
A Step-indexed Semantics
of Imperative Objects

C!t!lin Hri"cu and Jan Schwinghammer

Saarland University, Saarbrücken, Germany

Workshop on Foundations of Object-Oriented Languages (FOOL'08)
13 January 2008, San Francisco, California

U
N

IV
E R S IT

A
S

S
A

R
A V I E

N

S
I
S

1

Imperative object calculus
[Abadi and Cardelli, ‘96]

a, b ::= x | [md=ς(xd)bd]d∈D

| a.m | a.m := ς(x)b
| clone a | λ(x)b | a b

v ::= {md=ld}d∈D | λ(x)b

2

〈∅, [m=ς(x)x.m].m〉 Obj−→

→ 〈{{l &→ λ(x)x.m}}, {m=l}.m〉 Inv−→

→ 〈{{l &→ λ(x)x.m}}, (λ(x)x.m) {m=l}〉 Beta−→

→ 〈{{l &→ λ(x)x.m}}, {m=l}.m〉 Inv−→ . . .

Imperative object calculus

heap stores code
dynamic allocation

recursion
involves heap

[Abadi and Cardelli, ‘96]
a, b ::= x | [md=ς(xd)bd]d∈D

| a.m | a.m := ς(x)b
| clone a | λ(x)b | a b

v ::= {md=ld}d∈D | λ(x)b

2

Imperative object calculus
[Abadi and Cardelli, ‘96]

a, b ::= x | [md=ς(xd)bd]d∈D

| a.m | a.m := ς(x)b
| clone a | λ(x)b | a b

v ::= {md=ld}d∈D | λ(x)b

dynamically-allocated,
higher-order store

+ expressive type system

• Object types and subtyping

• Impredicative second-order types

• Recursive types

2

Hard to find good semantic models

• For domain-theoretic models ...

• Higher-order store

• Solving recursive domain equations

• + Dynamic allocation - possible-worlds models

• Recursively defined functor categories over CPOs

• Existing domain-theoretic models
[Levi, ’02] [Reus & Schwinghammer, ’06]

• Despite being complex are not abstract enough

• + Polymorphic values on the heap (impredicative)

• No domain-theoretic models known, in general!

3

Types and heap typings

• In a set-theoretic term model of our calculus
are types just sets of values?

• No! Our values depend on the heap, e.g.

• so semantic types depend on heap typings

• heap typings are maps from locations to semantic types

• Model types as sets of pairs?

• There are no set-theoretic solutions to this!

{md=ld}d∈D

Type = P(HeapTyping× CVal)
HeapTyping = Loc ⇀fin Type

4

Step-indexed models

• Alternative to subject-reduction [Appel & Felty, ‘00]

• Simpler machine-checkable proofs of type soundness

• Much simpler than the domain-theoretic models

• Only based on a small-step operational semantics

• Model of types for the lambda calculus with recursive
types [Appel & McAllester, ‘01]

• Later extended to general references and impredicative
polymorphism [Ahmed, ‘04]

• We further extended it with object types and subtyping

• Used it to prove the soundness of an expressive, standard
type system for the imperative object calculus

5

Types and heap typings

• Circular definition Type = P(HeapTyping× CVal)
HeapTyping = Loc ⇀fin Type

• k-th approximation:

• We have that

• Stratification invariant:

• is only defined in terms of and !α"k+1 !Ψ"k

!τ"k = {〈j,Ψ, v〉 ∈ τ | j < k}

!τ"k∈ Typek

!τ"k

• We can solve this by a stratified construction

Typek+1 = P(j ∈ [0, k]×HeapTypingj × CVal)

HeapTypingj = Loc ⇀fin Typej

6

Semantic approximation

• Semantic types are sets of triples

• if executes for at least steps without
getting stuck in every context of type , for every

• Example:

〈k, Ψ, v〉 ∈ τ
τ

v k
h :k Ψ

〈1, ∅, (λx. true)〉 ∈ Nat → Nat

〈2, ∅, (λx. true)〉 $∈ Nat → Nat,
C[·] = ([·] 42) + 2

7

01234...

Semantic types

• Sequences of increasingly accurate approximations

8

01234...

• In the end we are only interested in the limit

• Approximation crucial for well-founded construction

+ Extremely useful when giving recursive definitions of types

 “False Positives”

Limit

Semantic types

• Sequences of increasingly accurate approximations

8

State extension

• Heaps evolve during computation

• Dynamic allocation, no deallocation, weak updates

! Heap typings can only “grow”

• The precision of our approximation decreases with
each reduction step

• State extension relation:

• Closure under state extension (Kripke monotonicity)

• Semantic types must be closed under state extension

• Possible-worlds model

〈k, Ψ, v〉 ∈ α ∧ (k, Ψ) % (j,Ψ′) ⇒ 〈j,Ψ′, v〉 ∈ α

(k, Ψ) ! (j,Ψ′)

9

The type of arbitrary terms

• For a closed term , iffa :k,Ψ τa

• Semantic typing judgement

• Typing open terms; not approximative

• This definition directly enforces type safety

• Still need to prove the soundness of the typing rules

Σ |= a : α ⇔ ∀k ≥ 0. ∀Ψ. ∀σ :k,Ψ Σ. σ(a) :k,Ψ α

〈h, a〉 →j 〈h ′, b〉!, for any j < k, h :k Ψ, b, and h′

⇒ 〈k − j,Ψ′, b〉 ∈ τ, for some Ψ′ such that
(k, Ψ) ' (k − j,Ψ′) and h ′ :k−j Ψ′

10

Simple semantic types

• Base types

• Procedure types

• Reference types

α → β ! {〈k, Ψ, λ(x)b〉 | ∀j<k. ∀Ψ′. ∀v. (k, Ψ) % (j,Ψ′) ∧ 〈j, v〉 ∈ α

⇒ {{x)→ v}}(b) :j,Ψ′ β}

Bool ! {〈k,Ψ, v〉 | k ∈ N,Ψ ∈ HeapTypingk, v ∈ {true, false}}
Nat ! {〈k,Ψ, n〉 | k ∈ N,Ψ ∈ HeapTypingk, n ∈ N}

ref τ = {〈k,Ψ, l〉 | #Ψ(l)$k = #τ$k}

11

Object types and subtyping

12

Subtyping

• Since types are sets, subtyping is set inclusion

• Subtyping forms a lattice on types

⊥ = ∅

α β

α ∪ β

α ∩ β

!

• Simple, but not orthogonal to the other features

• e.g. non-trivial interaction with object types

13

Definition of object types

• Methods stored in the heap as procedures and self-
application semantics of method invocation suggest

• This validates all typing rules for objects

• Let

• But none of the subtyping rules!

[md : τd]d∈D ≈ µ(α).{md : ref (α→ τd)}d∈D

α = [md : τd]d∈D

(Obj)
∀d ∈ D. Σ[xd #→ α] |= bd : τd

Σ |= [md=ς(xd)bd]d∈D : α
(Clone)

Σ |= a : α

Σ |= clone a : α

(Inv)
Σ |= a : α e ∈ D

Σ |= a.me : τe
(Upd)

Σ |= a : α e ∈ D Σ[x #→ α] |= b : τe

Σ |= a.me := ς(x)b : α

14

Subtyping in width

• Object types with more methods are subtypes
of object types with less methods

• Assuming the same type for the common methods

E ⊆ D

[md : τd]d∈D ⊆ [me : τe]e∈E []

[m1 : α] [m2 : α] [m3 : α]

[m1 : α, m2 : α] [m2 : α, m3 : α]

15

α ⊆ β ⇒
E ⊆ D ∀d ∈ D. ref (α→ τd) ⊆ ref (β → τd)

{md : ref (α→ τd)}d∈D ⊆ {me : ref (β → τe)}e∈E

µ(α).{md : ref (α→ τd)}d∈D ⊆ µ(β).{me : ref (β → τe)}e∈E

Subtyping in width

• Subtyping in width fails because:

• positions of recursion variable are invariant

• even without reference positions contravariant

• they should be covariant! (see below)

[md : τd]d∈D ≈ µ(α).{md : ref (α→ τd)}d∈D

16

Subtyping in width

• We force covariance for recursion variable using a
bounded existential

• can be viewed as the “true” type of the object

• Similar to some encodings of the functional obj. calculus
[Abadi & Cardelli, ’96] and [Abadi, Cardelli & Viswanathan, ’96]

[md : τd]d∈D ≈ µ(α).∃α′⊆α.{md : ref (α′ → τd)}d∈D

α′

α ⊆ β ∀τ⊆α. F (τ) ⊆ G(τ)
∃α′⊆α.F (α′) ⊆ ∃β′⊆β.G(β′)

17

Subtyping in depth

• Our methods can be both invoked and updated

• They need to be invariant (o)

• Still, if we mark methods with their desired variance and
restrict invocations and updates accordingly

• Covariant subtyping for invoke-only methods (+)

• Contravariant subtyping for update-only methods (-)

• Moreover, we would like that [m :+ α] [m :− α]

[m :◦ α]

18

Extending reference types

• However, the usual reference types are invariant

• The type of the location is precisely known

• So both reading and writing are safe at type

ref◦τ = {〈k,Ψ, l〉 | #Ψ$k (l) = #τ$k}

• If we only give a bound on then only one of
these operations is safe at a meaningful type

• Readable reference type

• This is not read-only!

• Writable reference types

ref+τ = {〈k,Ψ, l〉 | #Ψ$k (l) ⊆ #τ$k}

ref−τ = {〈k, Ψ, l〉 | #τ$k ⊆ #Ψ$k (l)}

Ψ(l)

τ

19

Extending reference types

ref◦τ = ref+τ ∩ ref−τ

• Not really new [Reynolds, ‘88] [Pierce & Sangiorgi, ’96]

• The usual reference types can actually be defined as
 , so clearly

ref+τ ref−τ

ref◦τ

• Readable reference type is covariant

• Writable reference type is contravariant

α ⊆ β

ref+α ⊆ ref+β

β ⊆ α

ref−α ⊆ ref−β

20

Definition of object types

〈k,Ψ, {me=le}e∈E〉 ∈ α = [md : τd]d∈D ⇔ D ⊆ E

∧ ∃α′⊆(α)k. (∀d ∈ D. 〈k, Ψ, ld〉 ∈ refνd(α′ → τd))

[md :νd τd]d∈D ≈ µ(α).∃α′⊆α.{md : refνd(α′ → τd)}d∈D

⇑

21

Definition of object types

• But, because is kept abstract

• invocation and cloning rules are no longer validated

α′

• Fixing invocation

• We need to permit self-application

• We explicitly enforce that contains

• Not surprising, is the “true” type of

α′ {me=le}e∈E

α′ {me=le}e∈E

〈k,Ψ, {me=le}e∈E〉 ∈ α = [md : τd]d∈D ⇔ D ⊆ E

∧ ∃α′⊆(α)k. (∀d ∈ D. 〈k, Ψ, ld〉 ∈ refνd(α′ → τd))

• Fixing clone

• We enforce that contains all clones of
i.e. all objects that satisfy the same typing assumptions

α′ {me=le}e∈E

21

Definition of object types

• This definition is well-founded (inductive on k)

• is defined in terms of

• Validates all typing and subtyping rules for objects

• Most interesting proof is for object creation
(nested induction on naturals)

• Main contribution of the paper

〈k, Ψ, {me=le}e∈E〉 ∈ α = [md : τd]d∈D ⇔ D ⊆ E

∧ ∃α′⊆(α)k. (∀d ∈ D. 〈k, Ψ, ld〉 ∈ refνd(α′ → τd)) ∧ . . .

!α"k+1 !α"k

22

Conclusion

• We extended the step-indexed model of Ahmed et.
al. with object types and subtyping, and used it for the
imperative object calculus

• Our interpretation of object types uses

• Recursive types and bounded existentials

• Readable and writable reference types

• Resulting model

• is much simpler than a domain-theoretic ones

• interprets a richer type discipline - impredicative 2nd
order types, subtyping in depth wrt. variance annotations

• However, it only deals with types and type safety

23

Beyond types

• Purely syntactic argument would have sufficed for proving the
safety of our type system (subject-reduction)

• So why do we need models?

• For more expressive deduction systems, e.g. program logics

• Meaning of assertions no longer obvious

• They should describe the code in the (higher-order) heap

• Subject-reduction limited to whole programs of base type

• Proving soundness using semantic model (derivability implies
validity in the model) gives much stronger guarantees

• Future work: Prove the soundness of a program logic for
the imperative object calculus using step-indexed model

24

Backup slides

25

Problem 1: Semantic domains

• Higher-order store

• Solving recursive domain equation

• For the imperative object calculus done in:
[Kamin & Reddy, 94] [Reus & Streicher, ‘04]

• + polymorphic values stored (impredicative)

• No domain-theoretic models known!

DVal = (DHeaps ×DVal ⇀ DHeaps ×DVal) + . . .

DHeaps = Loc ⇀fin DVal

26

Semantic typing judgement

• Typing open terms; not approximative

• This definition directly enforces type safety

• But we still need to prove the typing rules sound

• We first prove the validity of semantic typing lemmas

• Then use these lemmas to prove the syntactic typing rules

• Example: subtyping recursive types (the Amber rule)

Σ |= a : α ⇔ ∀k ≥ 0. ∀Ψ. ∀σ :k,Ψ Σ. σ(a) :k,Ψ α

(Syntactic)
Γ ! µX.A Γ ! µY.B Γ, Y !Top, X!Y ! A ! B

Γ ! µX.A ! µY.B

(Semantic)
∀α,β ∈ Type. α ⊆ β ⇒ F (α) ⊆ G(β)

µF ⊆ µG

27

Semantic soundness

• We relate the syntactic type expressions to their
corresponding semantic types

• We prove that the two are in close correspondence

• Theorem: Soundness of subtyping

• Theorem: Semantic soundness

• Corollary (Type safety)
Well-typed terms are safe to evaluate.

If Γ ! A ! B and η |= Γ, then !A"η ⊆ !B"η

If Γ ! a : A and η |= Γ, then !Γ"η |= a : !A"η

28

More than types (related work)

• Step-indexed PER model for lambda calculus with
recursive and impredicative quantified types [Ahmed, ’06]

• Captures exactly observational equivalence, no state

• Soundness of compositional program logic for a very
simple stack-based abstract machine [Benton, ’05]

• Floyd-Hoare-style framework based on relational
parametricity for machine code programs [Benton, ’06]

29

More extensions and future work

• Generalizing reference types ... and object types

• Accommodating self types (easy)

• More realistic languages

ref(α,β) = ref−α ∩ ref+β

ref◦τ = ref+τ ∩ ref−τ

30

