A Step-indexed Semantics
of Imperative Objects

Catalin Hritcu and Jan Schwinghammer

Saarland University, Saarbricken, Germany

Workshop on Foundations of Object-Oriented Languages (FOOL'08)
13 January 2008, San Francisco, California



Imperative object calculus

. [Abadi and Cardelli,‘96] | i nc

a.m ‘ a.m = §(£B)b
clone a | A(x)b | ab
vi=ima=la}gep | Alz)b




Imperative object calculus

[Abadi and Cardelli,"96]
a,b = x| mg=<(rq)bal cp

a.m | a.m = ¢(x)b
clone a | A(x)b | ab

U . —{md ld}dED ‘)\ b

heap stores code recur5|on
dynamic allocation
involves heap
BJ

\E o
— ({l— A xm} {m=l}.m) IN—V>

(a >
— ({l — Az > m}, (A(z)z.m) {m=1}) =
— ({l— A=)

m}, {m=Il}.m) — ...

S~ S

£.
L

OOOOOOOOOOOOOOOOOOOOOOOOOOO

A THEORY
OF OBJECTS




Imperative object calculus

[Abadi and Cardelli,"96] | oo

a.m | a.m = ¢(x)b
clone a | A(x)b | ab
viu={mg=li} cp | AMx)b

dynamically-allocated,
higher-order store

< + expressive type system>

® Object types and subtyping

® |mpredicative second-order types

® Recursive types



Hard to find good semantic models

® For domain-theoretic models ...

® Higher-order store
® Solving recursive domain equations

® + Dynamic allocation - possible-worlds models
® Recursively defined functor categories over CPOs

® Existing domain-theoretic models
[Levi, ’'02] [Reus & Schwinghammer, '06]

® Despite being complex are not abstract enough

® + Polymorphic values on the heap (impredicative)

® No domain-theoretic models known, in general!



Types and heap typings

® |n a set-theoretic term model of our calculus
are types just sets of values!?

® No! Our values depend on the heap, e.g. {mg=I3},.
® so semantic types depend on heap typings
® heap typings are maps from locations to semantic types

® Model types as sets of pairs!?

Type = P(Heap Typing x CVal)
HeapTyping = Loc — g, 1ype

® There are no set-theoretic solutions to this!



Step-indexed models

Alternative to subject-reduction [Appel & Felty, ‘00]
® Simpler machine-checkable proofs of type soundness
Much simpler than the domain-theoretic models

® Only based on a small-step operational semantics

Model of types for the lambda calculus with recursive
types [Appel & McAllester,01]

Later extended to general references and impredicative
polymorphism [Ahmed, ‘04]

® We further extended it with object types and subtyping

® Used it to prove the soundness of an expressive, standard
type system for the imperative object calculus



Types and heap typings

® Circular definition Type = P(Heap Typing x C'Val)
HeapTyping = Loc — g, Type

® We can solve this by a stratified construction
Typey, 1 = P(j € [0, k] x HeapTyping; x CVal)
HeapTyping; = Loc — gy Type,;
® k-th approximation: |7| = {(j,V,v) € 7| j < k}
® We have that | 7|, € Type,

® Stratification invariant:

e |, isonly defined in terms of |¥], and |7 ],



Semantic approximation

® Semantic types are sets of triples

® (k,VU,v) € 7 if v executes for at least k steps without
getting stuck in every context of type 7, for every h :p W

® Example: (1,0, (A\z.true)) € Nat — Nat

(2,0, (Ax.true)) € Nat — Nat,
Ol = (1]42) +2



Semantic types

® Sequences of increasingly accurate approximations




Semantic types

® Sequences of increasingly accurate approximations

® |n the end we are only interested in the limit

® Approximation crucial for well-founded construction

+ Extremely useful when giving recursive definitions of types



State extension

Heaps evolve during computation
® Dynamic allocation, no deallocation, weak updates

= Heap typings can only “grow”

The precision of our approximation decreases with
each reduction step

State extension relation: (k, V) C (4, V')

Closure under state extension (Kripke monotonicity)
(k, ¥, 0) ea A (k,V)E (V) = (4,V,0) €a

Semantic types must be closed under state extension

Possible-worlds model



The type of arbitrary terms

® Foraclosed terma, a v 7 iff
(h,a) —7 (k' ,b)—, for any j < k, h:, ¥, b, and A’
= (k — 4,¥".b) € 7, for some ¥’ such that
(k,¥)C (k—j4,9") and b’ :p_; U’

® Semantic typing judgement
YEa:a & VeE>0.VVU. Vo g 2. 0(a) v o

® Typing open terms; not approximative

® This definition directly enforces type safety

® Still need to prove the soundness of the typing rules

10



Simple semantic types

® Base types
Bool = {{k,V,v) | k € N,U € HeapTyping,,v € {true, false}}

Nat = {{k, U, n) | k € N,¥ € HeapTyping,,n € N}

® Procedure types
a— 8= {k,U,\Nx)b) |Vi<k.VU'. V. (k,U)LC (5,%) A {j,v) €a
= {z = v}b) ;0 O}

® Reference types
ref 7= (&, W, 0 | [W(D)]p = [7]es

11



Object types and subtyping



Subtyping

® Since types are sets, subtyping is set inclusion

® Subtyping forms a lattice on types

.
aUp
a &
anp

1L =1

® Simple, but not orthogonal to the other features

® e.g.non-trivial interaction with object types

13



Definition of object types

® Methods stored in the heap as procedures and self-
application semantics of method invocation suggest

mg : Tq)yep R p(e) {mg : ref (o — 74) baep

® This validates all typing rules for objects
® Llet = |mq:Tdlyep

Vd € D. Xxg— o] E by : 714 Y Ea: o
(CLONE)
Y= ma=¢s(2q)bd) 4ep :

(OBJ)

> =clone a : o

>

a:a e€D YEa:a eeD Yr—alEb:T
(UpPD)

(INV)

Y = a.me : Te Y Eame =c¢(x)b:

® But none of the subtyping rules!

14



Subtyping in width

® Object types with more methods are subtypes
of object types with less methods

® Assuming the same type for the common methods

ECD

my : Td]deD C |me : Te]eeE

15



Subtyping in width

my : Td]ng ~ (o) Amg : ref (o — 74) faeD

® Subtyping in width fails because:
® positions of recursion variable are invariant
® even without reference positions contravariant

® they should be covariant! (see below)

ECD VdeD.ref (¢ — 14) Cref (68— 74)
a C (B = {mg:ref (a« — 7g)}aep € {me :ref (8 — 7¢)}ecE

plr){mg : vef (0 = 74) faep S p(B) {me : ref (6 — 7¢) jeer

16



Subtyping in width

® We force covariance for recursion variable using a
bounded existential o C 3 VrCa. F(7) C G(r)

Jo'Ca.F (") C 3AB'CH.G(F)

myg : Td]deD ~ p(a).da' Ca.{my : ref (@' — 74) }aep

® (' can be viewed as the “true” type of the object

® Similar to some encodings of the functional obj. calculus
[Abadi & Cardelli, "96] and [Abadi, Cardelli & Viswanathan, 96]

17



Subtyping in depth

® Our methods can be both invoked and updated

® They need to be invariant (o)

® Still, if we mark methods with their desired variance and
restrict invocations and updates accordingly

® Covariant subtyping for invoke-only methods (+)

® Contravariant subtyping for update-only methods (-)

® Moreover, we would like that |[m :; o] m:_ @

m o

18



Extending reference types

® However, the usual reference types are invariant

refor = 1k, W, 0) [ (W], (1) = [7]15
® The type of the location is precisely known

® So both reading and writing are safe at type 7

® [f we only give a bound on V() then only one of
these operations is safe at a meaningful type

® Readable reference type

reby 7 =1k, W, 0 | (W] () € [7]ks
® This is not read-only!

® Writable reference types

ref_7 = (&, W, 0) | 7], €[], (D)

19



Extending reference types

aCpf
ref,a C ret, 3

Readable reference type is covariant

B Ca
ref_a Cref_f

Writable reference type is contravariant

The usual reference types can actually be defined as
ref,7 = ref,. 7 Nref_7, so clearly

ref 7 ref T

N

ret,7

Not really new [Reynolds, ‘88] [Pierce & Sangiorgi, 96]

20



Definition of object types

(k, W, {mezle}e€E> €a=|mg: 7-d]alED < DCL
A Ja'Clal,. (Vde D. (k, ¥, lg) €ref,, (& — 74))

l

my i, Talaep ~ p(a).Ja'Ca{my : ref, (@' — 74) baep



Definition of object types

(k, W, {mezle}eEE> €a=|mg: 7-a’/]dED < DCL
A Ja'Clal,. (Vde D. (k, ¥, lg) €ref,, (& — 74))

® But, because ' is kept abstract

® invocation and cloning rules are no longer validated
® Fixing invocation

® We need to permit self-application

® We explicitly enforce that o contains {m.=lc},
® Not surprising, o' is the “true” type of {me=lc} . p

® Fixing clone

® We enforce that o' contains all clones of {m.=lc} . p
i.e. all objects that satisfy the same typing assumptions

21



Definition of object types

(k, W, {m€:le}€€E> € a=|mg: 7-a’/]dED < DCL

A Jo'Clal,. (Vd e D. (k, ¥, lg) €ref, (o' — 714)) A ...

® This definition is well-founded (inductive on k)

® LCVJ k+1 is defined in terms of Lozj L

® Validates all typing and subtyping rules for objects

® Most interesting proof is for object creation
(nested induction on naturals)

® Main contribution of the paper

22



Conclusion

® We extended the step-indexed model of Ahmed et.
al. with object types and subtyping, and used it for the
imperative object calculus

® Our interpretation of object types uses
® Recursive types and bounded existentials
® Readable and writable reference types

® Resulting model

® is much simpler than a domain-theoretic ones

® interprets a richer type discipline - impredicative 2nd
order types, subtyping in depth wrt. variance annotations

® However, it only deals with types and type safety

23



Beyond types

® Purely syntactic argument would have sufficed for proving the
safety of our type system (subject-reduction)

® So why do we need models!?
® For more expressive deduction systems, e.g. program logics
® Meaning of assertions no longer obvious
® They should describe the code in the (higher-order) heap
® Subject-reduction limited to whole programs of base type

® Proving soundness using semantic model (derivability implies
validity in the model) gives much stronger guarantees

® Future work: Prove the soundness of a program logic for
the imperative object calculus using step-indexed model

24



Backup slides

25



Problem |: Semantic domains

® Higher-order store

® Solving recursive domain equation

DVal — (DHea,ps X DVal — DHeaps X DVal) + ...

DHeaps = Loc — fin DVal

® For the imperative object calculus done in:
[Kamin & Reddy, 94] [Reus & Streicher, ‘04]

® + polymorphic values stored (impredicative)

® No domain-theoretic models known!

26



Semantic typing judgement

® Typing open terms; not approximative

YXEa:a & VE>0.VVU. Vo g X.0(a) ipw @

® This definition directly enforces type safety
® But we still need to prove the typing rules sound
® We first prove the validity of semantic typing lemmas
® Then use these lemmas to prove the syntactic typing rules

® Example: subtyping recursive types (the Amber rule)

Vo, € Type. « C 8 = F(a) C G(B)
pF C pG

(SEMANTIC)

I'-uX.A I'EpY B IY<Top, X<YFHFALB
I'-uX.A<uY.B

(SYNTACTIC)

27



Semantic soundness

We relate the syntactic type expressions to their
corresponding semantic types

We prove that the two are in close correspondence

Theorem: Soundness of subtyping
IfI'F A< Bandn T, then [A] C[B],

Theorem: Semantic soundness
[fI'Fa:Aandn =T, then [I'], Fa: [A],

Corollary (Type safety)
Well-typed terms are safe to evaluate.

28



More than types (related work)

® Step-indexed PER model for lambda calculus with
recursive and impredicative quantified types [Ahmed, '06]

® (Captures exactly observational equivalence, no state

® Soundness of compositional program logic for a very
simple stack-based abstract machine [Benton, '05]

® Floyd-Hoare-style framework based on relational
parametricity for machine code programs [Benton, '06]

29



More extensions and future work

® Generalizing reference types ...and object types

refo7 =refy 7 Nref_7

ref(a, 8) = ref_a Nref, 3

® Accommodating self types (easy)

® More realistic languages

30



