Safe type-level abstraction in Scala

Adriaan Moors, Frank Piessens, Martin Odersky
FOOL 2008

(take 2)
Special thanks to Philipp Haller & his laptop, no thanks to my crashed mac

Scalina, briefly

* OO calculus that models Scala
- based on nuObj
e Scala tightly integrates FP

- encode parameterisation: abstract member
- encode application: refinement

« Cannot faithfully encode higher-order (type-
level) functions in nuObj

- Scalina

Generic Cup

(caution! contents may be hot)
class Cup|[T <: MaybeHot]

class MaybeHot

class Tepid extends MaybeHot

// statically avoid lawsuits

class PaperCup[T <: Tepid]

wwwach#ngiraderonli

A generic cup filler

class Filler [C[T <: MaybeHot]] {
def £i111[T <: MaybeHot]: C[T]

C[T <: MaybeHot]

Filling paper cups considered harmful

Filler[PaperCup] is illegal (compiler
rejects it)

C represents a type constructor that
f@e B accepts any T <: MaybeHot

| But: PaperCup can only be applied
Filler to T <: Tepid

5

Encoding higher-kinded types
trait Cup{ type T <: MaybeHot }
trait PaperCup{ type T <: Tepid }
trailt Filler {

type C <: {type T <: MaybeHot}
def £i111[U <: MaybeHot]: C{type T = U}

Encoding higher-kinded types

trait PaperCup{ type T <: Tepid }

class MyFiller extends Filler {
type C = PaperCup

def £i111[U <: MaybeHot]: C{type T = U}
= return type 1s not (necessarily) 1nhabited!

Error is not detected until we try to implement £111!

How could this have happened?

type C <: {type T <: MaybeHot}
trait PaperCup{ type T <: Tepid }

type C = PaperCup

Solution in pseudo-Scalina

trait PaperCup{ untype T <: Tepid }

tralt Filler {
type C <: { untype T <: MaybeHot }

J

class MyFi1ller extends Filler {
type C = PaperCup // illegal
// expected Tepid >: MaybeHot
}

Error detected just as earlier as with direct support.

Revenge of the un-members

* As in nuODbj, by default, the classifier of an
abstract member may be strengthened in a
subtype (covariance)

 Instead of writing “untype”, we wrap the
member's classifier in Un|...]

 This flips the variance: contravariant position
« Essential for the encoding of functions

10

From an OO perspective

e Un-members were introduced to encode
arguments to functions

e Members and un-members form the two halves
of the contract implied by a class

- members are provided (directly or by a subtype)
- un-members are expected (supplied by client)

11

Variance and variance

« Co/contravariance in previous slides differs
from variance in class List [+T]

« Scala's definition-site variance annotations
specify how constructed types (from the same type
constructor) relate, based on the supplied type
arguments

e A <: B => List[A] <: List[B]

12

Variance and variance

« Un[...] flips the variance that relates
type constructors based on the classifiers of
their members (have no value yet)

type List = {type T: Un[*] }
type NumList = {type T: Un[In(Number)]

e NumList <: List iff Un[In (Number)] <: Un[*]

—iff * <: In (Number) (i pigs can fly)

}

13

Different flavours of abstraction

 value abstracting over value

- new {val arg: Un[T], wval apply: T'}
 value abstracting over type

- new {type Arg: Un[K]; val apply: T'}
* type abstracting over type

- {type Arg: Un[K]; type Apply: K'}

14

Impact on type system

{u => / this self type reflects the

_ . _ assumption that un-
type Id tselt: []u.ld > members have been refined

type T: Un|[*] before any other member is
accessed
val arg: Unl[self.T]

val apply: self.T = self.arg
}
val i1d: u.Id = new u.Id

val test: u.Int

= (id <{T = u.Int} <{arg

1}) .apply

15

Kinds

In(T1, T2):Iinterval kind

- depends on types

- cf. Powertype (Cardelli), singleton kinds (Harper eta)

Un [K]: classifier for type un-member
Nominal (R): hominal branding

(Struct (R) : replace by singleton kind?)
Concrete (R) : generalising type selection

16

Flirting with type-level computation

* Concrete kind (cf. objects can't have abstract members)
- p.type: Concrete(T) ifp: Tand T: Struct (R)

— T: Concrete(R) If T: Struct (R) and all
members in R are concrete

- T#L: Concrete (R) if T declares a type member
with label L. and kind Concrete (R)

« Generalising type selection

- T#L: K If T: Concrete({type L: K})

17

Flirting with type-level computation

trait TBool { type If[t, f£] }
trait TTrue extends TBool {
type If[t, £] = t }
trait TFalse extends TRool {
type If[t, f] = £ }
// somewhere in the program:
type Flag <: TBool
type Decide = Flag#If[then, else]

doesn't work: Flag = TBool --> ??

18

Flirting with type-level computation

type Flag : Concrete({type If:
Concrete ({

type T : Un[*]

type F : Un[*]
type Apply : *})})

(Flag#If<{T=then}<{F=else}) #Apply

Summary: design goals

* Uniformity
- (un-)members abstract over types and values
- both objects and types may contain un-members
- member: label, classifier, (RHS)
- soundness at type level & kind level

 Faithfully encode FP concepts

- polymorphic functions are values
- well-kinded type applications never go wrong

20

Conclusion

« Scalina's first goal was to improve the
integration of FP into Scala's underlying
formalism

- simple idea: introduce contravariance
e Scalina's future includes (I hope)
- state (notion of paths already in place)
- virtual classes (type members late bound)

- type-level computation (kind soundness >important)
- mechanized meta-theory (Coq tutorial gave me new hope)

21

Solution in Scalina

trait PaperCup{ type T: Un[In(Tepid)] }

tralt Filler {
type C: Struct({type T: Un[In(MaybeHot)]})
}

class MyFi1ller extends Filler {

type C = PaperCup // illegal

// NOT (Un[In(Tepid)] <: Un[In(MaybeHot)])
}

Error detected just as earlier as with direct support.

22

