeks of course
time. On the other hand, the concepts supported by logical
frameworks in general and Twelf in particular are important
recurring concepts that students must learn in any case, such
as variable binding, formal inference, or reasoning under
hypotheses. A significant portion of the present work can
therefore be seen as a way to harness research tools such as
Twelf for use in undergraduate education.

Other Proof Assistants. Researchers have had considerable
success using proof assistants for general mathematics, such
as Isabelle/HOL (Nipkow et al. 2002) and Coq (Bertot and
Castran 2004), to formalize programming language metathe-
ory. These tools have advantages over Twelf and SASyLF, in-
cluding support for a broader range of theorems (e.g. logi-
cal relations, which are not supported in Twelf) and support
for high-level proof tactics that raise the level of abstraction
of proofs. On the other hand, these tools have a fairly steep
learning curve and have not been widely integrated into un-
dergraduate programming language curricula. One particu-
lar barrier to teaching language metatheory is that variable
binding must be encoded, and while recent work has ex-
plored more convenient interfaces to variable binding (Ay-
demir et al. 2008), these encodings take time to teach and
learn, and also distract from the main purpose of course as-
signments.

One intermediate point in the design space is concurrent
work on Abella (Gacek 2008), which builds in variable bind-
ing like Twelf and SASyLF, but supports interactive theo-
rem proving with tactics like Isabelle/HOL and Coq. While
Abella shares some of SASyLF’s educational advantages,
and is more powerful and likely more productive for expert
users, it does not fulfil our goals in terms of familiar syn-
tax, simplicity of the tool interface, or the explicit nature of
proofs.

Ott. The Ott system, like our work, allows users to write
down the syntax and semantics of a programming language
in much the same notation that would be used on pa-
per (Sewell et al. 2007). However, Ott does not directly sup-
port language metatheory; instead, the tool generates defini-
tions capturing the language semantics in the input format
of another tool, and users must learn to use that tool in order
to prove metatheorems. Ott supports richer syntactic bind-
ing forms than our system, but at a cost of a more complex
notation for binding and substitution. Furthermore, the Ott
tool is limited by a lack of support for capture-avoiding sub-
stitution, limiting the metatheory that can be done based on
the tool’s definitions.
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Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy
Pollack, and Stephanie Weirich. Engineering Formal Metatheory.
In Symposium on Principles of Programming Languages, 2008.

Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Ge-
offrey Washburn, Stephanie Weirich, and Steve Zdancewic. Mech-
anized Metatheory for the Masses: The PoplMark Challenge. In
Theorem Proving in Higher Order Logics, pages 50–65, 2005.

Ian Barland, Matthias Felleisen, Kathi Fisler, Phokion Kolaitis, and
Moshe Y. Vardi. Integrating Logic into the Computer Science
Curriculum. http://www.cs.utexas.edu/˜ csed/FM/docs/iticse-
fislervardi.pdf, 2000.

Jon Barwise and John Etchemendy. Computers, Visualization, and
the Nature of Reasoning. In The Digital Phoenix: How Computers
are Changing Philosophy, pages 93–116. Blackwell, 1998.

Yves Bertot and Pierre Castran. Interactive Theorem Proving and Pro-
gram Development. Springer-Verlag, 2004.

Carl Eastlund, Dale Vaillancourt, and Matthias Felleisen. ACL2 for
Freshmen: First Experiences. In ACL2 Workshop, 2007.

Andrew Gacek. The Abella Interactive Theorem Prover (system
description). In IJCAR, 2008.

D. Goldson and S. Reeves. Using Programs to Teach Logic to Com-
puter Scientists. Notices of the American Mathematical Society, 40:
143–148, 1993.

Robert Harper. Practical Foundations for Programming Languages.
Available at http://www.cs.cmu.edu/˜ rwh/plbook/book.pdf,
2008.

Robert Harper, Furio Honsell, and Gordon D. Plotkin. A Framework
for Defining Logics. J. ACM, 40(1):143–184, 1993.

Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and Matthias
Felleisen. A Visual Environment for Developing Context-
Sensitive Term Rewriting Systems. In International Conference on
Rewriting Techniques and Applications. Springer Verlag LNCS 3091,
2004.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL: A Proof Assistant For Higher-Order Logic. Lecture
Notes in Computer Science, 2283, 2002.

Mikael Pettersson. Compiling Natural Semantics. PhD thesis, Linkop-
ing University, 1995.

Frank Pfenning. Logical Frameworks. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, chapter 17,
pages 1063–1147. Elsevier Science and MIT Press, 2001.

Frank Pfenning. Computation and Deduction. Cambridge University
Press. In preparation. Draft from April 1997 available electroni-
cally at http://www.cs.cmu.edu/˜ twelf/notes/cd.ps.
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