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Abstract
We present a new language feature, specified as an extension to
Java. The feature is a form of dispatch, which includes and sub-
sumes multimethods (see for example [CLCM00]), but which is
not as powerful as general predicate dispatch [EKC98]. It is, how-
ever, intended to be more practical and easier to use than the latter.
The extension, dubbed OOMatch, allows method parameters to be
specified as patterns, which are matched against the arguments to
the method call. When matches occur, the method applies; if multi-
ple methods apply, the method with the more specific pattern over-
rides the others.

The pattern matching is very similar to that found in the “case”
constructs of many functional languages (ML [MTHM97], for ex-
ample), with an important difference: functional languages nor-
mally allow pattern matching over variant types (and other primi-
tives such as tuples), while OOMatch allows pattern matching on
Java objects. Indeed, the wider goal here is the study of the combi-
nation of functional and object-oriented programming paradigms.

Maintaining encapsulation while allowing pattern matching is
of special importance. Class designers should have the control
needed to prevent implementation details (such as private variables)
from being exposed to clients of the class.

We here present both an informal “tutorial” description of
OOMatch, as well as a formal specification of the language. A
proof that the conditions specified guarantee run-time safety ap-
pears in the companion thesis [Ric07].

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Classes and objects,
Patterns, Polymorphism, Procedures, functions, and subroutines

General Terms Design, Languages

Keywords predicate dispatch, dynamic dispatch, pattern match-
ing, multimethods, Java

1. Introduction
This paper presents a small step towards the goal of unifying
object-oriented and functional programming. In particular, it con-
siders how pattern matching – a common and useful feature of
many functional languages – might be interwoven into the object-
oriented tapestry. Pattern matching in, for example, ML, allows one
to decompose algebraic types or tuples into their components, ei-
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ther in a case statement or in a set of functions. Though this pat-
tern matching is useful in a functional context, simple algebraic
types and tuples are not used much in object-oriented program-
ming; classes are used much more. So we here present a means of
deconstructing objects into their components and specifying pat-
terns that match objects with certain properties.

The most significant difference from pattern matching in func-
tional languages is that in OOMatch, pattern matching is used in
determining method dispatch. Thus, pattern precedence cannot be
determined by textual order, as it is in functional languages. The
patterns are specified as parameters to methods, and the compiler
decides on a natural order to check for a matching pattern, i.e. to
check which methods override which. Methods with more specific
parameters override methods with more general parameters. A key
contribution of our work is a careful definition of which patterns
are “more specific” than others. Since parameters of subclass type
are considered more specific than those of superclass type, this fea-
ture subsumes polymorphic dispatch and multimethods. Informa-
tion hiding of objects (a fundamental property of object-oriented
systems) must be preserved; we must not allow clients to access
the data of the object except in ways the class writer explicitly al-
lows. Another important goal is simplicity; if programmers find the
facility confusing, they can simply use if-else blocks and casting in-
stead of pattern matching. The practical value of pattern matching
as dispatch would then be lost.

The matching is done with the aid of special methods, called
deconstructors, which return the components of an object in a way
that the class designer has control over. To enable pattern matching
on an object, the programmer writes a deconstructor for the object.
Alternatively, there is a syntactic sugar that allows a constructor
and deconstructor to be written at once, and is sufficient for many
cases.

OOMatch has been implemented in the Polyglot Extensi-
ble Compiler Framework [POL]. Polyglot translates to Java, but
contains all the functionality of compiling the base Java lan-
guage, which prevents implementers from having to write a com-
piler from scratch. It is therefore useful for writing prototype
compilers for new Java-like languages. The implementation is
described in detail in [Ric07], and can be downloaded from
http://plg.uwaterloo.ca/~a5richar/oomatch.html.

The paper is organized as follows. Section 2 gives background
and related work leading up to OOMatch and should be helpful
to those unfamiliar with all the concepts used. Section 3 gives
an informal description of the language and its various features.
Section 4 gives a formal specification of the core of OOMatch (the
pattern matching dispatch). It also describes the checks done by
the compiler, and claims that if an OOMatch program compiles,
there are only certain given conditions under which a run-time
error can occur. Section 5 briefly reports some of our experience
in refactoring Java code to OOMatch. Section 6 discusses other
related work that is best discussed after the reader understands
OOMatch. Section 7 concludes.
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2. Background
OOMatch combines two broad areas of programming languages
research - pattern matching and dispatch mechanisms. We describe
each of these areas in turn, along with research in those areas
related to or leading up to OOMatch.

2.1 Pattern Matching
Pattern matching is a popular feature in functional languages. Sup-
pose a programmer wants to test whether the first element of a pair
is 0, and if it is, return the second element. In a language without
pattern matching, such as Java, this can be achieved with the fol-
lowing code:

if (pair.first() == 0) {
return pair.second();

}
else { ... }

In other words, accessor functions and comparisons are neces-
sary to get the components of a structure and test them for the rele-
vant conditions.

In a language with pattern matching, such as SML [MTHM97],
the following simpler code accomplishes the same task:

case pair of
(0, second) => second

| _ => ...
;;

Pattern matching involves taking an expression (pair in this
case) and a pattern ((0, second) in this case), and trying to
find a set of substitutions for variables in the pattern such that
it is equal to the expression. If such a set of substitutions exists,
the match succeeds; otherwise, it fails, and in the case of the
match construct of ML (above), the next case is tested. Often,
one of the patterns contains one or more free variables, which
normally act as a wildcard for matching purposes. In the example
above, second is a free variable. When a match succeeds, the free
variables normally receive a unique value that was necessary to
do the match, and those variables can be used in some succeeding
block of code (the case of the match construct, in this example). To
use an analogy from mathematics, pattern matching is like giving
the compiler an equation and letting it solve for the variables, rather
than programmers solving the equation themselves.

Whereas the pattern matching in ML, shown above, operates on
built-in language constructs (tuples in this case), a more challeng-
ing problem is how to allow matching of objects. Object matching
is tricky because it involves decomposing objects of a class into
components, and it is not obvious to the compiler what the compo-
nents of an object are, as far as the writer of the class is concerned.
Further, the class writer may not want clients to have access to those
components, or may want to only allow access to them in a con-
trolled way. OOMatch provides this control with the use of special
functions called deconstructors, described later. Other languages
with object-oriented pattern matching, described in the following
subsections, have similar approaches to this problem.

2.2 Dispatch
Method dispatch means the way in which a language determines,
given a call site, which method to call. In the days of the original
Fortran, this task was simple, because each function in these early
languages generally had a unique name - the name in the call site
hence uniquely determined a method, and this method could be
fixed at compile time.

Later, languages began to allow multiple functions with the
same name. When multiple such methods are present, there are two

main ways in which the correct method to call can be determined
- by using only the static type information of the arguments passed
in the method call (overloading), or by using the run-time type
information, and determining the method at run-time (overriding).

Overloading is the presence of multiple methods with the same
name and in the same class hierarchy. The different parameters
(and possibly different return values) among the methods allow
the compiler to determine which method to call given a call site
- it finds the static types of the method arguments and chooses
the method whose parameters correspond to those types. There
may be various rules regarding what to do if multiple methods
are eligible, depending on the language. Again, the method to
call is fixed at compile-time. Overloading is convenient because
it allows programmers to provide several ways of invoking what is
conceptually the same operation.

Many object-oriented languages, including Java, have a feature
called receiver-based dispatch, which means the method selected
at a call site can change at run-time, depending on the actual
(dynamic) type of the receiver argument it is called on. It is also
called dynamic dispatch because the callee is chosen dynamically
(not until run-time).

Receiver-based dispatch is very useful for data abstraction.
For example, suppose a programmer had a variable representing
a shape, and wanted to call a method to draw it:

Shape s;
...
s.draw();

Because s could be one of many kinds of shapes - polygon, circle,
etc. - it would be inconvenient to have to write a draw function
that can draw any of them, depending on what kind of shape s
is. Further, there might be other kinds of shapes the programmer
who wrote the above call did not know about. With receiver-based
dispatch, the programmer can instead write one draw method for
each type of Shape:

class Shape {
public void draw() {}

}

class Circle extends Shape {
public void draw() { //overrides Shape.draw

//draw a circle
}

}

class Rectangle extends Shape {
public void draw() { //overrides Shape.draw

//draw a rectangle
}

}

Now, if s is a Circle, s.draw() invokes Circle.draw - even
though the static type of s is Shape - because Circle.draw over-
rides Shape.draw.

There has been research on other, more powerful forms of dy-
namic dispatch, which subsumes receiver-based dispatch. A sample
of this research is discussed next.

2.2.1 Multimethods
Multimethods are a classic example of a powerful form of dispatch.
They were introduced in CommonLoops [BKK+86] and added to
Java in MultiJava [CLCM00]. They allow the method chosen to
depend on the run-time types of all arguments, rather than just the
receiver argument. For example, consider these two methods:
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class C {
Shape intersect(Shape s1, Shape s2) { ... }
Shape intersect(Circle s1, Square s2) { ... }

}

In Java, of course, these methods would be overloaded. With mul-
timethods, the second method would instead override the first
method, so that if intersect is called with a pair of Shape vari-
ables that are really a Circle and Square, respectively, at run-
time, the second method takes precedence and is called.

To understand the usefulness of this feature, consider how one
might write a class with an “equals” method. In Java, a naive
programmer might write the following:

class C {
...
public boolean equals(C other)
{ ... }

}

But this is incorrect because the version of “equals” shown
does not in fact override Object’s “equals” method, which has sig-
nature public boolean equals(Object obj) [JAV]. Because
the equals in C does not have the same parameter types, the meth-
ods become overloaded rather than overridden. This means that, for
example, this code:

Object o = new C(...);
if (new C(...).equals(o)) {...}

does not call the user’s equals method, but the one in the Ob-
ject class, probably causing unexpected behaviour. In an imagi-
nary language where the methods were treated as multimethods,
C.equals(C) would override C.equals(Object) which would
in turn override Object.equals(Object), and the behaviour that
was probably expected would take place. Instead, in Java, one must
(and must remember to) write custom dispatch code, such as:

class C {
...
public boolean equals(Object otherObject)
{

if (!(otherObject instanceof C))
return false;

C other = (C)otherObject;
...

}
}

This code is noticeably more verbose and error-prone than the
multimethod version.

The Visitor design pattern [GHJV94] is a way to simulate dou-
ble dispatch (i.e., multimethods on only the class parameter and
one explicit parameter) in an Object-oriented language with only
regular polymorphic dispatch. Multimethods obviate the need for
visitors, and are also more general than visitors, since they can dis-
patch on more than two parameters.

2.2.2 Predicate Dispatch
The notion of multimethods was further generalized, and formal-
ized as predicate dispatch, in [EKC98]. In predicate dispatch, any
arbitrary predicate can be used to choose the method to call. The
idea is that a boolean condition is added to a method definition,
and when the condition evaluates to true (at the time of a method
call), that method is called. If a method A’s condition implies B’s
(where A and B have the same name and argument types but dif-
ferent boolean conditions), then A is said to override B.

While predicate dispatch is an excellent aid in understanding
and motivating various forms of dispatch, we would like to pro-
vide the common programmer with a language feature that is less
powerful but easier to use. In particular, it is cumbersome to ex-
tract the internals of objects when using general predicate dispatch,
involving dereferencing and comparisons in the boolean predicate.
Perhaps more importantly, doing so requires the data members of
objects to be exposed, which violates encapsulation.

Another tradeoff that full predicate dispatch necessarily makes
is that few safety guarantees can be made at compile-time. If the
boolean predicates can contain arbitrary code, it is impossible for
the compiler to tell, in general, whether one condition implies an-
other. Hence, it cannot ensure that there will not be multiple meth-
ods applicable to a call, which leads to crashes or unexpected be-
haviour at run-time. Hence, while predicate dispatch is by defi-
nition the most powerful form of dispatch, we believe there is a
“sweet spot” somewhere between it and multimethods, which is
less error-prone and can resolve many of these ambiguities in a
known, practical way.

3. Using OOMatch - Informal Description
3.1 Pattern Matching
We introduce OOMatch using a simple example. Suppose one
is writing the optimizer component of a compiler, and wants to
write code to simplify arithmetic expressions. Suppose the Abstract
Syntax Tree (AST) is represented as a class hierarchy (a natural
way to represent an AST), as follows.

//Arithmetic expressions
abstract class Expr { ... }

//Binary operators
class Binop extends Expr { ... }

//’+’ operator
class Plus extends Binop { ... }

//Numeric constants
class NumConst extends Expr { ... }

//Integer constants
class IntConst extends NumConst { ... }

Then part of the functionality to simplify expressions could be
implemented using OOMatch as the following set of methods:

//do nothing by default
Expr optimize(Expr e) { return e; }

//Anything + 0 is itself
Expr optimize(Plus(Expr e, NumConst(0)))
{ return e; }

//Constant folding
Expr optimize(Binop(NumConst c1,

NumConst c2) op)
{ return op.eval(c1, c2); }

These methods are matching appropriate types of expressions
and applying optimizations when possible. Each method specifies
an optimization rule. The latter two methods, which also have one
parameter each, specify patterns to break down or “deconstruct”
that parameter into its components, which are matched against the
argument passed to optimize. The second method, for example,
takes a parameter of type Plus and breaks it into two parts (the two
operands of the “+” operator), Expr e and NumConst(0). That
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method only applies, then, when the argument is of type Plus,
and the operands match these two patterns. We assume that all
operands are of type Expr, so the first operand always matches,
while the second one apparently matches when the other operand
is a numeric constant with the value 0. Note that, to be able to
write the patterns shown, the classes being matched against (Plus,
Binop, and NumConst in this case) require support to allow them to
be matched. The way this support is provided is described shortly,
in Section 3.2.

The key point to notice in the above example is that the second
method overrides the first, since its pattern is more specific (because
Plus extends Expr), and the third also overrides the first since
Binop extends Expr. Note that the order in which the methods
appear does not affect these override relationships.

The 0 in the second method means that the pattern is only
matched when the numeric constant’s value is 0. The named vari-
ables in the patterns are given the value that is matched, so that this
value can be used by referring to the declared name in the method
body.

The entire object represented by a pattern can be given a name.
In the example above, the Binop in the third method is given the
name “op” so that the matched object can be referred to in the
method.

Patterns can of course themselves contain patterns (as is shown
in the second method above), and can indeed be nested to an
arbitrary depth. The most specific match is always chosen first. So,
for example, we could add another method with signature

Expr optimize(Binop(IntConst c1, IntConst c2))

This new method overrides the third one, because the pattern type
is the same but the subpatterns are more specific.

Note that OOMatch introduces the potential for new kinds of er-
rors. In fact, the above code contains such an instance. If optimize
is passed an expression like 1 + 0, the second and third methods
both apply, because this expression is both adding 0 to an expres-
sion and performing an operation on two constants. However, it
cannot be said that either of these methods overrides the other, be-
cause there are cases where the second applies and the third does
not, and vice versa. This is called an ambiguity error — it is pos-
sible for more than one method to apply, but neither is necessarily
more specific than the other. Normally, this results in a compile er-
ror, though there are cases where the compiler cannot detect ambi-
guity errors, as we shall see later. In this case, the problem could be
resolved by adding a fourth method which handles the intersecting
case:

Expr optimize(Plus(NumConst e, NumConst(0)))
{ return e; }

The other new kind of error that can be present in an OOMatch
program is when no method can be found for a call site: this is
called a no-such-method error. Normally, the compiler prevents
these by requiring that all methods with patterns override a method
with only regular Java formals, either in the same class or a super-
class. In this way, the regular Java method can always be called as
a last resort.

For example, consider the following method:

void f(NumConst(0)) { ... }

If this method appeared alone, it would result in an incomplete er-
ror, because the case NumConst(1) (among others) is not handled.

However, sometimes the programmer either does not care about
this assurance or wants to use patterns as a form of preconditions
(as in the D programming language [D], for example), requiring
that the arguments to a method have a certain form and giving

a runtime error if they do not. For these cases, OOMatch allows
methods to be labelled with the keyword inc, for incomplete.
A method labelled inc will not cause a compile error if it does
not override anything, but might cause a no-such-method error at
runtime.

The two errors are of type java.lang.Error when thrown.
Catching and handling them is possible, but is usually considered
bad style.

3.2 Deconstructors
To allow the specification of patterns on objects, as in the previous
section, their classes must provide a means of deconstructing said
objects. There are two ways of doing so in OOMatch. The first
way, described next, is simplest but allows little control; the second
option allows the class writer much greater control over access to
the class.

In OOMatch, instance variables can be declared within con-
structor parameters:

class Binop {
public Binop(public Expr e1,

public Expr e2)
{ ... }
...

}

Adding the public access specifier to a parameter has three
effects:

• The variable becomes a public instance variable of the class.
If there already is an instance variable of that name, a duplicate
definition error occurs. The specifiers private and protected
have similar effects; the generated instance variable is given the
access permissions given by the specifier.

• The argument passed to the constructor is assigned to the in-
stance variable. This assignment happens at the end of the con-
structor body.

• A deconstructor is created that allows the object to be pattern-
matched in a pattern that corresponds to the way it was con-
structed. Constructor parameters with any access specifier be-
come deconstructor parameters.

If there are multiple constructors with the same instance vari-
ables declared as parameters, no error occurs; they each construct
the same variable. Likewise, it is no problem to have two con-
structors with different instance variables; all parameters become
instance variables, but automatic assignments only take place for
the constructor that is called.

Deconstructing an object means that certain components of the
object are being “returned”, and then matched against. So for

Expr optimize(Binop(NumConst c1,
NumConst c2) op)

the instance variables e1 and e2 are extracted from the Binop
argument, and if they are both instances of NumConst, they are
assigned, by reference, to the variables c1 and c2.

The above syntax is convenient and intuitive because objects
can be deconstructed in the same way they were constructed. More-
over, even in the absence of pattern matching, the ability to write
both instance variables and constructor parameters all at once pro-
vides a handy shortcut for writing quick-and-dirty classes for which
access is not important. But in large object-oriented systems, it is
crucial that programmers are able to restrict access to data mem-
bers. Hence, the more general and powerful notion of a deconstruc-
tor, described next, is provided.
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An equivalent way to write the Binop class in OOMatch is as
follows.

class Binop {
public Expr e1, e2;
public Binop(Expr e1, Expr e2) {

this.e1 = e1;
this.e2 = e2;
...

}
deconstructor Binop(Expr e1, Expr e2)
{

e1 = this.e1;
e2 = this.e2;
return true;

}
...

}

A deconstructor breaks down this into components, and re-
turns them to be matched against. But rather than returning said
components in the return value, its parameters are “out” parame-
ters, each one representing a component. The deconstructor must
assign each of them a value on each possible path through its body;
they have no defined values at the beginning of the body. This rule
is enforced conservatively with the same analysis that Java uses
to enforce initialization of variables. Aside from these restrictions,
any arbitrary code may appear in a deconstructor, and any values
of type Expr can be returned in the parameters e1 and e2 in the ex-
ample above. This way class writers can restrict access to instance
variables (by making them private, etc.), while still being able to
use them in pattern matching.

A deconstructor must always return a boolean value, which in-
dicates whether the match was successful. This allows even pat-
terns that would otherwise match to fail (by returning false) under
certain arbitrary conditions, such as the state of the object. For ex-
ample, perhaps one wants to prevent matching a file object when
the file has not been opened yet.

Of course, in a real-world application, the instance variables
above would probably be private and accessed using accessor meth-
ods. Indeed, this is exactly what deconstructors allow one to do.

Note that the (perhaps confusing) syntactic notation of decon-
structors returning their values in “out” parameters is necessary be-
cause Java lacks multiple return values. A more elegant, and under-
standable to the user, syntax would be for deconstructors to return
a tuple of values, which supposedly represent the components of
this. Any method which takes no parameters and returns a tuple
could then be used as a deconstructor. This approach was taken by
Scala’s extractors [EOW07], for example.

In general, method headers in OOMatch can contain regular
formal parameters, or patterns. Patterns can contain literal primitive
values (including string literals), but there is no way to put literal
objects in a pattern. In other words, one cannot specify a “new”
expression in a parameter to match against. They can, however,
provide a deconstructor for the object and specify a specific object
as a pattern with specific subcomponents. Also note that literals can
appear by themselves, in place of regular parameters. For example,
the following pair of methods is allowed (and is potentially useful):

void f(int x) { ... }
void f(0) { ... }

The second method above overrides the first.
Note also that a deconstructor can be given any name, not just

the name of the class. If given a name other than the name of the
class, any references to the deconstructor must be prefixed with the
class name, as in:

Expr optimize(Expr.my_deconstructor(
NumConst c1, NumConst c2))

{ ... }

From the point of view of the OOMatch compiler, referring
to a deconstructor as X.Y is the desugared form, and means that
a deconstructor named Y is looked up in the class X or its su-
perclasses. When a deconstructor is referred to as simply X, the
compiler first looks for a deconstructor X in the class X; if none
is found, it looks in the superclass of X for a deconstructor with
the name of the superclass, and so on for each superclass. Hence,
the expression Plus(Expr e, NumConst(0)) seen earlier could
be short for Plus.Binop(Expr e, NumConst(0)) - meaning a
value of type Plus deconstructed with a deconstructor in its super-
class, Binop - if the class Plus does not have a deconstructor of
its own. This syntactic sugar is meant to coincide with the syntactic
sugar for combined constructor-deconstructor, so that simply spec-
ifying the deconstructor as Plus is saying, “deconstruct an object
of type Plus”.

3.3 Order of Deconstructors
When determining which method applies to a method call, decon-
structors must sometimes be called. The order in which they are
called is left unspecified. This choice was made to free implementa-
tions to do optimizations that may require certain implementations
of the dispatch algorithm. Further, implementations may choose not
to run the deconstructor for a given pattern, as long as the required
dispatch semantics are preserved. However, we do make the re-
quirement that, for a given method call, a deconstructor is run at
most once for each reference to it.

Because deconstructors are not intended to have side effects,
it is not normally useful to write code which depends on the de-
constructors that are called and the order in which they are called.
Hence, this implementation-defined behaviour was deemed more
desirable than explicitly-defined behaviour, because it increases the
potential for optimizations.

3.4 Null
Null parameters introduce some interesting cases. First, null literals
override any formal parameter of class type. Suppose there are two
classes A and B, unrelated by inheritance, and this class:

class C {
void f(A a) { ... }
void f(B b) { ... }
void f(null) { ... }

}

The third method overrides both the others. There is no way
to specify that one is matching only null values of a particular
static type; syntax to allow this could be a possible future addition.
Otherwise, null is doing nothing special here; since null is a
value of all class types, it overrides all methods with a single
parameter of class type, as expected.

Another trickier issue with null is that it cannot be decon-
structed. Given the Binop deconstructor from Section 3.2, one
might expect the following lone method to present no problems,
as it handles every Binop object:

class C {
inc void f(Binop(Expr e1, Expr e2))
{ ... }

}

But unlike a method that takes a single parameter of type Binop,
this one cannot be passed the value null, because null cannot be
deconstructed. If this is attempted, a run-time error occurs.
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3.5 Undecidable Errors
Though the compiler can detect many of the new ambiguity and
no-such-method errors statically, finding all of them is undecid-
able. Rather than restricting the language and disallowing certain
programs that make sense, we have chosen to throw an exception
at run-time when the ambiguities described here occur.

3.5.1 Interfaces
The first potential cause of ambiguity is caused by multiple inheri-
tance, which is partially allowed in Java for interfaces.

void f(A a) { ... }
void f(B b) { ... }

where A and B are interfaces that are not related at all. Despite this
being entirely valid Java, the compiler cannot guarantee that this
program is free from ambiguity errors, because it might happen that
there is a class C which implements both A and B, and if an object
of type C is passed to f, OOMatch does not know which version
to call. It is not possible to tell whether such a C exists at compile
time; not only does separate compilation preclude knowledge of all
the subclasses of A and B, but dynamic class loading means that
knowing what classes will be present at the time of a call to f is, in
general, undecidable.

To fix this problem when it arises, a programmer can simply use
a cast to disambiguate the method call:

C o;
...
f((A)o);

This causes f(A) to be chosen and f(B) to be removed from
consideration. It works because dispatch requires the argument to
be either a subclass or a superclass of the parameter type for the
method to be chosen, and A is neither a subtype nor supertype of B.

3.5.2 Different deconstructors
The next type of ambiguity can occur when there is a pair of
methods that could be called from a call site, and a corresponding
parameter is referring to a different deconstructor in each method.
For example, let us take the Binop class from before and add an
extra deconstructor to it:

class Binop {
...
deconstructor Binop(Expr e1, Expr e2)
{ ... }
deconstructor Binop2(Expr e1, Expr e2)
{ ... }

}

Now suppose we have a set of methods that matches on both of
them:

class C {
void f(Binop(Expr e1, Expr e2)) { ... }
void f(Binop.Binop2(Expr e1, Expr e2)) { ... }

}

Since both patterns appear to match every Binop, it may at first
appear that this is clearly an ambiguity, or even a duplicate method
definition. But in fact it is not necessarily so. Since deconstructors
can run arbitrary code and return true or false depending on
whether they match, it is quite possible for the programmer to
ensure that they match only in a mutually exclusive manner. For
example, the Binop class could keep track of a boolean flag and
only match one deconstructor when it is true, and the other when

it is false. But the compiler cannot decidably determine whether
they will both match in some cases. So, to ensure that it allows all
programs that make sense, we have decided to wait until run-time
to give the error in this case.

Note that it makes no difference whether the pattern contains
constants in its parameters or not, or whether one pattern appears
to be more specific than the other. Since the deconstructors may be
returning completely different values, (there is no rule forcing them
to return instance variables of the class, for example) the compiler
can say nothing about whether both methods always apply simulta-
neously, whether they are mutually exclusive, or whether one over-
rides the other. Hence, it assumes they are mutually exclusive, and
a run-time error occurs if this turns out not to be so.

3.5.3 Non-deterministic deconstructors
Finally, because deconstructors can return any values, problems
can arise if they return different values on different invocations.
Consider the following pair of methods which use the class Point
described above:

class C {
void f(Point(0, 0)) { ... }
void f(Point(1, 1)) { ... }

}

It may appear that these methods are clearly mutually exclusive.
But in fact, nothing prevents the deconstructor for Point from
being implemented like so:

deconstructor Point(int x, int y) {
Random r = new Random();
//Randomly return either 0 or 1
//for each of x and y
x = r.nextInt(2);
y = r.nextInt(2);

}

In this case, it is quite possible that on the first invocation of the
deconstructor, two zeroes are returned, and on the second invoca-
tion, two ones are returned, which makes both methods match. In
general, a deconstructor should have no side effects, and always re-
turn the same set of values given the same objects. Again, the com-
piler cannot determine, in general, whether this is so. In a language
with special methods that are not allowed to modify any variables
other than those declared in its body, this would become easier. This
property could be assured with the help of immutability checking,
such as that found in Javari [TE05]. However, due to its complexity,
it has been left as future work.

This kind of non-deterministic behaviour is, of course, not very
useful in a pattern matching context, and is, hence, relatively easy
to avoid; on the other hand, such problems, if they are somehow
introduced, could potentially be very difficult to find and debug.
On the plus side, this problem, as well as the other two mentioned
in this section, could be found with a static program analysis in
many cases.

4. Formal Specification
4.1 Syntax
We present the core (desugared) syntax of OOMatch by making
two modifications to the Java grammar from Chapters 3 and 8 of
the Java Language Specification, second edition [GJSB96]. In this
section, we show differences from the Java grammar in bold.

OOMatch adds deconstructors as a new kind of class member:

ClassMemberDeclaration ::= FieldDeclaration
| MethodDeclaration
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| ClassDeclaration
| InterfaceDeclaration
| deconstructor

deconstructor ::= deconstructor Identifier
( FormalParameterListopt ) MethodBody

In addition to formal parameters as in Java, OOMatch allows
methods to have two new kinds of parameters: literals and patterns.

MethodHeader ::= MethodModifiersopt ResultType
MethodDeclarator Throwsopt

MethodDeclarator ::= Identifier ( OOMatchParameterListopt )
OOMatchParameterList ::= OOMatchParameter

| OOMatchParameterList , OOMatchParameter
OOMatchParameter ::= FormalParameter

| Literal
| Pattern

Pattern ::= Type . Identifier ( OOMatchParameterListopt )

Because in Java, the floating point literals -0.0 and 0.0 are
considered equal, as are the integer literals -0 and 0, OOMatch
considers them the same literal. For example, the method signature
void m(0.0) is considered to be the same as void m(-0.0).

4.2 Notation and Definitions
Throughout this section, we will use the following abbreviations
for OOMatch entities.

• F [T ] represents a Java formal parameter of type T .
• C[v, T ] represents an OOMatch literal parameter with Java

literal value v and type T .

• P [Tr, n, ~Tp] represents an OOMatch pattern with type Tr ,
name n, and parameter types ~Tp.

• D[n, ~Tp] represents a deconstructor with name n and out-
parameter types ~Tp.

• M [Tr, n, ~Tp, ~Tt] represents a method with return type Tr , name
n, parameter types ~Tp, and declared throw types ~Tt.

We explicitly define a subtyping relation that corresponds to
the assignability rules defined in the Java Language Specifica-
tion [GJSB96].

DEFINITION 4.1. The subtyping relation <: is the smallest transi-
tive and reflexive relation satisfying the following:

1. T <: T ′ if T and T ′ are classes or interfaces and T extends or
implements T ′.

2. null <: T if T is a class, interface, or array type.
3. byte <: short <: int <: long <: float <: double, and

char <: int.
4. For array types, A[] <: B[] if A <: B.
5. T <: Object for all class, interface, and array types T .
6. T [] <: Cloneable and T [] <: java.io.Serializable for

all array types T [].

The following lemma is important to ensure that our notion of
parameter preference (below) does not contain cycles.

LEMMA 4.1. 1 Subtyping is a partial order.

1 Proofs of all lemmas and claims can be found in the companion the-
sis [Ric07].

4.3 Deconstructor Binding
At compile time, every pattern appearing in the program is stati-
cally bound to a fixed deconstructor, which will be used to evaluate
the pattern. To specify which deconstructor is to be used for a given
pattern, we first define the type of a parameter as follows:

type(F [T ]) = T

type(C[v, T ]) = T

type(P [T, n, ~p]) = T

Then, a deconstructor D[n1, ~T1] is eligible for a pattern P [T2, n2, ~p2]
if

• The deconstructor is in T2 or one of its supertypes
• they have the same name (n1 = n2),

• they have the same number of parameters (| ~T1| = | ~p2|), and
• the type of every parameter of the pattern is a subtype of the

corresponding parameter of the deconstructor (∀i.type(p2i) <:
T1i).

A deconstructor D[n, ~T ] is more specific than D′[n′, ~T ′] if every
parameter of D is a subtype of the corresponding parameter of D′

(∀i.Ti <: T ′
i ).

The deconstructor bound to a given pattern must be eligible for
the pattern, and it must be more specific than every deconstructor
eligible for the pattern. A compile-time error is generated when
these conditions are not satisfied by any deconstructor.

4.4 Method Invocation
We now specify how OOMatch determines, at a given call site
and with specific runtime arguments, which method to invoke. We
break the specification into three parts. First, we define a set of
methods that are applicable, in that they could be invoked provided
no “more specific” method is available. Second, we define a partial
order on the set of applicable methods to decide which methods
shall be preferred over others. Finally, we use these definitions to
specify how OOMatch selects the method to be executed.

4.4.1 Applicable methods

The predicate applicable(M [Tr, nM , ~p, ~Tt], n,~a) is defined on a
method with return type Tr , name nM , parameters ~p, and throwing
types ~Tt; the name n of the method to be invoked at a call; and
a list of argument values ~a. The predicate is true when all of the
following conditions hold:

1. The name of the method matches the name at the call site:
nM = n.

2. The number of arguments and number of parameters are equal:
|~a| = |~p|.

3. Each argument is admissible for its corresponding parameter:
∀i.admissible(ai, pi). Admissibility is a generalization of the
Java guarantee that a method with a given parameter type is
only called with arguments that are instances of that type. The
admissibility condition is made precise below.

The predicate admissible(a, p) is defined on an argument a of
statically declared type Ts and run-time type Td, and a parameter
p. Recall that an OOMatch parameter can be a Java formal, a Java
literal, or a pattern.

1. When p is a Java formal and when a is not null, admissibility is
determined as in Java: a is admissible if in Java it is method in-
vocation convertible [GJSB96, Section 5.3] to the type declared
for p. When a is null, it is admissible if its statically declared
type Ts is a subtype of the type declared for p.
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2. When p is a literal l, a is admissible exactly when it is equal to l.
For string literals, equality is defined as l.equals(a) returning
true; for all other literals, equality is defined as the Java ==
operator.

3. When p is a pattern P [Tr, n, ~p] with type Tr , name n, and pa-
rameters ~p, OOMatch first checks whether the runtime type Td

of a is a subtype of Tr . If it is not, then a is not admissible.
If it is, then determining whether a is admissible requires ex-
ecuting a deconstructor. The deconstructor to be executed for
any given pattern is fixed at compile time, using the procedure
described in Section 4.3. Executing the deconstructor produces
a boolean success value, and one value for each parameter in
~p. If the success value is false, a is not admissible. If the suc-
cess value is true, each value produced by the deconstructor is
(recursively) tested for admissibility against its corresponding
parameter in ~p. The argument a is admissible if all of the values
are admissible.
If a is null and p is a pattern, a is never admissible, and the
deconstructor is not executed.

Also, there is an additional exception to the above rules: if the
static type of the argument a is neither a subtype nor a supertype
of the type of the parameter (either the type of the formal or, in the
case of patterns, the type preceding the deconstructor), then a is
never admissible. This exception allows programmers to use cast-
ing to resolve ambiguities, as mentioned at the end of Section 3.5.1.

4.4.2 Preferred Methods
We now define the preference preorder ≺M between methods,
which is used to determine which of a set of applicable methods
shall be invoked. The order is defined in terms of an analogous
order ≺P on method parameters. For two methods m, m′ with
parameter lists ~p, ~p′, m is preferred over m′, denoted m ≺M m′,
when one of the following conditions holds:

1. m is in a subclass of m′, or

2. m and m′ are in the same class, have the same number of pa-
rameters, and each parameter from ~p is preferred to the corre-
sponding parameter from ~p′: ∀i.pi ≺P p′

i.

The parameter preference relation ≺P is defined inductively as
the smallest preorder satisfying the following:

1. F [T1] ≺P F [T2] whenever T1 <: T2.

2. C[v, ] ≺P F [T ] whenever the Java expression (T) v == v
evaluates to true.

3. C[v1, T1] ≺P C[v2, T2] if the Java expression v1 == v2 eval-
uates to true, and T1 <: T2, where T1 and T2 are the types of
the literals v1 and v2.

4. P [T1, n, ~p] ≺P F [T2] when T1 <: T2.

5. P [T1, n1, ~p1] ≺P P [T2, n2, ~p2] when T1 <: T2, both patterns
are associated with the same deconstructor, and ∀i.p1i ≺P p2i.

The following lemma is part of ensuring that our notion of
parameter preference is a preorder, which is needed in our proof
of safety (found in the companion thesis [Ric07]).

LEMMA 4.2. The parameter preference relation ≺P is antisym-
metric.

4.4.3 Overall Method Dispatch
To select the method to be invoked for a given call, OOMatch
considers all methods in the runtime class of the receiver object
and all its superclasses. The method to be invoked for a given call
must be applicable for the call, and it must be preferred over all

other methods applicable for the call. When exactly one method
satisfies these conditions, the method is invoked. Because ≺M

is antisymmetric, it is not possible for more than one method to
satisfy the conditions. When no method satisfies the conditions,
a runtime error occurs. This can occur if the set of applicable
methods is empty (a “no such method” error), or if none of the
applicable methods is preferred over all the others (an ambiguity
error). In Section 4.6.4, we will present a set of static conditions
that guarantee that these runtime errors will not occur.

4.5 Compile-time checks
In this section, we specify properties that the OOMatch compiler
checks statically to reduce the number of errors that can occur at
runtime. We begin by defining the notion of parameter intersection,
which is used in the static checks.

4.5.1 Parameter Intersection
Intuitively, one of the conditions that we would like to hold is that
when two methods are both applicable for a call, it will be possible
to find a preferred method for the call. For this reason, we define the
notion of intersection, a partial function from a pair of parameters
to a parameter. We would like intersection to have the following
properties:

1. Whenever it is possible for both m1 and m2 to be applicable for
the same call, the intersections of their corresponding parame-
ters should all be defined, and a method m3 with those intersec-
tions as its parameters should also be applicable for the same
call (provided its deconstructors do not return false or null).

2. Whenever the intersection p3 of two parameters p1 and p2 is
defined, it should be preferred over both of them: p3 ≺P p1

and p3 ≺P p2.

Thus, loosely, as long as an OOMatch program contains the inter-
section of every pair of methods for which intersection is defined, it
will not encounter a run-time ambiguity between any pair of meth-
ods. We will formalize this property in Section 4.6.4.

We now define a concrete parameter intersection function which
we claim satisfies the above properties.

DEFINITION 4.2. Several cases of the parameter intersection func-
tion u are shown in Table 1. The function is defined to be symmet-
ric; thus, the blank entries in the table correspond to entries oppo-
site the diagonal.

The intersection of two patterns is the most complicated case.
Let α = P [θα, nα, ~Pα] and β = P [θβ , nβ , ~Pβ ]. Then the intersec-
tion α u β is determined by the following steps:

1. If α and β correspond to different statically determined decon-
structors, their intersection is undefined. Otherwise, proceed to
the next step.

2. Define θ as follows. If θ1 <: θ2, then θ = θ1. If θ2 <: θ1, then
θ = θ2. If neither of these holds, αuβ is undefined. Otherwise,
proceed to the next step.

3. If | ~Pα| 6= | ~Pβ |, then α u β is undefined. Otherwise, proceed to
the next step.

4. If for any i, Pαi u Pβi is undefined, then α u β is undefined.
Otherwise, proceed to the next step.

5. αuβ is defined to be P [θ, nα, ~Pαu ~Pβ ], where ~αu ~β is defined
as a list of the pairwise intersection of each element in ~α and
~β.

4.5.2 Conditions to be checked statically
We now define the conditions under which a class with its set of
methods is considered valid or well-formed. Consider a class C,
which is valid by the Java rules, and let MC be the set of methods
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u α = F [θ1] α = C[v1, θ1] α = P [θ1, n, ~Pα]

β = F [θ2]
α if θ1 <: θ2

β if θ2 <: θ1

undefined otherwise

β = C[v2, θ2]
β if (θ1)v1==v2

undefined otherwise

α if v1==v2

and θ1 <: θ2

β if v1==v2

and θ2 <: θ1

undefined otherwise

β = P [θ2, n2, ~Pβ ]

β if θ2 <: θ1

P [θ1, n2, ~Pβ ] if θ1 <: θ2

and θ2 6<: θ1

undefined otherwise

undefined see Def 4.2

Table 1. Partial function u (parameter intersection)

in C. All of the following conditions must hold in order for the
class to be accepted by the OOMatch compiler.

CONDITION 4.1. Unambiguity: For any pair of methods such that
neither is preferred to the other and the intersection of their param-
eter lists is defined, there is some method in C whose parameter list
is exactly that intersection. That is, ∀m1 = M [θ1, n, ~φ1, ~θT1], m2 =

M [θ2, n, ~φ2, ~θT2] ∈ MC , if ~φ1 u ~φ2 is defined, and m1 6≺M m2,
and m2 6≺M m1, then ∃M [θ3, n, ~φ1 u ~φ2, ~θT3] ∈ MC .

CONDITION 4.2. Valid method calls: For each method call site in
the program on a receiver of static type C, there is some method
m = M [Tr, n, ~p, ~Tt] implemented in C or its superclasses such
that the static types of the argument to the call are subtypes of the
Java types of ~p, as defined by the type function in Section 4.3.

CONDITION 4.3. Completeness: This condition is used to prevent
no-such-method errors, unless the programmer overrides it by la-
belling methods inc (see Section 3.1). Every method m in a class
C that contains patterns must be preferred over another method in
C or a superclass of C that contains only Java formal parameters,
or m must be labelled inc.

In functional languages, ambiguity is resolved by the lexical
order of the patterns, and completeness is ensured by statically
checking that all cases of any variant types have been handled.
With classes, it is not possible to statically check all cases, because
the complete set of subclasses of a base class is not known to the
compiler. Scala [OAC+06] allows completeness checking by al-
lowing the programmer to fix all subclasses of a class by declaring
it sealed.

The next two conditions are meant to ensure that if two methods
might simultaneously apply, their return types and throws clauses
must be compatible. This requirement enables us to know, given
a call site, what type of value is returned and what exceptions the
method throws. First, we need to formally define what it means for
it to be possible for two methods to simultaneously apply.

DEFINITION 4.3. can-both-apply(m1, m2) is a predicate on two
methods m1 = M [θ1, n1, ~α, ~θT1] and m2 = M [θ2, n2, ~β, ~θT2],
in the same class or in a subclass or superclass. It is true if and
only if all of the following hold:

• n1 = n2 (Same names.)
• |~α| = |~β| (Same number of parameters.)
• ∀i, either αi u βi is defined, or both of these conditions hold:

αi and βi are both reference types or pattern types, and
One of αi and βi is an interface, or type(αi) <: type(βi),
or type(βi) <: type(αi).

CONDITION 4.4. Valid return types: For any pair of methods
m1, m2 such that can-both-apply(m1, m2), their return types must
be the same.

CONDITION 4.5. Valid “throws” clauses: For any pair of methods
m1, m2 such that can-both-apply(m1, m2), their throw types must
be the same, with one exception. If one of the methods is preferred
to the other (without loss of generality assume m1 ≺ m2), and
m1 and m2 both have only regular Java parameters (no patterns,
literal values, or “where” clause), then the throw types for m1

need only be a subset of the throw types of m2. (This exception
is important for backward compatibility with Java.)

CONDITION 4.6. No duplicate methods: For any two methods
m1 = M [θ1, n, ~α, ~θT1],

m2 = M [θ2, n, ~β, ~θT2] ∈ MC , it is not the case that all the
parameters are equal; i.e. there is some i such that αi 6= βi. (Un-
less at least one method has a “where” clause, in which case this
condition does not apply.)

Note that the conditions given here apply only to OOMatch
code. There are special rules in place when an OOMatch class
extends a regular Java class, which are discussed in the thesis
[Ric07].

4.6 Absence of runtime ambiguities
In addition to the conditions above, which are checked by the com-
piler and must hold in order for an OOMatch program to compile,
we define the following optional conditions. If an OOMatch pro-
gram satisfies these conditions, every call resolves to some method
(i.e., no method ambiguity errors can occur).

4.6.1 Undecidable equivalence
An undecidable equivalence is a formalization of the problem men-
tioned in Section 3.5, when two methods have a corresponding pa-
rameter that use different deconstructors that are deconstructing re-
lated types. Formally:

DEFINITION 4.4. undecidable-equivalence is a predicate on pairs
of OOMatch parameters. undecidable-equivalence(α, β) is true if
and only if α = P [θ1, n, ~φ1] and β = P [θ2, n2, ~φ2], where
deconstructor(α) 6= deconstructor(β), and either θ1 <: θ2 or
θ2 <: θ1.

DEFINITION 4.5. undecidable-equivalence-list is a predicate on
pairs of lists of parameters. undecidable-equivalence(~α, ~β) is true
if and only if |~α| = |~β| and there exists i such that either:

• undecidable-equivalence(αi, βi) or
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• αi = P [θ1, n, ~φ1] and βi = P [θ2, n2, ~φ2] and
deconstructor(αi) = deconstructor(βi) and
undecidable-equivalence-list(~φ1, ~φ2).

4.6.2 Common descendent
We need to formalize the notion of a pair of parameters where there
is a type that is a subtype of both of them; this is one way in which
a run-time ambiguity could occur. We define common-descendent
to be a predicate on a pair of parameters as follows.

DEFINITION 4.6. common-descendent(α, β) is defined for a pair
of parameters unrelated by subtyping, i.e. when neither type(α) <:
type(β) nor type(β) <: type(α). It is true of if and only if the
program contains a class θ distinct from α and β such that θ <:
type(α) and θ <: type(β).

Now we define a function used to determine whether there is an
instance of common-descendent within the parameters of a pair of
methods.

DEFINITION 4.7. common-descendent-list(~α, ~β) is true if and
only if |~α| = |~β| and there exists i such that either:

• common-descendent(αi, βi), or
• αi = P [θα, nα, ~α′] and βi = P [θβ , nβ , ~β′] and

deconstructor(αi) = deconstructor(βi) and
common-descendent-list(~α′, ~β′).

CLAIM 4.1. Because Java disallows multiple inheritance,
common-descendent can only be true if at least one parameter
is an interface.

4.6.3 Deterministic deconstructors
We need to briefly define the notion of deconstructors being de-
terministic; all deconstructors should be so, though the compiler is
not required to check this because it is undecidable. Informally, it
means that a deconstructor always returns the same set of values for
a given object; i.e. it acts like a function. Formally, a deconstructor
is said to be deterministic if it does not modify the heap, and for
any object passed to it, it always returns the same values every time
it executes.

4.6.4 Claims of safety
Given the above notation and definitions, we can now make the
following claim for an OOMatch program that is well-formed, i.e.,
which has passed the typechecking described above and whose
classes are valid.

CLAIM 4.2. An ambiguity error cannot occur at runtime unless
one of the following conditions is true.

• common-descendent-list is true for the parameters of some pair
of methods with the same name.

• There is an undecidable equivalence between the parameter
lists of a pair of methods applicable at the same call site.

• Some deconstructor is not deterministic.

5. Use Case
Pattern matching as dispatch can improve code quality to some de-
gree in a wide range of application domains, but it becomes espe-
cially useful in an application with a deep class hierarchy where
a different operation must be chosen for each class in the hierar-
chy. This situation occurs in the AST of a compiler. To illustrate
this, we have rewritten a part of the Soot Java Optimization Frame-
work [Soo] to use OOMatch. Soot is used to transform Java byte-
code, and contains an AST to represent this bytecode. The class we

have rewritten uses Visitor traversal and manual pattern matching
to check whether a given portion of the AST has a certain form. In
Java, this must be done with if-else blocks, instanceof checks, and
casts to handle different cases for the sub-trees of the AST node
being processed.

In the OOMatch version, the need for visitors (which is the
source of a lot of boilerplate code within Soot) has been completely
eliminated and replaced by a single method call. The AST process-
ing code has been made significantly more readable as OOMatch
patterns, and the amount of explicit casting and run-time type
checks has been drastically reduced. Specifically, the OOMatch
version contains only 35 uses of instanceof, while the Java ver-
sion contains 121.

Details of this experiment can be found in the companion thesis
[Ric07].

6. Other Related Work
While Section 2 gave background work helpful in understanding
OOMatch, the following sections give several other pieces of re-
search that are related to OOMatch that are not essential to its un-
derstanding.

6.1 Scala
Scala [OAC+06], like OOMatch, is a language that attempts to
merge object-oriented and functional programming, roughly start-
ing with Java as a base. It contains a form of pattern matching called
case classes. A set of case classes is a class hierarchy which al-
lows objects in the hierarchy to be easily matched or deconstructed;
there is special syntax to make this convenient. To take the example
from [OAC+06]:

abstract class Term
case class Num(x : int) extends Term
case class Plus(left: Term, right : Term)

extends Term

Num and Plus here are each subclasses of, or “cases of”, Term.
Num, for example, can now be constructed by passing a single int
parameter to its constructor. Variables of type Term can then be
matched against in a special “match” expression, and Num.x can be
extracted back (deconstructed) when Num matches. For example:

Term x = ...;
x match {

case Plus(y, Num(0)) => y
case Plus(Num(0), y) => y
case _ => x

}

This code is a selection statements that tests whether x matches
each of the three patterns in turn; if one matches, it executes the
subsequent code and then finishes the match statement. Generally,
the code is simplifying x so that if it has the form y + 0 or 0 + y, it
is simplified to y.

Case classes are then similar to algebraic types, but more pow-
erful in that they can be used like regular classes.

Scala also has a feature called extractors, described in [EOW07],
which are similar to OOMatch deconstructors. These allow the ad-
dition of “apply” and “unapply” methods to a class, the latter of
which allow objects of the class to be decomposed, and their com-
ponents returned. Such objects can then be matched in a “match”
expression, as above, but in a controlled way.

Despite the similarities between Scala’s pattern matching and
OOMatch, Scala does not use pattern matching for method dis-
patch, but only a “match” construct that can appear inside a method
body. Cases in Scala match expressions are evaluated in the order in
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which they appear; unlike OOMatch, Scala does not automatically
prefer specific patterns over more general ones.

6.2 OCaml
Objective Caml [CMP07] is a language that combines object-
oriented and functional styles, in this case by adding classes and
objects to a functional language (ML). It contains regular ML pat-
tern matching with a “match” clause, which allows matching of
primitives, tuples, records, and union types.

Matching of record types can be seen as being very similar to
object matching, as OOMatch allows. Record types in OCaml are
simply tuples with names given to each element, where ordering
of elements is irrelevant. Matching a record type involves specify-
ing a pattern that can decompose these elements. However, OCaml
does not address the more difficult problem of decomposing an ob-
ject into components that the class writer specifies, or allowing hid-
ing of information as well as pattern matching on that information.
OCaml also does not provide multimethods or any other more gen-
eral form of dispatch on patterns in which precedence is determined
automatically by the compiler.

The F# dialect of OCaml has recently been extended with Ac-
tive Patterns [SNM07]. The definition of an active pattern is a func-
tion that takes an object and returns an element of a sum type (i.e.
tagged union). The active pattern function can contain arbitrary
code, and can therefore deconstruct the object being matched in ar-
bitrary ways, like an OOMatch deconstructor. The match construct
matches on the return value of the active pattern function. Active
patterns may be either total or partial. In a total pattern, all pos-
sible alternatives are specified in a single deconstruction function
that returns one alternative; in this case, completeness is checked
statically. A partial pattern is more similar to an OOMatch decon-
structor in that the matching code for each alternative appears in a
separate function, allowing new alternatives to be added. However,
completeness of partial patterns is not checked statically.

6.3 TOM
TOM [MRV03] is a language extension that allows decomposing
objects into their component parts and matching them with pat-
terns. It takes a multi-language perspective - the extension can be
used in Java, C, and Caml. In TOM, one constructs algebraic types,
which are entities that have a one-to-one correspondence with a
type in the target language (e.g. a Java class). One then provides
“functions” on these types to work with them, mapping calls to
these functions to code in the base language being used. Then,
one can match an algebraic type with a case-like construct (called
“%match”), allowing the pattern that matches to be selected and
used.

TOM only provides a case-like construct; matching is not used
to directly select one of several functions to execute. Its pattern
matching, however, works in much the same way as OOMatch’s
pattern matching, both involving the deconstructing of objects.
Further, TOM includes a way to match lists, which is a useful and
powerful feature that OOMatch does not (yet) include.

6.4 Views
Views [Wad87], like OOMatch, attempt to unite pattern matching
and data abstraction. A view lets one view a regular class type as
if it were a type on which pattern matching can be performed. It
converts between the view type and the underlying type with “in”
and “out” clauses. To take an example from the paper, the following
code defines a view for Peano integers, using the built-in integer
type as the underlying type:

view int ::= Zero | Succ int
in n = Zero, if n = 0

= Succ(n-1), if n > 0
out Zero = 0
out (Succ n) = n + 1

The “in” clause lets one construct new instances of these special
view types, like a Java constructor. The “out” clause gets informa-
tion out of the view type, or allows pattern matching on it, like
OOMatch deconstructors.

Using views, the only way to get information from an object is
by making reference to its declarative form – there are no accessor
methods like in Java. This may be fine for a functional language,
but in Java an object frequently contains information not found in
its interface, and there should be a way to get that information back
(safely). Also, there is no mention in [Wad87] of the order in which
functions with patterns are checked for applicability, or which func-
tions override which; presumably functions appearing first are con-
sidered to have priority. OOMatch, in contrast, determines override
relationships based on which method is more specific.

6.5 JMatch
JMatch [LM05] shares with OOMatch the attempt to add pattern
matching to Java. It allows patterns containing variable declarations
to appear in arbitrary expressions, and JMatch attempts to solve for
the variables and initialize them with the solved values. It hence
allows code very similar to that found in logic programming.

For example:

int x + 10 = 0;

would cause x to receive the value -10.
JMatch also allows iteration over a set of values when more than

one value satisfies an expression. For example:

int[] array;
...
foreach(array[int x] == 0)
{
...
}

would iterate through all cases of x such that array[x] == 0.
JMatch further allows the arguments of method calls to contain

patterns, if they are implemented in a special way. This is quite
similar to our special constructors that both construct and decon-
struct an object. To use an example from the JMatch paper [LM05],
a linked list that allows matching (commonly found in functional
programming) could be written in JMatch with a special “returns”
statement:

class List {
...
Object head;
List rest;
public List(Object head, List rest)

returns(head, rest)
( this.head = head && this.rest = rest )

}

The expression in brackets following the “returns” statement
specifies a condition that JMatch uses both in construction and de-
construction of the object. In either case, it finds a set of substi-
tutions that make the boolean expression true. When the special
constructor is used simply as a constructor, the values head and
tail are known, and it tries to find a substitution for the values
this.head and this.tail that make the expression true, assign-
ing the resulting values to those fields. The “returns” clause is ig-
nored for construction.
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For deconstruction of the object, the instance variables this.head
and this.tail are known, and JMatch calculates what head and
tail must be to cause the condition to be true. The “returns”
clause specifies which of these components, that have now been
calculated, to return as components of the object for matching. A
pattern that matches one of these Lists might look like this:

switch(l)
{

case List(Integer x, List rest): ...
}

This code would match a list of at least size 1 where the first
element is an Integer. Note that the components of the “returns”
clause correspond to the free variables Integer x and List rest
in the pattern.

JMatch’s pattern matching is more powerful than that in OOMatch
(since it can appear in any expression), but it does not use pattern
matching as a form of dispatch, and so does not consider the prob-
lem of which patterns are more specific.

6.6 JPred
JPred [Mil04] adds a powerful form of predicate dispatch to Java. It
uses a general “when” clause to dispatch on boolean and arithmetic
expressions involving the parameters, much like general predicate
dispatch. To make it easier to compute the override relationships,
JPred restricts the predicates that can appear in a “when” clause
to a decidable (though still very powerful) subset, allowing only
primitive values, parameter references, subtype queries (allowing
for multimethods), field references and built-in operators. The most
noteworthy restriction here is that arbitrary method calls cannot ap-
pear in “when” clauses. It then uses an external decision procedure
– namely, CVC Lite [CVC] – to determine which methods override
which.

The original version of JPred disallowed Java interfaces from
being matched in order to achieve proof that typechecking can
find all ambiguity errors at compile time. Recently this restriction
has been dropped (while retaining the type safety) [FM06], though
programmers are required to write methods to resolve the potential
ambiguities when interfaces are used. A syntactic sugar is provided
to make this easier. We cannot take this approach, as it requires
more general predicate dispatch than OOMatch has. As we shall
see later, we instead allow interfaces to be matched at the cost of a
run-time check for some of these ambiguity errors.

6.7 Match0
Pattern matching on objects has been attempted as a Java library
API, as opposed to a language extension [Vis06]. The advantage
of having a pure Java implementation obviously comes at the cost
of increased verbosity from the programmer’s perspective; we con-
sider this cost too great and find it worthwhile to provide special
syntax for pattern matching.

6.8 Maya
Maya [BH02] is a domain-specific language for specifying rewrit-
ing rules on abstract syntax trees. It is intended for building Java
language extensions by specifying how to rewrite new syntax into
plain Java. Like OOMatch, Maya resolves the ambiguity between
multiple patterns that match a given AST node by choosing the
most specific one, and giving an error when no pattern is more spe-
cific than all others. However, the ambiguity is detected when the
pattern matching occurs, rather than ahead of time as in OOMatch.

7. Conclusion
Pattern matching as dispatch has been found to naturally subsume
standard polymorphic dispatch and multimethods. Through design-

ing and building a prototype implementation of this feature as an
extension to Java, we have explored many issues and nuances that
it raises. In particular, we have attempted to find a balance between
safety (finding errors as soon as possible) and flexibility (allowing
as many programs as possible that make sense), with a bias towards
flexibility. Overall, OOMatch provides a balance of power lying be-
tween multimethods and general predicate dispatch. In doing so, it
uses a simple, intuitive syntax that allows the easy expression of
high-level ideas for rule-based systems, and it yields greater ab-
straction and extensibility.
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