
Combining Structural Subtyping and External Dispatch

Donna Malayeri Jonathan Aldrich
Carnegie Mellon University

{donna+, aldrich+}@cs.cmu.edu

Abstract
Nominal subtyping (or user-defined subtyping) and structural sub-
typing each have their own strengths and weaknesses. Nominal
subtyping allows programmers to explicitly express design intent,
and, when types are associated with run time tags, enables run-
time “type” tests (e.g., downcasts) and external/multimethod dis-
patch. On the other hand, structural subtyping is flexible and com-
positional, allowing unanticipated reuse. To date, nearly all object-
oriented languages fully support only one subtyping paradigm or
the other.

In this paper, we describe a core calculus for a language that
combines the key aspects of nominal and structural subtyping in a
unified framework. Our goal is to combine the flexibility of struc-
tural subtyping while still allowing static typechecking of external
methods. We prove type safety for this language and illustrate its
practical utility through examples that are not easily expressed in
other languages. Our work provides a clean foundation for the de-
sign of future languages that enjoy the benefits of both nominal and
structural subtyping.

1. Introduction
In the research community, structural subtyping is considered a
clean and theoretically pleasing account of subtyping. However,
the most widely used object-oriented languages provide little or
no support for structural subtyping, relying instead on user-defined
nominal subtyping. Each kind of subtyping has its merits, but no
existing language combines the two in a uniform way.

Nominal subtyping allows the programmer to express and en-
force design intent explicitly. A programmer’s defined subtyping
hierarchy serves as checked documentation that specifies how the
various parts of a program are intended to work together. Ex-
plicit specification also has the advantage of preventing “acci-
dental” subtyping relationships, such as the standard example of
cowboy.draw() andcircle.draw(). Nominal subtyping also al-
lows recursive types to be easily and transparently defined, since re-
cursion can simply go through the declared names. Another advan-
tage is that error messages are usually much more comprehensible,
since (for the most part) every type in a type error is one that the
programmer has defined explicitly. Finally, and most importantly,
nominal subtyping is necessary for run-time subtyping tests (such
as downcasts) as well as external and multimethod dispatch.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FOOL ’07
Copyright c© 2006 ACM [to be supplied]. . . $5.00

On the other hand, structural subtyping is often more expressive
than nominal subtyping. It is compositional and intrinsic, existing
outside of the mind of the programmer. This has the advantage of
supporting unanticipated reuse—programmers don’t have to plan
for all possible reuse scenarios. Additionally, structural subtyping
is often more notationally succinct. Programmers can concisely ex-
press type requirements without having to define an entire subtyp-
ing hierarchy. In nominal systems, situations can arise which re-
quire multiple inheritance or an unnecessary proliferation of types;
in a structural system, the required subtyping properties just arise
naturally from a few simple axioms. Finally, structural subtyping is
far superior in contexts where the structure of the data is of primary
importance, such as in data persistence or distributed computing.
In contrast, nominal subtyping can lead to unnecessary versioning
problems: if some classC is modified toC′, C′ objects cannot be
sent to a distributed process with the original definitionC, even if
C′ is a strict extension ofC.

We believe that external dispatch and multimethods are essen-
tial constructs for modular and extensible object-oriented program-
ming. External dispatch allows methods to be added to existing
classes and multimethods permit method dispatch to depend on any
subset of arguments to a function. As many have observed (for in-
stance, [6, 7, 18]), in the absence of external dispatch, one must
resort to unwieldy double-dispatch code (such as the “Visitor” de-
sign pattern [13]), which, aside from being difficult to understand,
forces programmers to plan ahead for this kind of extensibility and
further makes it difficult to add new subclasses.

Consequently, our aim is to create a language with a uniform
object model that retains the expressive and compositional nature
of structural subtyping while permitting external and multimethod
dispatch. We present a core calculus, in the style of [14, 10, 1, 5],
for a language called Unity, which we believe achieves this goal.

In Unity, an object type is a record type tagged with a “brand.”1

Brands induce the “nominal subtyping” relation, which we call
“sub-branding.” (The name “brand” is borrowed from Strongtalk
[3], which in turn borrowed it from Modula-3 [19].) Brands are
“nominal” in that the user defines the sub-brand relationship, like
the subclass relation in languages like Java, Eiffel, and C++.

When a brandβ is defined, the programmer lists the minimum
fields that any objects tagged withβ must include. In other words,
if the user defines the brandPoint as having the fields(x : int,
y : int), then any value tagged withPoint must include at least
the labelsx andy (with int type)—but it may also contain addi-
tional fields. Subtyping takes into account both the nominal sub-
brand relationship and the usual structural subtyping relationship
(width and depth) on records.

To integrate these two relationships, brand extension is con-
strained: the associated record types must be subtypes. In
other words, a brandβ can be declared as a sub-brand of

1 Note that record “types” are not actually types in the true sense, as they do
not classify any values—they occur only as part of object types.



θ only if β’s associated record type is a subtype ofθ’s
record type. As an example, suppose the brand3DPoint is
defined as3DPoint(x : int, y : int, z : int). 3DPoint can
be declared as a sub-brand ofPoint, since (x : int, y : int,
z : int) is a sub-record of(x : int, y : int). However, a brand
1DPoint(x : int) cannot be a sub-brand ofPoint (since it lacks
the y field), nor canFloatingPoint(x : float, y : float)
(sincefloat is not a subtype ofint).

Brands allow external dispatch through acase construct that
performs tag analysis. This construct allows new methods to be
written over existing class hierarchies.

To simplify our model and to focus on the core issues, our
calculus requires that the entire brand hierarchy be stated at the
start of the program. For similar reasons, the calculus also requires
that all branches of thecase expression be given at once; later
extensions would require modifying the code directly. We expect
that techniques similar to those of EML [18] would allow us to
remove these restrictions in further refinements of our language.
(Semantically, each branch of thecase expression can be viewed as
a separate branch of an external method; such branches need not be
textually adjacent.)

The contributions of this paper are as follows:

• a language design, Unity, that provides user-defined and struc-
tural subtyping relationships in a novel and uniform way. Unity
combines the flexibility of external dispatch with the conceptual
clarity of width and depth subtyping.

• a formalization of the design of Unity, along with proofs of type
safety (Section 3).

• examples that illustrate the expressiveness and flexibility of the
language (Section 2). We contrast Unity with other languages
in Section 2.1.

2. Examples
The following examples introduce Unity and illustrate the flexibil-
ity that comes from the combination of structural subtyping and
external methods.

2.1 Example 1: a window toolkit

Figure 1 contains a code excerpt for a windowing system and
illustrates the novel features of Unity. The brandWindow is the
top-level type; its fields have been abbreviated byγ. By default,
a window does not have a scrollbar. The brandsTextbox and
StaticText extendWindow, and also do not scroll by default. The
typeWindow(γ, s: Scrollbar) represents a window that does
have a scrollbar; thescroll function applies to any such window.
For this example, we assume that the implementation ofscroll
only needs to access the scrollbar field and the fields inγ.

Let us assume that in a non-scrolling textbox the user can
only enter a fixed number of characters. Consequently, we de-
fine the brandScrollingTextbox in order to change textbox
functionality—in particular, the behavior of theinsertChar
function. Note thatScrollingTextbox(...) is a subtype of
Window(γ, s: Scrollbar), so thescroll function can be ap-
plied to objects of this type without any additional modification.

If other sub-brands ofWindow (such asStaticText) do not
need to change their existing behavior when a scrollbar is added,
no new sub-brands need be defined. Scrolling functionality can
be added to these types by including aScrollbar field, and the
scroll function is then applicable. Since a textbox that scrolls
allows the user to enter more text than the window size permits,
a new sub-brand had to be defined so that its case ininsertChar
could be overridden.

abstract brand Window (γ)

concrete brand Textbox (γ, currentPos : int)
extends Window

concrete brand StaticText (γ, text : string)
extends Window

concrete brand ScrollingTextbox
(γ, currentPos : int, s : Scrollbar)
extends Textbox

fun scroll ( w : Window(γ, s : Scrollbar) ) : unit =
... // code that performs the scrolling operation

fun insertChar (t : Textbox(· · · ), c : Char) : unit =
case t of

| Textbox =>
... // insert a character only if it will fit in the window

| ScrollingTextbox =>
... // insert the character, scrolling if necessary

Subtyping relationships

Window (γ, s : Scrollbar) ≤ Window (γ)

Textbox (. . . ) ≤ Window (γ)
ScrollingTextbox (. . . ) ≤ Textbox (. . . )
ScrollingTextbox(. . . ) ≤ Window(γ, s : Scrollbar)

StaticText(. . . ) ≤ Window (γ)
StaticText(. . . , s : Scrollbar) ≤ Window(γ, s : Scrollbar)

Figure 1. Unity code for a windowing system with textboxes,
static text, and scrollbars. The metavariableγ denotes additional
fields that would be present in an actual code. Nominal subtyp-
ing allows the brandScrollingTextbox to change the behav-
ior of insertChar through tag dispatch, while structural subtyp-
ing allows thescroll function to apply to any window with an
s : Scrollbar field.

The subtyping relationships induced by these brand definitions
are shown below the code listing in Figure 1. Note that, interest-
ingly, ScrollingTextbox(. . .) is a subtype of bothWindow(γ,
s : Scrollbar) and ofTextbox(. . .), but there is no multiple
inheritance involved.

This example illustrates the two kinds of extensibility that Unity
provides: structural extension and brand extension.

• Structural extension can be used to create a new type that
adds fields to an existing brand,without defining new behav-
ior for the resulting type. So, aScrollbar can be added to a
StaticText object without defining a new brand, as the exist-
ing functionality of the static text box does not need to change
if a scrollbar is added.

• Brand extension creates a new brand that can be used in
dispatch; as a consequence, programs candefine new behav-
ior for the newly defined brand. Here,ScrollingTextbox is
defined as an extension ofTextbox because the behavior of
insertChar is different depending on whether or not the text
box has a scrollbar attached to it.

Comparison to other systems

Java. In Java-like languages, expressing this example would
be unwieldy. A common way to express the necessary con-
straints would involve first defining two interfaces,IWindow and



Window

StaticText

ScrollingTextbox

Textbox

(a) The windowing example as implemented in Unity.
Depicted here are the brands that must be defined in
order to obtain the desired subtyping relationships.

IWindow

IScrollableWindow

ScrollingWindow

Window

ScrollingStaticText

StaticText

ScrollingTextbox

Textbox

(b) The same example implemented in Java. Dashed rectangles are interfaces;
solid rectangles are classes. Dashed lines indicate theimplements relationship
and solid lines indicateextends.

Figure 2. For the windowing example, the user-defined subtyping relationships necessary in Unity vs. those necessary in Java.

IScrollableWindow. (Since Java interfaces cannot include fields,
the scrollbar field would actually have to be agetScrollbar()
method inIScrollableWindow.) Any window class that wished
to allow the possibility of adding a scrollbar, even without changing
any other functionality, would have to define a subclass that also
implementedIScrollableWindow. In this example, we would
define the classesScrollingWindow, ScrollingTextbox, and
ScrollingStaticText, though onlyScrollingTextbox needs
to change any functionality; see the class diagram Figure 2(b). Con-
trast this with the brand structure of the Unity program depicted in
Figure 2(a).

Presumably, the Java equivalent of thescroll function would
be a static function of some helper class and would take an object
of typeIScrollableWindow. Of course, if a programmer defined
a new scrolling window class with the correctgetScrollbar()
method, but forgot to implementIScrollableWindow, the
scroll function could not be used on objects of that class. (This
situation often arises in Java programs, particularly when one
wishes to use library code that is not even aware of the interface
that it should be declared to implement.)

There are also some oddities in the Java example. The Java
classScrollingWindow is semantically analogous to the Unity
type Window(γ, s: Scrollbar), but ScrollingTextbox and
ScrollingStaticText arenotsubclasses ofScrollingWindow,
while the corresponding Unity typesare subtypes ofWindow(γ,
s: Scrollbar). This illustrates the lack of expressiveness that
is inherent in languages that require the programmer to name all
relevant subtyping relationships.

Traits. A language with traits [23, 24, 20] would provide a much
cleaner solution than Java, but would ultimately lack the expres-
siveness of Unity’s structural subtyping. This is due to the fact that
traits are mainly designed to solve issues of implementation inheri-
tance (especially multiple inheritance), which is largely orthogonal
to the issues we are considering.

Structural subtyping. A language with support for structural sub-
typing (e.g., O’Caml [16], PolyTOIL [4], etc.) would elegantly
express all of the desired subtyping relationships, but these lan-
guages allow only internal dispatch—that is, all methods must be
defined inside the class definition. In our language,insertChar
can be an external method; it need not reside inside the definitions
of Textbox andScrollingTextbox. It would be decidedly non-

trivial to add support for external dispatch or multimethods to these
types of languages.

Moby. The language MOBY is in many ways similar to Unity,
as it supports structural subtyping and a variety of tag subtyping
through its inheritance-based subtyping mechanism [11, 12]. This
allows expressing many useful subtyping constraints, but MOBY’s
class types are not integrated with object types in the same way
as in Unity. For instance, in MOBY, it is not possible to express
the constraint that an object should have a particular classand
should have some particular fields (that are not defined in the class
itself). Additionally, the object-oriented core of MOBY supports
only internal dispatch rather than external or multimethod dispatch.

MOBY does include “tagtypes” that are very similar to our
brands. These can be used to support downcasts or to encode
multimethods, but they are orthogonal to class and object types.

Cecil. Cecil [6] would allow expressing all of the necessary
relationships (though new classes do need to be defined for
ScrollingWindow andScrollingStaticText), as it has a very
powerful—but very complex—type system. To write thescroll
function, a programmer would have to use bounded quantification
and a “where” clause constraint, the latter being typechecked via a
constraint solver. That is, in words, the argument toscroll would
have type:

for all T where
T <: Window and signature getScrollbar(T) : Scrollbar

Cecil also fully supports multimethod dispatch. Although Unity is
strictly less expressive than Cecil, its advantage lies in unifying
structural typing with external dispatch in a simpler, more uniform
way.

2.2 Example 2 : AST nodes in an IDE

Suppose we have an integrated development environment that in-
cludes an editor and a compiler. The top portion of Figure 3 con-
tains an excerpt of a simplified version of the code for such a sys-
tem. Here, the brandsPlusNode, Num andVar define a simple ab-
stract syntax tree. Using structural subtyping, AST nodes with ad-
ditional information can be created, such as a node with aloc field
specifying the file location of the code corresponding to the node.
Additional functions are available for such nodes, such as the func-
tion highlightNode that highlights a node’s source code in the
text editor.



Initial version of the code:

abstract brand AstNode() extends Top

concrete brand PlusNode ( n1 : AstNode(), n2 : AstNode() ) extends AstNode
concrete brand Num ( val : int ) extends AstNode
concrete brand Var ( s : Symbol) extends AstNode

// highlight the text corresponding to ‘node’ in the text editor,
// using the location specified by the ‘loc’ field
fun highlightNode ( node : AstNode(loc : Location) ) : unit = ...

// compile code to an output stream
fun compile ( node : AstNode(), out : OutStream ) : unit =

case node of
| plus as PlusNode => compilePlus(plus, out);
| num as Num => ...
| var as Var => ...

New code for including debug information for some AST nodes:

// AST nodes with debug information
concrete brand DebugPlusNode ( n1 : AstNode, n2 : AstNode, loc : Location ) extends PlusNode
concrete brand DebugNum ( val : int, loc : Location ) extends Num
concrete brand DebugVar ( s : Symbol, loc : Location, varName : string ) extends Var

// compile code to an output stream, outputing additional information for Debug* nodes
fun compile ( node : AstNode(), out : OutStream ) : unit =

case node of
| plus as PlusNode => compilePlus(plus, out);
| ...

// for the debug code, output the file location. for DebugVar, also the variable name
| dplus as DebugPlusNode => compilePlus(dplus, out); outputLocation(out, dplus.loc)
| dnum as DebugNum => ...
| dvar as DebugVar => ...

Figure 3. Example 2: AST nodes in an IDE. The top portion is the code before changes to add debug information to the AST. The function
highlightNode makes use of structural information, the external dispatch incompile changes its behavior for the declaredDebug* sub-
brands. (We assume here that the newly defined brands have been defined in the preamble of the source program, along with the original
brands.)

Note that we did not define a new brand for AST nodes that
include file location information. Whether or not a node contains
file information, functions that operate over AST nodes do not
need to change their behavior, so in this case structural subtyping
suffices.

Suppose now that the programmer wishes to add “debug” ver-
sions of these AST nodes that contain additional information to be
output when compiling in debug mode. For example, aDebugNum
has aLocation field, whileDebugVar includes aLocation field
as well as a string representation of the variable name. The newly
added code is listed in the bottom portion of Figure 3.

Since each of these brands have been defined as extensions,
they may also customize the behavior ofcompile to output
this additional information when compiling. Additionally, since
all of the Debug* brands have aLocation field, the function
highlightNode can be used on objects of this type.

This example again illustrates the expressiveness that is gained
by combining nominal and structural subtyping;highlightNode
makes use of additional structural information, whilecompile
relies on tag dispatch to behave differently in different situations.

3. Formal System
The grammar for our language, Unity, is displayed in Figure 4. To
define brands, thebrand construct is used. A brand can be either
abstract or concrete; in the former case, objects tagged with that
brand cannot be created, similar to Java’s abstract classes. We use
the metavariablesβ andθ to range over brand names.

When a brand is defined, a name is given for it, as well as a list
of zero or more (label : type) pairs; these are the labels that must be
given values when objects of that brand are created. As previously
mentioned, we informally call this list of label-and-type pairs a
record “type.” The metavariableγ ranges over these record types.
The abbreviatioǹ : τ denotes̀ i : τi

i∈1..n and ` = v denotes
`i = vi

i∈1..n.
If β is a brand name, then̂β is the tag value corresponding toβ.

In other words,β(γ) is a type, and̂β is its run-time analogue.
As previously stated, the brand subtree must be given in full at

the start of the program; this restriction is imposed by the gram-
mar. Note our language currently allows only single inheritance;
supporting multiple inheritance is the subject of our future work.



Modifiers m ::= abstract | concrete

Programs p ::= e | m brand β(` : τ) extends β in p

Expressionse ::= () | x | λx:τ. e | e e

| β̂(` = e) | e.`

| case e of {xi as β̂i ⇒ ei
i∈1..n}

Types τ ::= unit | τ → τ | β(` : τ) | τ ∧ τ

Values v ::= () | β̂(` = v) | λx:τ. e

Contexts Γ ::= ∅ | Γ, x : τ

Σ ::= ∅ | Σ, m β(` : τ) extends β

∆ ::= ∅ | ∆, β̂ extends β̂

Conventions

β̂ ≡ tag value corresponding toβ

fieldsΣ (β) = γ if β(γ) extends β′ ∈ Σ

Figure 4. Grammar for Unity

The rest of the language is similar to the standard lambda calcu-
lus with records and variants. For ease of presentation, we have not
included recursive functions. The expressionβ̂(` = e) creates an
object that is tagged witĥβ. The expressione.` projects the label
with namè from the expressione.

The case analysis construct is superficially similar to that of
ML-like languages. In each branch, the bound variablexi repre-
sents the scrutinee at a more precise type; the details of typing ob-
jects is explained in Section 3.1.

Our language does not directly include iso-recursive types, but
many uses of recursive types can be expressed using thebrand
mechanism. For example, to define streams, we can write:

abstract brand Stream extends Top
concrete brand S(hd : int, tail : Stream)

extends Stream

For lists:

abstract brand List() extends Top
concrete brand Cons(hd : int, tail : List())

extends List
concrete brand Nil() extends List

Our language includes a limited form of intersection types. Our
motivation for including these is to increase the expressiveness of
thecase statement, which we describe in detail in Section 3.1.2.

Σ is the subtyping context; it stores the user-declared sub-
branding relationships.∆ is the corresponding run-time context.∆
contains a strict subset of the information inΣ—it does not contain
whether a brand is abstract or concrete, and it does not keep track
of the record typè : τ associated with each brand. We assume
that Σ and∆ each always contain information about the root of
the sub-brand tree, which we callTop (similar toObject in Java).
In other words, we haveconcrete Top() extends Top ∈ Σ and
T̂op extends T̂op ∈ ∆.

Our theorems and judgements assume that all contexts are well-
formed, defined as follows:

Definition 3.1 (Well-formed context).
The contextΣ is well-formed, iff the following conditions hold:

1. there is exactly one entry for each brandβ.

Intersection on records

(`i : τi
i∈1..n, γ′) ∧ (`i : τ ′i

i∈1..n, γ′′)
def
=(

`i : (τi ∧ τ ′i)
i∈1..n, γ′, γ′′

)
where the labels̀i, γ′ andγ′′ are mutually exclusive.

Definition of covers

β̂i
i∈1..n coversΣ β(γβ)

def
=

∀θ . Σ ` θ v β and concrete θ(γθ) ∈ Σ ⇒
Σ ` θ(γθ), β(γβ) disjoint or ∃j ∈ 1..n. Σ ` θ v βj

Figure 5. Auxiliary definitions

2. if β(γ) extends θ ∈ Σ, then Σ ` γ <: fieldsΣ θ.

3.1 Static Semantics

Here we describe the subtyping and typing judgements shown in
Figures 6 and 7.

3.1.1 Subtyping rules

Subtyping comprises three parts: the sub-brand judgement (v), the
sub-record judgement (<:) and the subtype judgement proper (≤).
The last is shown in Figure 6, with auxiliary definitions in Figure 5.
The first two judgements are not on types, but on the two compo-
nents of object types, brands and records. The sub-brand judgement
is the reflexive, transitive closure of the declaredextends relation.
The sub-record judgement is standard depth and width subtyping
on records, using the subtype (≤) judgement for depth subtyping.
The rules for these judgements appear in Appendix A.2.

The subtype judgement (≤) ties together the sub-brand and
sub-record judgements. This is achieved by the ruleSUB-NAME:
it states that an object typeβ1(γ1) is a subtype ofβ2(γ2) when
β1 is a sub-brand ofβ2 (β1 v β2) andγ1 is a sub-record ofγ2

(γ1 <: γ2). There are additional conditions thatβ1(γ1) ok and
β2(γ2) ok, which ensures that these are valid types. The relevant
ok rule here is:

Σ ` (`i : τi
i∈1..n) <: fieldsΣ β Σ ` τi ok (i∈1..n)

Σ ` β(`i : τi
i∈1..n) ok

The full ok judgement appears in Appendix A.1.
Our language includes a limited form of intersection types,à

la Davies and Pfenning; the rulesSUB-∧R, SUB-∧L1 and SUB-
∧L2 are borrowed from their work [9]. Our language also al-
lows distribution on intersections of object types, via the rules
SUB-BRAND-∧L1 and SUB-BRAND-∧L2. These rules increase the
expressiveness of the system. For example, if we assume the
definitions of Point and 3DPoint from the introduction, these
rules allow us to conclude:Point(x : int, y : int, c : color)
∧ 3DPoint(x : int, y : int, z : int) ≤ 3DPoint(x : int,
y : int, z : int, c : color). Note that these rules make use of
the definition of intersection on record types shown in Figure 5.

The remaining subtyping rules are the standard reflexivity, tran-
sitivity, and function subtyping rules.

3.1.2 Typing rules

Full typing rules appear in Figure 7. Most of these are standard
rules for a simply-typed lambda calculus with subtyping; the novel
rules areTP-BRAND-INTRO, TP-NEW-OBJ andTP-CASE.

TP-BRAND-INTRO lets a program introduce new brands as ex-
tensions of previous brands, provided that the associated record
types are in the appropriate sub-record relationship. The condition
Σ ` Top(γ) ok ensures that the recordγ is well-formed.



Σ ` τ1 ≤ τ2

Σ ` τ ≤ τ
(SUB-REFL)

Σ ` τ1 ≤ τ2 Σ ` τ2 ≤ τ3

Σ ` τ1 ≤ τ3
(SUB-TRANS)

Σ ` σ1 ≤ τ1 Σ ` τ2 ≤ σ2

Σ ` τ1 → τ2 ≤ σ1 → σ2
(SUB-FUNC)

Σ ` β1 v β2 Σ ` γ1 <: γ2 Σ ` β1(γ1) ok Σ ` β2(γ2) ok
Σ ` β1(γ1) ≤ β2(γ2)

(SUB-NAME)
Σ ` τ ≤ σ1 Σ ` τ ≤ σ2

Σ ` τ ≤ σ1 ∧ σ2
(SUB-∧R)

Σ ` τ1 ≤ σ

Σ ` τ1 ∧ τ2 ≤ σ
(SUB-∧L1)

Σ ` τ2 ≤ σ

Σ ` τ1 ∧ τ2 ≤ σ
(SUB-∧L2)

Σ ` β1 v β2

Σ ` β1(γ1) ∧ β2(γ2) ≤ β1(γ1 ∧ γ2)
(SUB-BRAND-∧L1)

Σ ` β2 v β1

Σ ` β1(γ1) ∧ β2(γ2) ≤ β2(γ1 ∧ γ2)
(SUB-BRAND-∧L2)

Figure 6. Subtyping rules for Unity

Γ | Σ ` p : τ

β1 /∈ Σ Σ ` Top(γ) ok Σ ` γ <: fieldsΣ β2 Γ | Σ, m β1(γ) extends β2 ` p : τ ′ Σ ` τ ′ ok

Γ | Σ `m brand β1(γ) extends β2 in p : τ ′
(TP-BRAND-INTRO)

Γ | Σ ` e : τ

x : τ ∈ Γ

Γ | Σ ` x : τ
(TP-VAR)

Γ ` () : unit
(TP-UNIT)

Γ, x : τ1 | Σ ` e : τ2

Γ | Σ ` λx:τ1. e : τ1 → τ2
(TP-FUN)

Γ | Σ ` e1 : τ1 → τ2 Γ | Σ ` e2 : τ1

Γ | Σ ` e1 e2 : τ2
(TP-APP)

Γ | Σ ` e : σ Σ ` σ ≤ τ

Γ | Σ ` e : τ
(TP-SUBS)

concrete β(γ) ∈ Σ Σ ` (`i : τi)
i∈1..n <: γ Γ | Σ ` ei : τi (i∈1..n)

Γ | Σ ` β̂(`i = ei
i∈1..n) : β(`i : τi

i∈1..n)
(TP-BRAND-CONS)

Γ | Σ ` e : β(`i : τi
i∈1..n)

Γ | Σ ` e.`k : τk
(TP-PROJ)

Γ | Σ ` e : β(γ) {β̂k
k∈1..n} distinct

Σ ` βi v β (i∈1..n) Σ ` β̂k
k∈1..n coversβ(γ) Γ, xi : βi(γ ∧ fieldsΣ βi) | Σ ` ei : τ (i∈1..n)

Γ | Σ ` case e of {xj as β̂j ⇒ ej
j∈1..n} : τ

(TP-CASE)

Figure 7. Typing rules for Unity’s programsp and expressionse. Auxiliary definitions appear in Figure 5. Note: a program consisting
entirely of an expression is typechecked using theΓ | Σ ` e : τ judgement.

The ruleTP-NEW-OBJ ensures that values of object type that are
taggedβ̂ meet the requirements of the brandβ as defined in the
define brand construct. Only brands that areconcrete may be used
to create object values.

TheTP-CASE rule illustrates the novel aspects of our system. It
is similar in syntax to the “case” constructs of ML-like languages,
but its function is to perform dispatch on brand tags. In contrast
to ML, for instance, the order in which branches appear does not
affect execution; the most specific branch is always selected. The
TP-CASE rule ensures that such a branch will always exist.

The first three premises of the rule are fairly simple; brand
tags may not be repeated, and each must be a sub-brand of the
scrutinee’s brand. Thecovers condition ensures that there is a
branch for every concrete sub-brand ofβ. Since the brand hierarchy
is fixed at the start of the program, when the case statement is
typechecked, all possible sub-brands are known.

The coverscondition also allows the programmer to omit im-
possible branches. These can occur when the record type of the
scrutinee is incompatible with the record type of a concrete sub-
brand ofβ. It may not be immediately obvious why this might
occur, given our restrictions on defining brands and creating ob-
jects. But this situation can arise when structural subtyping is used.
For example, suppose our system included the base typesint and
color, and that these types are disjoint from one another (that is,
there are no values that have both typeint andcolor). Suppose
also that the scrutinee was aPoint that for some reason had az
field of type color; i.e., Point(x : int, y : int, z : color).
In such a case, the programmer may leave omit the branch for
3DPoint—even though3DPoint v Point—since the scrutinee’s
structural type is incompatible with the record type of3DPoint.



Formally, covers achieves this effect by making use of the
disjoint judgement. This judgement, presented in full in Ap-
pendix A.1, has the following property:

Lemma 3.1 (Disjoint types).
If Σ ` τ1, τ2 disjoint and∅ | Σ ` v : τ1, then∅ | Σ 0 v : τ2.

In the example from above, we haveΣ ` Point(x : int,
y : int, z : color), 3DPoint(x : int, y : int, z : color)
disjoint .

The final premise ofTP-CASE is probably the most interesting.
For simplicity, let us first ignore the intersection that appears in the
binding added toΓ so that it reads:

Γ, xi : βi(fieldsΣ βi) | Σ ` ei : τ (for i ∈ 1..n).

So, in each branch, the scrutinee is bound to a variablexi with a
more precise type. In particular, it will have the tagβ̂i and the fields
defined forβi in Σ. But, this rule would not allow the programmer
to make use of the additional structural information that may be
known about the scrutinee—it has the fieldsγ, which (a) may
contain more fields than fieldsΣ β, or (b) may refine one or more
of the types in fieldsΣ β.

Consequently, to retain as much typing information as possible,
the type ofxi is insteadβi(γ ∧ fieldsΣ βi). This uses the definition
of intersection of records as defined in Figure 5 (distinct labels are
concatenated; for common labels, the intersection of the associated
types is taken).

For example, assuming the definitions ofPoint and3DPoint
from above, consider the following program:

λe : Point(x : int, y : int, c : color).
case e of

p1 as Point => ...
p3 as 3DPoint => bar(p3)

The variable p3 has type 3DPoint(x : int, y : int,
z : int, c : color). It may initially appear that this does not
lead to a substantial increase in expressiveness, since the fields of
the scrutinee are in scope; in this example,p3.c is equivalent to
e.c. However, suppose that the argument tobar must have type
3DPoint(..., c : color). If the type ofp3 did not include the
color field, a new3DPoint object could be created with the integer
fields of p3 and the color field ofe, but this could change the
behavior of the program. Based on the semantics of the language,
we know that tag(p3) v tag(3DPoint); if it is a strict sub-brand
(e.g.3DSubPoint), then this information would be lost if a new
object were created (i.e., the program would have to create a
3DSubPoint object, rather than a3DPoint).

Therefore, including this intersection type in the premise of the
case rule strictly increases the expressiveness of the language; we
expect that it will be even more relevant in a language extension
that includes a form of row polymorphism [21].

3.2 Dynamic Semantics

The full evaluation rules appear in Appendix A. Most are standard;
the interesting ones are highlighted in Figure 8.

E-BRAND-DECL adds information from the brand declaration to
the run-time subtyping context∆. Note that the information about
the brand’s associated recordγ is not included, since structural
subtyping relationships have no effect on a program’s execution.
Sub-branding relationships do need to be retained since they affect
the dispatch in the evaluation of thecase expression.

The E-CASE2 rule handles evaluation of case expressions by
appealing to the auxiliary definition of the partial functionselect∆.
This function returns the index of the most specific matching tag,
if one exists. In words,select∆(θ̂, β̂i

i∈1..n) returns the indexj of
a β̂j that is the least upper bound (i.e., the smallest super-brand) of

select∆(θ̂, β̂i
i∈1..n)

def
= j ∈ 1..n,

where ∆ ` θ̂ v β̂j

and ∀k ∈ 1..n . ∆ ` θ̂ v β̂k ⇒ ∆ ` β̂j v β̂k

m brand β1(γ) extends β2 in p | ∆
7−→ p | ∆, (β̂1 extends β̂2)

(E-BRAND-DECL)

select∆(θ̂, β̂i
i∈1..n) = k

case θ̂(` = v) of {xi as β̂i ⇒ ei
i∈1..n}

7−→∆ [ θ̂(` = v) /xk ] ek

(E-CASE2)

Figure 8. Selected evaluation rules

θ̂. The proof of the progress theorem for this case shows that for
well-typed programs,select∆ is always uniquely defined.

3.3 Type safety

In this section, we describe the key lemmas and interesting cases
needed to prove type safety via the standard theorems of progress
and preservation.

Due to the fact that our language includes both intersection
types and subtyping, the usual lemmas have to be stated very
carefully. For example, the typing inversion lemma is as follows:

Lemma 3.2 (Inversion of the typing judgement).

1. If Γ | Σ ` λx:τ1. e : σ and Σ ` σ ≤ σ1 → σ2 then
Σ ` σ1 ≤ τ1 andΓ, x : τ1 | Σ ` e : σ2.

2. If Γ | Σ ` θ̂(`i = ei
i∈1..n) : σ and Σ ` σ ≤ β(kj :

τj
j∈1..m) then for someσi

i∈1..n we have:

(a) Γ | Σ ` θ̂(`i = ei
i∈1..n) : θ(`i : σi

i∈1..n) and
Γ | Σ ` ei : σi

(b) Σ ` (`i : σi
i∈1..n) <: fieldsΣ θ

(c) Σ ` θ v β
(d) Σ ` (`i : σi

i∈1..n) <: (kj : τj
j∈1..m)

Note that the lemma includes premises such ase : σ and
σ ≤ σ1 → σ2, rather than the simplere : σ1 → σ2; this is due
to the presence of intersection types. (Since the expression could
have type e.g.,σ1 → σ2 ∧ σ′1 → σ′2, stating the lemma in terms
of subtypes simplifies its proof, as this type is a subtype of, for
instance,σ1 → σ2.)

Similarly, one of the cases in the canonical forms lemma is
stated as:

If ∅ | Σ ` v : σ andΣ ` σ ≤ β(γ), v is of the form
θ̂(`i = vi).

It would be very difficult to prove a more “standard” canonical
forms lemma, since objects need not have types of the formβ(γ);
their types may contain one or more intersections (i.e.β1(γ1) ∧
β2(γ2) ∧ · · · ).

The type safety theorems make use of a consistency requirement
between the static subtyping context and the run-time subtyping
context.

Definition 3.2 (Models relation on contexts).
The contextΣ models∆, written Σ ` ∆, if |Σ| = |∆| and for
every

m β1(γ1) extends β2 ∈ Σ

we have

β̂1 extends β̂2 ∈ ∆.



The progress theorem not only requires that the program be
well-typed under a subtyping contextΣ, but also that it be evaluated
under run-time context∆ consistent withΣ, i.e., one such that
Σ `∆:

Theorem 3.1 (Progress [programs]).If ∅ | Σ ` p : τ , for some
τ andΣ, then one of the following cases holds:

1. p is a value
2. for ∆ such thatΣ ` ∆, there existp′ and ∆′ such that

p | ∆ 7−→ p′ | ∆′.

The bulk of the proof follows standard techniques. The most
interesting case follows from the following lemma:

Lemma 3.3 (Case statement exhaustiveness).

If ∅ | Σ ` θ̂(`j = vj
j∈1..m) : β(γ) and

Σ ` β̂i
i∈1..n coversβ(γ) and Σ `∆, then

select∆(θ̂, β̂i
i∈1..n) is defined.

Proof. (Sketch). By typing inversion, we know thatθ is concrete
and thatθ̂(` = v) : θ(` : τ), for someτ . From the definition
of covers, either θ(` : τ), β(γ) disjoint , or there is at least one
matching branch forθ. The former cannot hold since that would
mean that one value has two types that aredisjoint . So it suffices to
show that there is exactly one matching branch. However, the only
way that two matching branches could occur would be if there were
multiple inheritance, which is disallowed by the grammar.

As with progress, the preservation theorem must account for the
run-time subtyping context∆.

Theorem 3.2 (Preservation [programs]).
If Γ | Σ ` p : τ and Σ `∆ and p | ∆ 7−→ p′ | ∆′, then there
exists aΣ′ such thatΣ′ `∆′ whereΓ | Σ′ ` p′ : τ .

The proof proceeds by induction on typing derivations and
appeals to the standard substitution lemma. (Due to the presence
of subtyping and intersection types, it is very difficult to prove this
theorem by the more usual induction on the one-step evaluation
derivation.) The interesting case is theE-CASE2 subcase ofTP-
CASE. Here, we know

Γ, xk : βk(γ ∧ fieldsΣ βk) | Σ ` ek : τ

and

θ̂(` = v) : β(γ).

It suffices to shoŵθ(` = v) : βk(γ ∧ fieldsΣ βk); the result then
follows from the substitution lemma. To show this, we make use of
the following lemma:

Lemma 3.4. If Σ ` θ v β thenΣ ` fieldsΣ θ <: fieldsΣ β.

This formally proves that sub-branding implies structural sub-
typing on the associated record types.

The remainder of the preservation proof is straightforward. Full
proofs of both theorems (and auxiliary lemmas) are provided in the
companion technical report [17].

4. Related Work
The languages that are the most similar to Unity are Cecil [6] and
Moby [11]; we compared Unity to these in Section 2. Cecil of-
fers greater expressive power over Unity, but at the cost of a much
more complex type system that includes constraint solving. Moby
includes structural subtyping and an inheritance-based subtyping
that is similar to our sub-branding, but as its primary goal is to
combine modules and objects, it does not arrive at the same com-
bination of features as Unity does.

MultiJava [7, 8] and EML [18] both include support for modu-
lar typechecking of external methods and multimethods; previous
work had performed a whole-program analysis. We intend to build
on the EML’s techniques when we extend Unity to allow brand def-
initions to occur anywhere in the program. Lee and Chambers [15]
have extended EML to include support for parameterized modules.

Strongtalk [3] presents a structural type system for Smalltalk
and also supports named subtyping relationships (from which we
borrowed the name “brand”), but these are not combined in the
type system. Additionally, since it is a type system for Smalltalk, it
supports only the single dispatch model.

Cω’s [2] main subtyping model is nominal, though it does sup-
port depth subtyping—but not width subtyping—for “anonymous
structs,” which are similar to our records. Following C#, Cω also
has a single dispatch model.

OML [22] is similar to our work in that it has declared subtyping
(via objtype) along with structural subtyping. However, there
are a number of notable differences. In particular, OML wished
to retain ML-style type inference and therefore places constraints
on the subtyping relation. Additionally, depth subtyping is not
permitted duringobjtype extension, and there is no support allow
for modular extensibility of methods.

5. Summary and Future Work
We have presented a core calculus that combines nominal and
structural subtyping and provided proofs of type safety. We have
also described the utility of our system through a series of exam-
ples.

There are a number of extensions we would like to make. As
previously mentioned, we wish to allow brand extension to occur
anywhere in the program, and new branches to be added to external
methods without modifying existing code.

We also plan on adding parametric polymorphism and row poly-
morphism [21]. The latter would greatly add to the expressiveness
of our system. First, it would increase the utility of the intersection
in the types of bound variables in the branches of thecase typing
rule; the additional information contained in a row variable could
then be retained in case branches. In addition, it would allow for
more expressive recursive types. Recall that in theList example
from Section 3, the definition ofCons was:

concrete brand Cons(hd : int, tail : List())
extends List

In our current language, it would not be possible to describe a
list where everyCons element also contains, for example, acolor
field, without defining new brands for this purpose. This is because
the type oftail above is simplyList(), and there is no way
of specifying that for a particularCons object, itstail has the
same “extra fields” that it does. Row polymorphism would allow
the programmer to express this constraint without having to define
brands such asColorList, ColorCons andColorNil.

Acknowledgments
We wish to thank Bob Harper for his helpful discussions on our
system and William Lovas for his comments on an earlier version
of this paper.

References
[1] Martin Abadi and Luca Cardelli.A Theory of Objects. Springer,

1996.

[2] Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence of
data access in Cω. In Proceedings of the 19th European Conference
on Object-Oriented Programming, 2005.

[3] Gilad Bracha and David Griswold. Strongtalk: typechecking
smalltalk in a production environment. InOOPSLA ’93: Proceedings



of the eighth annual conference on Object-oriented programming
systems, languages, and applications, pages 215–230, New York,
NY, USA, 1993. ACM Press.

[4] Kim B. Bruce, Angela Schuett, Robert van Gent, and Adrian Fiech.
Polytoil: A type-safe polymorphic object-oriented language.ACM
Trans. Program. Lang. Syst., 25(2):225–290, 2003.

[5] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus
for overloaded functions with subtyping.Inf. Comput., 117(1):115–
135, 1995.

[6] Craig Chambers and the Cecil Group. The Cecil lan-
guage: specification and rationale, version 3.2. Available at
http://www.cs.washington.edu/research/projects/cecil/, February
2004.

[7] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein.
Multijava: modular open classes and symmetric multiple dispatch for
java. In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, pages 130–145, New York, NY, USA, 2000. ACM
Press.

[8] Curtis Clifton, Todd Millstein, Gary T. Leavens, and Craig Chambers.
Multijava: Design rationale, compiler implementation, and applica-
tions. ACM Trans. Program. Lang. Syst., 28(3):517–575, 2006.

[9] Rowan Davies and Frank Pfenning. Intersection types and computa-
tional effects. InICFP ’00: Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming, pages 198–
208, New York, NY, USA, 2000. ACM Press.

[10] K. Fisher, F. Honsell, and J. C. Mitchell. A lambda calculus of objects
and method specialization.Nordic J. Computing, 1:3–37, 1994.

[11] Kathleen Fisher and John Reppy. The design of a class mechanism
for moby. InPLDI ’99: Proceedings of the ACM SIGPLAN 1999
conference on Programming language design and implementation,
pages 37–49, New York, NY, USA, 1999. ACM Press.

[12] Kathleen Fisher and John Reppy. Inheritance-based subtyping.Inf.
Comput., 177(1):28–55, 2002.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[14] Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherwieght
Java: a Minimal Core Calculus for Java and GJ. InObject-Oriented
Programming Systems, Languages, and Applications, November
1999.

[15] Keunwoo Lee and Craig Chambers. Parameterized modules for
classes and extensible functions. InECOOP ’06 : Proceedings of the
20th European Conference on Object-Oriented Programming, 2006.

[16] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and
Jérôme Vouillon. The Objective Caml system, release 3.09.http:
//caml.inria.fr/pub/docs/manual-ocaml/index.html,
2004.

[17] Donna Malayeri and Jonathan Aldrich. Combining structural
subtyping and external dispatch. Technical Report CMU-CS-06-178,
School of Computer Science, Carnegie Mellon University, December
2006.

[18] Todd Millstein, Colin Bleckner, and Craig Chambers. Modular
typechecking for hierarchically extensible datatypes and functions.
ACM Trans. Program. Lang. Syst., 26(5):836–889, 2004.

[19] Greg Nelson, editor.Systems programming with Modula-3. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[20] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Stephane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik
Stenman, and Matthias Zenge. The Scala language specification
version 1.0. Technical report, Programming Methods Laboratory,
EPFL, Switzerland, 2004.

[21] Didier Rémy. Type checking records and variants in a natural
extension of ML. InPOPL ’89: Proceedings of the 16th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1989.

[22] John Reppy and Jon Riecke. Simple objects for standard ml. In
PLDI ’96: Proceedings of the ACM SIGPLAN 1996 conference on
Programming language design and implementation, pages 171–180,
New York, NY, USA, 1996. ACM Press.

[23] Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew
Black. Traits: Composable units of behavior. InEuropean Conference
on Object-Oriented Programming (ECOOP), 2003.

[24] Charles Smith and Sophia Drossopoulou. Chai: Traits for Java-like
languages. InECOOP ’05 : Proceedings of the 19th European
Conference on Object-Oriented Programming, 2005.

http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://caml.inria.fr/pub/docs/manual-ocaml/index.html


A. Formal System
A.1 Typing

Definition A.1 (Covering definition).

β̂i
i∈1..n coversΣ β(γβ)

def
=

∀θ . Σ ` θ v β and concrete θ(γθ) ∈ Σ ⇒
Σ ` θ(γθ), β(γβ) disjoint or ∃j ∈ 1..n. Σ ` θ v βj

Definition A.2 (Intersection on γ).

(`i : τi
i∈1..n, γ′) ∧ (`i : τ ′i

i∈1..n, γ′′)
def
=(

`i : (τi ∧ τ ′i)
i∈1..n, γ′, γ′′

)
where the labels̀i, γ′ andγ′′ are mutually exclusive.

Well-formed judgement

τ ok

Σ ` unit ok
Σ ` τ1 ok Σ ` τ2 ok

Σ ` τ1 → τ2 ok

Σ ` (`i : τi
i∈1..n) <: fieldsΣ β Σ ` τi ok (i∈1..n)

Σ ` β(`i : τi
i∈1..n) ok

Disjoint judgement

τ1, τ2 disjoint

Σ ` unit, τ1 → τ2 disjoint
DIS-UNIT1

Σ ` unit, β(γ) disjoint
DIS-UNIT2

Σ ` τ1 → τ2, β(γ) disjoint
DIS-ARROW

Σ ` τ1, τ2 disjoint
Σ ` τ1, τ1 ∧ τ2 disjoint

DIS-∧R1

Σ ` τ1, τ2 disjoint
Σ ` τ1, τ2 ∧ τ1 disjoint

DIS-∧R2

Σ ` τ, τ ′ disjoint

Σ ` β1(. . . , ` : τ, . . .), β2(. . . , ` : τ ′, . . .) disjoint
DIS-REC1

Σ ` β1 6v β2 Σ ` β2 6v β1

Σ ` β1(γ1), β2(γ2) disjoint
DIS-REC2

Σ ` τ1, τ2 disjoint
Σ ` τ2, τ1 disjoint

DIS-SYM

Typing rules

Γ | Σ ` p : τ

β1 /∈ Σ
Σ ` Top(γ) ok Σ ` γ <: fieldsΣ β2

Γ | Σ, m β1(γ) extends β2 ` p : τ ′

Σ ` τ ′ ok

Γ | Σ `m brand β1(γ) extends β2 in p : τ ′
(TP-BRAND-INTRO)

Γ | Σ ` e : τ

x : τ ∈ Γ

Γ | Σ ` x : τ
(TP-VAR)

Γ ` () : unit
(TP-UNIT)

Γ, x : τ1 | Σ ` e : τ2

Γ | Σ ` λx:τ1. e : τ1 → τ2
(TP-FUN)

Γ | Σ ` e1 : τ1 → τ2 Γ | Σ ` e2 : τ1

Γ | Σ ` e1 e2 : τ2
(TP-APP)

Γ | Σ ` e : σ Σ ` σ ≤ τ

Γ | Σ ` e : τ
(TP-SUBS)

concrete β(γ) ∈ Σ Σ ` (`i : τi)
i∈1..n <: γ

Γ | Σ ` ei : τi (i∈1..n)

Γ | Σ ` β̂(`i = ei
i∈1..n) : β(`i : τi

i∈1..n)
(TP-NEW-OBJ)

Γ | Σ ` e : β(`i : τi
i∈1..n)

Γ | Σ ` e.`k : τk
(TP-PROJ)

Γ | Σ ` e : β(γ) {β̂k
k∈1..n} distinct

Σ ` βi v β (i∈1..n) Σ ` β̂k
k∈1..n coversβ(γ)

Γ, xi : βi(γ ∧ fieldsΣ βi) | Σ ` ei : τ (i∈1..n)

Γ | Σ ` case e of {xj as β̂j ⇒ ej
j∈1..n} : τ

(TP-CASE)

A.2 Subtyping

A.2.1 Sub-brand judgement

Σ ` β1 v β2

m β1(γ) extends β2 ∈ Σ

Σ ` β1 v β2
(SUB-BRAND-DECL)

Σ ` β v β
(SUB-BRAND-REFL)

Σ ` β1 v β2 Σ ` β2 v β3

Σ ` β1 v β3
(SUB-BRAND-TRANS)

A.2.2 Sub-record judgement

Σ ` γ1 <: γ2

Σ ` γ <: γ
(SUB-REC-REFL)

Σ ` γ1 <: γ2 Σ ` γ2 <: γ3

Σ ` γ1 <: γ3
(SUB-REC-TRANS)

`i : τi
i∈1..n is a permutation of̀j : τj

j∈1..n

Σ ` `i : τi
i∈1..n <: `j : τj

j∈1..n (SUB-REC-PERM)

Σ ` `i : τi
i∈1..n <: `j : τj

j∈1..m, n > m
(SUB-REC-WIDTH)

for eachi, Σ ` σi ≤ τi

Σ ` `i : σi
i∈1..n <: `i : τi

i∈1..n (SUB-REC-DEPTH)



A.2.3 Subtype judgement

Σ ` τ1 ≤ τ2

Σ ` τ ≤ τ
SUB-REFL

Σ ` τ1 ≤ τ2 Σ ` τ2 ≤ τ3

Σ ` τ1 ≤ τ3
SUB-TRANS

Σ ` β1 v β2

Σ ` γ1 <: γ2 Σ ` β1(γ1) okΣ ` β2(γ2) ok
Σ ` β1(γ1) ≤ β2(γ2)

(SUB-NAME)

Σ ` σ1 ≤ τ1 Σ ` τ2 ≤ σ2

Σ ` τ1 → τ2 ≤ σ1 → σ2
(SUB-FUNC)

Σ ` τ ≤ σ1 Σ ` τ ≤ σ2

Σ ` τ ≤ σ1 ∧ σ2
(SUB-∧R)

Σ ` τ1 ≤ σ

Σ ` τ1 ∧ τ2 ≤ σ
(SUB-∧L1)

Σ ` τ2 ≤ σ

Σ ` τ1 ∧ τ2 ≤ σ
(SUB-∧L2)

Σ ` β1 v β2

Σ ` β1(γ1) ∧ β2(γ2) ≤ β1(γ1 ∧ γ2)
(SUB-BRAND-∧L1)

Σ ` β2 v β1

Σ ` β1(γ1) ∧ β2(γ2) ≤ β2(γ1 ∧ γ2)
(SUB-BRAND-∧L2)

A.3 Evaluation

Definition A.3 (Matching case).

select∆(θ̂, β̂i
i∈1..n)

def
= j ∈ 1..n,

where ∆ ` θ̂ v β̂j

and ∀k ∈ 1..n . ∆ ` θ̂ v β̂k ⇒ ∆ ` β̂j v β̂k

Evaluation Relation

p | ∆ 7−→ p′ | ∆′

m brand β1(γ) extends β2 in p | ∆
7−→ p | ∆, (β̂1 extends β̂2)

(E-BRAND-DECL)

e 7−→∆ e′

e | ∆ 7−→ e′ | ∆
(E-EXPR)

e 7−→∆ e′

e1 7−→∆ e′1

e1 e2 7−→∆ e′1 e2

(E-APP1)
e2 7−→∆ e′2

v1 e2 7−→∆ v1 e′2
(E-APP2)

(λx:τ. e) v 7−→∆ [ v/x ] e
(E-APP-ABS)

e 7−→∆ e′

e.` 7−→∆ e′.`
(E-PROJ1)

β̂(`i = vi
i∈1..n).`k 7−→∆ vk

(E-PROJ2)

ei 7−→∆ e′i

β̂(`1 = v1, . . . , `i−1 = vi−1, `i = ei, . . . )

7−→∆ β̂(. . . , `i = e′i, . . . )

(E-BRAND-CONS)

e 7−→∆ e′

case e of {· · · } 7−→∆ case e′ of {· · · }
(E-CASE1)

select∆(θ̂, β̂i
i∈1..n) = k

case θ̂(` = v) of {xi as β̂i ⇒ ei
i∈1..n}

7−→∆ [ θ̂(` = v) /xk ] ek

(E-CASE2)


	Introduction
	Examples
	Example 1: a window toolkit
	Example 2 : AST nodes in an IDE

	Formal System
	Static Semantics
	Subtyping rules
	Typing rules

	Dynamic Semantics
	Type safety

	Related Work
	Summary and Future Work
	Formal System
	Typing
	Subtyping
	Sub-brand judgement
	Sub-record judgement
	Subtype judgement

	Evaluation


