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Abstract On the other hand, structural subtyping is often more expressive
than nominal subtyping. It is compositional and intrinsic, existing

typing each have their own strengths and weaknesses. NominalUtside of the mind of the programmer. This has the advantage of
supporting unanticipated reuse—programmers don'’t have to plan

subtyping allows programmers to explicitly express design intent, . - 2. -
and, when types are associated with run time tags, enables run_for all possible reuse scenarios. Additionally, structural su.btyplng
time “type” tests (e.g., downcasts) and external/multimethod dis- 'S Often more notationally succinct. Programmers can concisely ex-
patch. On the other hand, structural subtyping is flexible and com- P'€SS type requirements without having to define an entire subtyp-
positional, allowing unanticipated reuse. To date, nearly all object- N9 hiérarchy. In nominal systems, situations can arise which re-

oriented languages fully support only one subtyping paradigm or quire multiple inheritance or an unnecessary proliferation of types;

the other. in a structural system, the required subtyping properties just arise

In this paper, we describe a core calculus for a language thatnaturally from a few simple axioms. Finally, structural subtyping is

combines the key aspects of nominal and structural subtyping in afar superior in contexts where the structure of the data is of primary

unified framework. Our goal is to combine the flexibility of struc- ImPortance, such as in data persistence or distributed computing.
tural subtyping while still allowing static typechecking of external In contras_t_, nominal subt_yplng can lead ,to ulnne_cessary versioning
methods. We prove type safety for this language and illustrate its ProPlems: if some class'is modified toC”, C” objects cannot be
practical utility through examples that are not easily expressed in SENt {0 @ distributed process with the original definitiéneven if
other languages. Our work provides a clean foundation for the de- € IS @ Strict extension of".

sign of future languages that enjoy the benefits of both nominal and . Ve believe that external dispatch and multimethods are essen-
structural subtyping. tial constructs for modular and extensible object-oriented program-

ming. External dispatch allows methods to be added to existing
classes and multimethods permit method dispatch to depend on any
1. Introduction subset of arguments to a function. As many have observed (for in-
stance,[[6/17._18]), in the absence of external dispatch, one must
resort to unwieldy double-dispatch code (such as the “Visitor” de-
sign pattern[[113]), which, aside from being difficult to understand,
forces programmers to plan ahead for this kind of extensibility and
further makes it difficult to add new subclasses.

Consequently, our aim is to create a language with a uniform
object model that retains the expressive and compositional nature
of structural subtyping while permitting external and multimethod

ispatch. We present a core calculus, in the stylé of([14,110, 1, 5],
or a language called Unity, which we believe achieves this goal.

Nominal subtyping (or user-defined subtyping) and structural sub-

In the research community, structural subtyping is considered a
clean and theoretically pleasing account of subtyping. However,
the most widely used object-oriented languages provide little or
no support for structural subtyping, relying instead on user-defined
nominal subtyping. Each kind of subtyping has its merits, but no
existing language combines the two in a uniform way.

Nominal subtyping allows the programmer to express and en-
force design intent explicitly. A programmer’s defined subtyping
hierarchy serves as checked documentation that specifies how th

various parts of a program are intended to work together. Ex- In Unit biect t ; dt A d with a “brahd.”
plicit specification also has the advantage of preventing “acci- B nd n_|3gan otdec“ ype |s|a reg?r . yee éllgtge Wlh'ah r '”
dental” subtyping relationships, such as the standard example of, rands in _uce” e nomlna“ Su ){’p_lng relation, which we ca
cowboy.draw() andcircle.draw (). Nominal subtyping also al- sub-br_and_lng. (The name _brand IS borrO\éved from Strongtalk
lows recursive types to be easily and transparently defined, since re-£3J' Wh'ct'.'n turn borrowed it from Modula-3 [19].) B_rands_ are
cursion can simply go through the declared names. Another advan- nominal” in that t_he user defines the SUb'bfaf‘d relationship, like
tage is that error messages are usually much more comprehensiblet,hevf’/‘;bc'asf) relathn ('jn Langdue;%es like Java, E'lf.fet" atlrr]\d Cﬁ'
since (for the most part) every type in a type error is one that the field tﬁnta rang_3 'St f Ine d € prog{a_\mrlnzr 'T S the mlnlrgum
programmer has defined explicitly. Finally, and most importantly, ';eth s tha ‘3”3;.0 Jefhs Sg?&_mﬂ"mf inc uthe.f'nlgs e.r words,
nominal subtyping is necessary for run-time subtyping tests (suchI ; € u)se[h ehines ? r? nat a_?n’bz.avmg et 'Iel dX : ﬁt’ ¢
as downcasts) as well as external and multimethod dispatch. y: int), (hen any valué tagged wikbint Must Include at leas!
the labelsx andy (with int type)—but it may also contain addi-

tional fields. Subtyping takes into account both the nominal sub-
brand relationship and the usual structural subtyping relationship
(width and depth) on records.
Permission to make digital or hard copies of all or part of this work for personal or To integrate these two relationships, brand extension is con-
classroom use is granted without fee provided that copies are not made or distributedstrained: the associated record types must be subtypes. In

for profit or commercial advantage and that copies bear this notice and the full citation gther words. a brandﬁ’ can be declared as a sub-brand of
on the first page. To copy otherwise, to republish, to post on servers or to redistribute ’

to lists, requires prior specific permission and/or a fee.
FOOL "07 ) I Note that record “types” are not actually types in the true sense, as they do
Copyright© 2006 ACM [to be supplied].. . $5.00 not classify any values—they occur only as part of object types.




6 only if @B's associated record type is a subtype @§
record type. As an example, suppose the brabBoint is
defined as3DPoint(x : int, y:int, z:int). 3DPoint can
be declared as a sub-brand Béint, since & : int, y: int,
z : int) is a sub-record ofx : int, y:int). However, a brand
1DPoint (x : int) cannot be a sub-brand Bbint (since it lacks
the y field), nor canFloatingPoint(x: float, y: float)
(sincefloat is not a subtype ofnt).

Brands allow external dispatch throughcase construct that
performs tag analysis. This construct allows new methods to be
written over existing class hierarchies.

To simplify our model and to focus on the core issues, our

calculus requires that the entire brand hierarchy be stated at thefun insertChar (t : Textbox(---), c: Char) : unit

start of the program. For similar reasons, the calculus also requires
that all branches of thease expression be given at once; later
extensions would require modifying the code directly. We expect
that techniques similar to those of EML 18] would allow us to
remove these restrictions in further refinements of our language.
(Semantically, each branch of thase expression can be viewed as

a separate branch of an external method; such branches need not be

textually adjacent.)

The contributions of this paper are as follows:

¢ a language design, Unity, that provides user-defined and struc-
tural subtyping relationships in a novel and uniform way. Unity
combines the flexibility of external dispatch with the conceptual
clarity of width and depth subtyping.

¢ aformalization of the design of Unity, along with proofs of type
safety (Sectiofi]3).

e examples that illustrate the expressiveness and flexibility of the
language (Sectidn] 2). We contrast Unity with other languages
in Sectio 2.1L.

2. Examples

The following examples introduce Unity and illustrate the flexibil-
ity that comes from the combination of structural subtyping and
external methods.

2.1 Example 1: a window toolkit

Figure[] contains a code excerpt for a windowing system and
illustrates the novel features of Unity. The brawihdow is the
top-level type; its fields have been abbreviatedbyBy default,

a window does not have a scrollbar. The bramdgtbox and
StaticText extendWwindow, and also do not scroll by default. The
typeWindow(y, s: Scrollbar) represents a window that does
have a scrollbar; thecroll function applies to any such window.
For this example, we assume that the implementatioscebll

only needs to access the scrollbar field and the fields in

Let us assume that in a non-scrolling textbox the user can
only enter a fixed number of characters. Consequently, we de-
fine the brandScrollingTextbox in order to change textbox
functionality—in particular, the behavior of thénsertChar
function. Note thatScrollingTextbox(...) is a subtype of
Window(vy, s: Scrollbar), SO thescroll function can be ap-
plied to objects of this type without any additional modification.

If other sub-brands ofindow (such asStaticText) do not
need to change their existing behavior when a scrollbar is added,
no new sub-brands need be defined. Scrolling functionality can
be added to these types by including@rollbar field, and the
scroll function is then applicable. Since a textbox that scrolls
allows the user to enter more text than the window size permits,
a new sub-brand had to be defined so that its casasartChar
could be overridden.

abstract brand Window ()

concrete brand Textbox (7, currentPos : int)

extends Window

concrete brand StaticText (v, text : string)

extends Window

concrete brand ScrollingTextbox
(v, currentPos :

extends Textbox

int, s : Scrollbar)

fun scroll ( w:Window(y, s:Scrollbar) ) : unit
... Il code that performs the scrolling operation

case t of
| Textbox =>
/l'insert a character only if it will fit in the window

| ScrollingTextbox =>
I/l insert the character, scrolling if necessary

Subtyping relationships

Window (v, s : Scrollbar) < Window (7)

Textbox (...) < Window (v)
ScrollingTextbox (...) < Textbox (...)

ScrollingTextbox(...) < Window(y, s : Scrollbar)
StaticText(...) < Window (7)
StaticText(..., s: Scrollbar) < Window(7y, s : Scrollbar)

Figure 1. Unity code for a windowing system with textboxes,
static text, and scrollbars. The metavariablelenotes additional
fields that would be present in an actual code. Nominal subtyp-
ing allows the brandcrollingTextbox to change the behav-
ior of insertChar through tag dispatch, while structural subtyp-
ing allows thescroll function to apply to any window with an

s : Scrollbar field.

The subtyping relationships induced by these brand definitions
are shown below the code listing in Figjre 1. Note that, interest-
ingly, ScrollingTextbox(...) is a subtype of botlindow (v,

s : Scrollbar) and ofTextbox(...), but there is no multiple
inheritance involved.

This example illustrates the two kinds of extensibility that Unity
provides: structural extension and brand extension.

e Structural extension can be used to create a new type that
adds fields to an existing brandjthout defining new behav-
ior for the resulting typeSo, aScrollbar can be added to a
StaticText object without defining a new brand, as the exist-
ing functionality of the static text box does not need to change
if a scrollbar is added.

e Brand extension creates a new brand that can be used in

dispatch; as a consequence, programsdefine new behav-
ior for the newly defined brandHere,ScrollingTextbox is
defined as an extension Bkxtbox because the behavior of
insertChar is different depending on whether or not the text
box has a scrollbar attached to it.

Comparison to other systems

Java. In Java-like languages, expressing this example would
be unwieldy. A common way to express the necessary con-
straints would involve first defining two interface®yindow and



Window

| |
/N

| Textbox | | StaticText ScrollingWindow | | Textbox | o | StaticText | ,:

| ScrollingTextbox | | ScrollingTextbox | | ScrollingStaticText |
(a) The windowing example as implemented in Unity. (b) The same example implemented in Java. Dashed rectangles are interfaces;
Depicted here are the brands that must be defined in  solid rectangles are classes. Dashed lines indicatemieement s relationship
order to obtain the desired subtyping relationships. and solid lines indicatextends.

Figure 2. For the windowing example, the user-defined subtyping relationships necessary in Unity vs. those necessary in Java.

IScrollableWindow. (Since Java interfaces cannotinclude fields, trivial to add support for external dispatch or multimethods to these
the scrollbar field would actually have to begatScrollbar () types of languages.

method inIScrollableWindow.) Any window class that wished

to allow the possibility of adding a scrollbar, even without changing
any other functionality, would have to define a subclass that also
implementedIScrollableWindow. In this example, we would
define the classeScrollingWindow, ScrollingTextbox, and
ScrollingStaticText, though onlyScrollingTextbox needs

Moby. The language MBY is in many ways similar to Unity,

as it supports structural subtyping and a variety of tag subtyping
through its inheritance-based subtyping mechanism[[11, 12]. This
allows expressing many useful subtyping constraints, basMs
class types are not integrated with object types in the same way

to change any functionality; see the class diagram F[gure 2(b). Con-3S in Unity. For instance, in MBY, it is not possible to express

P ; : . the constraint that an object should have a particular chask
g%sljrtl]ﬁ(;v;_th the brand structure of the Unity program depicted in should have some particular fields (that are not defined in the class

Presumably, the Java equivalent of #eroll function would |tself_). Addltlo_nally, the object-oriented core OfMY supports
be a static function of some helper class and would take an objectOnly internal dlsp_atch ratrlerthan e3<ternal or multlme_th_od dispatch.
of typeIScrollableWindow. Of course, if a programmer defined Mosy does include “tagtypes” that are very similar to our
a new scrolling window class with the corregétScrollbar () bran_ds. These can be used to support downcasts ort encode
method, but forgot to implementScrollableWindow, the multimethods, but they are orthogonal to class and object types.
scroll function could not be used on objects of that class. (This Cecil. Cecil [6] would allow expressing all of the necessary
situation often arises in Java programs, particularly when one relationships (though new classes do need to be defined for
wishes to use library code that is not even aware of the interface scrollingWindow andScrollingStaticText), as it has a very
that it should be declared to implement.) powerful—but very complex—type system. To write theroll

There are also some oddities in the Java example. The Javafunction, a programmer would have to use bounded quantification
classScrollingWindow is semantically analogous to the Unity  and a “where” clause constraint, the latter being typechecked via a

type Window(y, s: Scrollbar), butScrollingTextbox and constraint solver. That is, in words, the argumen¢¢oo11 would
ScrollingStaticText arenotsubclasses (fcrollingWindow, have type:

while the corresponding Unity typese subtypes offindow (v,

s: Scrollbar). This illustrates the lack of expressiveness that for all T where .

is inherent in languages that require the programmer to name all T <: Window and signature getScrollbar(T) : Scrollbar
relevant subtyping relationships. Cecil also fully supports multimethod dispatch. Although Unity is

strictly less expressive than Cecll, its advantage lies in unifying
Traits. A language with traits [23, 24, 20] would provide a much structural typing with external dispatch in a simpler, more uniform
cleaner solution than Java, but would ultimately lack the expres- way.
siveness of Unity’s structural subtyping. This is due to the fact that )
traits are mainly designed to solve issues of implementation inheri- 2.2 Example 2 : AST nodes in an IDE

tance (especially multiple inheritance), which is largely orthogonal suppose we have an integrated development environment that in-
to the issues we are considering. cludes an editor and a compiler. The top portion of Figure 3 con-

tains an excerpt of a simplified version of the code for such a sys-
Structural subtyping. A language with support for structural sub-  tem. Here, the brandslusNode, Num andVar define a simple ab-
typing (e.g., O’Caml[[16], PolyTOIL[[4], etc.) would elegantly  stract syntax tree. Using structural subtyping, AST nodes with ad-
express all of the desired subtyping relationships, but these lan-ditional information can be created, such as a node withcfield
guages allow only internal dispatch—that is, all methods must be specifying the file location of the code corresponding to the node.
defined inside the class definition. In our languaiyesertChar Additional functions are available for such nodes, such as the func-
can be an external method; it need not reside inside the definitionstion highlightNode that highlights a node’s source code in the
of Textbox andScrollingTextbox. It would be decidedly non- text editor.



Initial version of the code:

abstract brand AstNode() extends Top

concrete brand PlusNode ( nl : AstNode(), n2: AstNode() ) extends AstNode
concrete brand Num ( val : int ) extends AstNode
concrete brand Var ( s : Symbol) extends AstNode

/I highlight the text corresponding to ‘node’ in the text editor,
/I using the location specified by the ‘loc’ field
fun highlightNode ( node : AstNode(loc : Location) ) : unit = ...

/I compile code to an output stream
fun compile ( node : AstNode(), out : OutStream ) : unit =
case node of
| plus as PlusNode => compilePlus(plus, out);
| nun as Num => ...
| var as Var => ...

New code for including debug information for some AST nodes:

/I AST nodes with debug information

concrete brand DebugPlusNode ( nl : AstNode, n2 : AstNode, loc : Location ) extends PlusNode
concrete brand DebugNum ( val : int, loc : Location ) extends Num

concrete brand DebugVar ( s : Symbol, loc : Location, varName : string ) extends Var

/I compile code to an output stream, outputing additional information for Debug* nodes
fun compile ( node : AstNode(), out : OutStream ) : unit =
case node of
| plus as PlusNode => compilePlus(plus, out);
|

// for the debug code, output the file location. for DebugVar, also the variable name

| dplus as DebugPlusNode => compilePlus(dplus, out); outputLocation(out, dplus.loc)
| dnum as DebugNum => ...

| dvar as DebugVar => ...

Figure 3. Example 2: AST nodes in an IDE. The top portion is the code before changes to add debug information to the AST. The function
highlightNode makes use of structural information, the external dispatatvitpile changes its behavior for the declafebug* sub-

brands. (We assume here that the newly defined brands have been defined in the preamble of the source program, along with the original
brands.)

Note that we did not define a new brand for AST nodes that 3. Formal System

include file location information. Whether or not a node contains PP PR
o . . The grammar for our language, Unity, is displayed in Figure 4. To
file information, functions that operate over AST nodes do not define brands, thérand construct is used. A brand cangt% either

need to change their behavior, so in this case structural subtyping,peiyact or concrete; in the former case, objects tagged with that
suffices. brand cannot be created, similar to Java’'s abstract classes. We use

. Suppose now that the programmer Wis'ﬁ'?s to gdd “debug" Ve the metavariable§ andé to range over brand names.
sions of these AST nodes that contain additional information to be When a brand is defined, a name is given for it, as well as a list

output when compiling in debug mode. For examplBetugliun of zero or more (label : type) pairs; these are the labels that must be
has aLocation field, while DebugVar includes d.ocation field given values when objects of that brand are created. As previously
as well as a string representation of the varlable name. The ne\’vlymentioned, we informally call this list of label-and-type pairs a
added code is listed in the bottom portion of Figure 3. . record “type.” The metavariabte ranges over these record types.

Since each of these brands have been defined as extensmnsrhe abbreviatior? - = denotes?: : = " and 7 = v denotes
they may also customize the behavior efmpile to output 0, = g, i€ ’ co N

this additional information when compiling. Additionally, since If 3is a brand name, th@lis the tag value corresponding o

all of the Debug* brands have a.ocation field, the function - g .
In other words3() is a type, and3 is its run-time analogue.

highlightNode can be used on objects of this type. ! . ;
This example again illustrates the expressiveness that is gained, /AS Previously stated, the brand subtree must be given in full at

by combining nominal and structural subtypingighlightNode the start of the program; this restriction is impo_sed b_y the_ gram-
makes use of additional structural information, whdempile mar. Note our language currently allows only single inheritance;

relies on tag dispatch to behave differently in different situations. SUPPOrting multiple inheritance is the subject of our future work.
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Modifiers m ::= abstract | concrete
Programs p::=e|m brand B(¢: 7) extends 3 in p

Expressionse ::= () |z | Az:T.e | ee
where the labelg;, v and~"” are mutually exclusive.

| Bl=e)|el
| caseeof {z; as B = e; ‘<) Definition of covers
Types ro=unit|T—71|B(:T) | TAT B; i€ coverss B(ys) &
Values viu= Q| B(Z =) | Az:T.e V0.3 F6LC 3 and concrete O(y9) € X =

¥ F6(ye),B(vp) disjointor 3j € 1.n. X FOLC 3;
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[Tower Figure 5. Auxiliary definitions
Y=o |3, mpB: 1) extends 3
A= | A, [ extends 3 2.if B(v) extends 0 € %, then S I <: fieldss 0.
Conventions

3.1 Static Semantics

B = tag value corresponding 1 Here we describe the subtyping and typing judgements shown in
fieldss (8) =~ if B(y) extends 3’ € ¥ Figure{ 6 anfl]7.

3.1.1 Subtyping rules

Subtyping comprises three parts: the sub-brand judgerngnti{e
sub-record judgemenk() and the subtype judgement proper)(

The rest of the language is similar to the standard lambda calcu- The last is shown in Figufg 6, with auxiliary definitions in Figife 5.
lus with records and variants. For ease of presentation, we have notThe first two judgements are not on types, but on the two compo-
included recursive functions. The expressi®{f = e) creates an nents of object types, brands and records. The sub-brand judgement
Object that is tagged Wltﬁ The expressioﬂ.g projects the label is the reﬂeXiVe, transitive closure of the declagstlends relation.
with name from the expressios. The sub-record judgement is standard depth and width subtyping

The case analysis construct is superficially similar to that of On records, using the subtypg)(judgement for depth subtyping.
ML-like languages. In each branch, the bound variahleepre- The rules for these judgements appear in Appendix A.2.
sents the scrutinee at a more precise type; the details of typing ob-  The subtype judgement<) ties together the sub-brand and

Figure 4. Grammar for Unity

jects is explained in Secti.l. sub-record judgements. This is achieved by the giule-NAmE:

Our language does not directly include iso-recursive types, but it states that an object typ@: (v1) is a subtype of3z2(y2) when
many uses of recursive types can be expressed usingrane [ is a sub-brand 0B, (51 T B2) and~; is a sub-record ofy,
mechanism. For example, to define streams, we can write: (71 <: 72). There are additional conditions th&t (1) ok and

abstract brand Stream extends Top B2(v2) ok, which ensures that these are valid types. The relevant

concrete brand S(hd : int, tail : Stream) okrule here is:
extends Stream SHEW T 161"") <: fieldss 8 Y k7oK (iel..n)

by "ﬁ(ﬁl LT ielnn) ok

The full ok judgement appears in Appendlix A.1.
abstract brand List() extends Top Our language includes a limited form of intersection types,
concrete brand Cons(hd : int, tail : List()) la Davies and Pfenning; the rules-AR, Sus-AL; and Sus-
extends List = ALy are borrowed from their work [9]. Our language also al-
concrete brand Nil() extends List R . . . -
lows distribution on intersections of object types, via the rules
Our language includes a limited form of intersection types. Our Sus-BRAND-AL; and Sus-BRAND-AL,. These rules increase the
motivation for including these is to increase the expressiveness of expressiveness of the system. For example, if we assume the
thecase statement, which we describe in detail in Secfion 3.1.2.  definitions of Point and 3DPoint from the introduction, these
¥ is the subtyping context; it stores the user-declared sub- rules allow us to conclud®oint (x : int, y:int, c: color)
branding relationshipg\ is the corresponding run-time contet. A 3DPoint(x :int, y:int, z:int) < 3DPoint(x:int,
contains a strict subset of the informatiorbir—it does not contain y :int, z:int, c:color). Note that these rules make use of
whether a brand is abstract or concrete, and it does not keep trackhe definition of intersection on record types shown in Fifjjire 5.
of the record type : 7 associated with each brand. We assume The remaining subtyping rules are the standard reflexivity, tran-
that > and A each always contain information about the root of sitivity, and function subtyping rules.
the sub-brand tree, which we cdlbp (similar toObject in Java).

For lists:

In other words, we haveoncrete Top() extends Top € ¥ and 3.1.2 Typing rules

Top extends Top € A. Full typing rules appear in Figufd 7. Most of these are standard
Our theorems and judgements assume that all contexts are well-rules for a simply-typed lambda calculus with subtyping; the novel

formed, defined as follows: rules areTp-BRAND-INTRO, TP-NEW-OBJ and TpP-CASE.

TP-BRAND-INTRO lets a program introduce new brands as ex-
tensions of previous brands, provided that the associated record
types are in the appropriate sub-record relationship. The condition
1. there is exactly one entry for each brahd 3 F Top(y) ok ensures that the recondis well-formed.

Definition 3.1 (Well-formed context).
The contex® is well-formed iff the following conditions hold:
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Figure 6. Subtyping rules for Unity
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Figure 7. Typing rules for Unity’s programg and expressions. Auxiliary definitions appear in Figuig 5. Note: a program consisting
entirely of an expression is typechecked usinglthex + e : 7 judgement.

The ruleTp-NEw-OBJ ensures that values of object type that are The coverscondition also allows the programmer to omit im-
taggeds meet the requirements of the bragdas defined in the possible branches. These can occur when the record type of the
define brand construct. Only brands that atencrete may be used ~ scrutinee is incompatible with the record type of a concrete sub-
to create object values. brand of 3. It may not be immediately obvious why this might

The Tp-Cask rule illustrates the novel aspects of our system. It Occur, given our restrictions on defining brands and creating ob-
is similar in syntax to the “case” constructs of ML-like languages, jects. But this situation can arise when structural subtyping is used.
but its function is to perform dispatch on brand tags. In contrast For example, suppose our system included the base typeand
to ML, for instance, the order in which branches appear does not color, and that these types are disjoint from one another (that is,
affect execution; the most specific branch is always selected. Thethere are no values that have both type andcolor). Suppose
Tp-Cask rule ensures that such a branch will always exist. also that the scrutinee wasPaint that for some reason hadza

The first three premises of the rule are fairly simple; brand field of type color; i.e., Point(x : int, y:int, z:color).
tags may not be repeated, and each must be a sub-brand of thén such a case, the programmer may leave omit the branch for
scrutinee’s brand. Theovers condition ensures that there is a 3DPoint—even thougBDPoint T Point—since the scrutinee’s
branch for every concrete sub-brand®oSince the brand hierarchy  structural type is incompatible with the record typesdPoint.
is fixed at the start of the program, when the case statement is
typechecked, all possible sub-brands are known.



Formally, covers achieves this effect by making use of the

3 7 icl..ny def .
disjoint judgement. This judgement, presented in full in Ap- select (0, 8; *“"™) = Jj€lm,
pendi{’A.1, has the following property: where A 9 C
=Mj
Lemma 3.1 (Disjoint types). andvkel.n. AFOC gk ~ A Fﬁj C Bk

If ¥ 7,7 disjointandg | X kv : 7, theng | X Fo: 7.

(E-BRAND-DECL)

In the example from above, we hate + Point(x: int, m brand B1(7) extends B in p | A
y :int, z:color), 3DPoint(x:int, y:int, z: color) . A (B extends E )
disjoint. Pl 2
The final premise of ,-Cask is probably the most interesting. .
For simplicity, let us first ignore the intersection that appears in the seleck (6, 5; )=k (E-CASE2)
binding added td@" so that it reads: case g(m) of {z; as Gi= e i€ty
T, z;: Bi(fieldss 3;) | 2 Fe;: 7 (fori € 1..n). —a [0l =) [zp] e
So, in each branch, the scrutinee is bound to a variableith a Figure 8. Selected evaluation rules

more precise type. In particular, it will have the tagand the fields
defined forg; in X. But, this rule would not allow the programmer
to make use of the additional structural information that may be 6. The proof of the progress theorem for this case shows that for
known about the scrutinee—it has the fieldswhich (a) may well-typed programsselect is always uniquely defined.
contain more fields than fields3, or (b) may refine one or more
of the types in fields 3. 3.3 Type safety

Consequently, to retain as much typing information as possible, |n this section, we describe the key lemmas and interesting cases
the type ofz; is instead3; (v A fields: 3;). This uses the definition  needed to prove type safety via the standard theorems of progress
of intersection of records as defined in Figufe 5 (distinct labels are gng preservation.
concatenated; for common labels, the intersection of the associated pue to the fact that our language includes both intersection

types is taken). ) L ‘ 4 types and subtyping, the usual lemmas have to be stated very
For example, assuming the definitionsRafint and3DPoint carefully. For example, the typing inversion lemma is as follows:
from above, consider the following program:

Lemma 3.2 (Inversion of the typing judgement).
Ae : Point(x : int, y: int, c: color). ( yping judg )

case e of LD | ¥ FXximi.e: candX Fo < o1 — o2 then
pl as Point => ... YFor<mandl,z:7i |X Fe:os.
p3 as 3DPoint => bar (p3) 200 | S FO(l =e ") :0 and £ Fo < Bk
The variable p3 has type 3DPoint(x : int, y: int, 7; 7€+ then for somer; " we have:
z:int, c:color). It may initially appear that this does not @l | = F 5(&_ — e €M) ¢ Q6 : oy ) and
lead to a substantial increase in expressiveness, since the fields of 'S bkei:o;
the scrutinee are in scope; in this exampig, c is equivalent to (b) = F (4 : 05 €™ < fieldss 6
e.c. However, suppose that the argumenbta must have type ©XFOCS
3DPoint (..., c:color). If the type ofp3 did not include the @ s F (g._- oy €Y <o (K 2y TET)
color field, a newsDPoint object could be created with the integer e ’ n
fields of p3 and the color field ofe, but this could change the Note that the lemma includes premises sucheas o and

behavior of the program. Based on the semantics of the languageo < o1 — o2, rather than the simpler : o1 — o3; this is due
we know that tag{3) C tag@DPoint); if it is a strict sub-brand to the presence of intersection types. (Since the expression could
(e.g.3DSubPoint), then this information would be lost if a new  have type e.gg1 — 02 A o] — 0%, stating the lemma in terms
object were created (i.e., the program would have to create aof subtypes simplifies its proof, as this type is a subtype of, for
3DSubPoint object, rather than 8DPoint). instanceg; — o02.)

Therefore, including this intersection type in the premise of the Similarly, one of the cases in the canonical forms lemma is
case rule strictly increases the expressiveness of the language; westated as:

expect that it will be even more relevant in a language extension fo|S Fo:oandS ko < B(y), vis of the form

that includes a form of row polymorphisin [21]. 5(6 )
i = Vi).
3.2 Dynamic Semantics It would be very difficult to prove a more “standard” canonical
The full evaluation rules appear in Appenfiik A. Most are standard; forms lemma, since objects need not have types of the fifrm;
the interesting ones are highlighted in Fige 8. their types may contain one or more intersections (f:€7y1) A
E-BrAND-DECL adds information from the brand declarationto  B2(y2) A --). _ _
the run-time subtyping context. Note that the information about The type safety theorems make use of a consistency requirement

the brand’s associated recosdis not included, since structural ~ between the static subtyping context and the run-time subtyping
subtyping relationships have no effect on a program’s execution. Context.
Sub-branding relationships do need to be retained since they affectpefinition 3.2 (Models relation on contexts).

the dispatch in the evaluation of these expression. . The contexts modelsA, written & - A, if [S| = |A| and for
The E-Case2 rule handles evaluation of case expressions by eyery

appealing to the auxiliary definition of the partial functiselects .

This function returns the index of the most specific matching tag,

if one exists. In wordsseleck (6, 3; “<* ™) returns the indey of we have R R
aBj that is the least upper bound (i.e., the smallest super-brand) of p1 extends B2 € A.

m B1(y1) extends B2 € &



The progress theorem not only requires that the program be  MultiJava [7,/8] and EMLI[18] both include support for modu-
well-typed under a subtyping conteXt but also that it be evaluated lar typechecking of external methods and multimethods; previous
under run-time context\ consistent withy, i.e,, one such that work had performed a whole-program analysis. We intend to build
> FA: on the EML’s techniques when we extend Unity to allow brand def-
initions to occur anywhere in the program. Lee and Chambefs [15]
have extended EML to include support for parameterized modules.

Strongtalk [[3] presents a structural type system for Smalltalk

Theorem 3.1 (Progress [programs]).If @ | ¥ Fp : 7, for some
7 andX, then one of the following cases holds:

1. pis avalue and also supports named subtyping relationships (from which we
2. for A such that: F A, there existp’ and A’ such that borrowed the name “brand”), but these are not combined in the
plA— p | A type system. Additionally, since it is a type system for Smalltalk, it

supports only the single dispatch model.
Cuw’s [2] main subtyping model is nominal, though it does sup-
port depth subtyping—but not width subtyping—for “anonymous

The bulk of the proof follows standard techniques. The most
interesting case follows from the following lemma:

Lemma 3.3 (Case statement exhaustiveness). structs,” which are similar to our records. Following C#, @lso
~ ietm has a single dispatch model.
It o LZ, HO(; = v; ): B(y) and OML [22] is similar to our work in that it has declared subtyping
¥ ;"< coversp(y) and ¥ A, then (via objtype) along with structural subtyping. However, there
selech (0, 3; ‘™) is defined. are a number of notable differences. In particular, OML wished
o ) ) to retain ML-style type inference and therefore places constraints
Proof. (Sketch). By typing inversion, we know thétis concrete on the subtyping relation. Additionally, depth subtyping is not

and thatd({ =v) : 6(£: ), for some7. From the definition permitted duringbjtype extension, and there is no support allow
of covers eitherd(¢ : ), 5() disjoint, or there is at least one  for modular extensibility of methods.

matching branch fof. The former cannot hold since that would

mean that one value has two types thatdisgint. So it suffices to 5. Summary and Future Work

show that there is exactly one matching branch. However, the only
way that two matching branches could occur would be if there were
multiple inheritance, which is disallowed by the grammar. O

We have presented a core calculus that combines nominal and
structural subtyping and provided proofs of type safety. We have
also described the utility of our system through a series of exam-

As with progress, the preservation theorem must account for the PI€S.

run-time subtyping contexh. There are a number of extensions we would like to make. As

] previously mentioned, we wish to allow brand extension to occur
Theorem 3.2 (Preservation [programs]). L anywhere in the program, and new branches to be added to external
fFL|SFp:7andX A andp|A — p' | Al thenthere  methods without modifying existing code.
exists &’ such tha®' - A’ wherel" | &' I-p' : 7. We also plan on adding parametric polymorphism and row poly-

. . ; I morphism [21]. The latter would greatly add to the expressiveness
The proof proceeds by |n(_juc_t|on on typing derivations and of our system. First, it would increase the utility of the intersection

appeals to the standard s_ubstltutlon_ I_emma. (_D_ue to the Presence the types of bound variables in the branches ofdie typing

of subtyping and intersection types, it is very difficult to prove this ryje; the additional information contained in a row variable could

theorem by the more usual induction on the one-step evaluationthen be retained in case branches. In addition, it would allow for

derivation.) The interesting case is tBeCAse2 subcase ofTp- more expressive recursive types. Recall that inlthet example
Cask. Here, we know from Sectiorf B, the definition dfons was:
T,z : Bk(’}/ A fieldss ﬁk) | Sheg:T concrete brand Cons(hd : int, tail : List())

extends List

and . . .
~ In our current language, it would not be possible to describe a

0(€ =) : B(v). list where evenCons element also contains, for examples@lor

) ~ ) ) field, without defining new brands for this purpose. This is because
It suffices to showd (¢ = v) : Bk (v A fieldss 8i); the result then ) S ) .
follows from the substitution lemma. To show this, we make use of the type thall above is S|_mplyLlst(),_and _therg IS No way
of specifying that for a particulatons object, itstail has the

the following lemma: same “extra fields” that it does. Row polymorphism would allow
Lemma 3.4. If ¥ -0 C gthenX fieldss 6 <: fieldss . the programmer to express this constraint without having to define

This formally proves that sub-branding implies structural sub- brands such aSolorList, ColorCons andColorNil.

typing on the associated record types.
The remainder of the preservation proof is straightforward. Full Acknowledgments
proofs of both theorems (and auxiliary lemmas) are provided in the We wish to thank Bob Harper for his helpful discussions on our
companion technical repoft [17]. system and William Lovas for his comments on an earlier version
of this paper.
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A. Formal System
A.1 Typing
Definition A.1 (Covering definition).

def

Bi "€t coverss B(ys) =
V0. F6C B and concrete O(yp) € X =
¥ F0(v9),8(ys) disjoint or 35 € 1.n. 2 HO C 3,

Definition A.2 (Intersection on ).

i€l.n i€l.n def
(€ om S8 ) A (LTl TS )

(Ei c(ri AT iel"”,’y’,v”)

where the labelg;, 4/ and+’" are mutually exclusive.

Well-formed judgement

Eknok EFTQOK
Y1 — ok

¥ F unit ok

SR ) < fieldss 8 Y 70k (ie1.n)
by Fﬁ(& LT iel”n) ok

Disjoint judgement

- ———— Dis-UNITl
3 b unit,n — 72 disjoint

——— DIs-UNIT2
Y unit, 8(vy) disjoint 1SN

Dis-ARROW

¥ b7 — 72, B(7) disjoint

3 + 7y, 72 disjoint
¥ k7,11 A T2 disjoint

Dis-AR1

3 + 7y, 72 disjoint
¥ k7,12 A 7y disjoint

DIsS-ARso

¥ F 7,7 disjoint

Dis-REC1
S Bl it ) Bl b7, ) disjoint e

/U B L FB LB

S F Bi(n), Ba(72) disjoint. > REC

¥ F 71, 12 disjoint

————— DIs-Sym
¥ F 72, 71 disjoint

Typing rules

FXkp:7
B¢ X

3 F Top(y) ok 3k < fieldss G2
T'|3,mpBi(y) extends Bz Fp: 7'
¥ 7' ok

I'| ¥ Fm brand B1(7) extends B2 in p: 7

7 (TP-BRAND-INTRO)

Xke:r

rz:7el

=T (TeV.
F|ZF$:T(P AR)

TF O umit (FUNT

Dx:m | X ke S
p-FUN
F|EF)\:U:7'1.6:7'1—>7'2( UN)

FYXFer:m— 7 FXFe:mn
'YX Feiex:m

(Tp-APP)

FXFe:o YkFo<rT
FXke:r

(TP-SuBs)

concrete 3(y) € & S (m) T <y
r ‘ Y Fei:T (i€l.n)

rxs Fﬁ(fi —e; iel..n) Bt T ie1,.n)

(TP-NEW-0BJ)

TS Fe: Bl :m ™)
DX Fedy:

(Tp-PrOJ)

T|Sbke:B()  {Bx "} distinct
S B LES ety X F B * " coversp(y)
T,z Bi(y Afieldss 8;) | X e i 7 (iet.n)

I'| X tcaseeof {z; as Bj e YT

(TP-CASE)

A.2 Subtyping
A.2.1 Sub-brand judgement

m B1(y) extends B2 € ¥
X EBLE B

(SuB-BRAND-DECL)

W (SuB-BRAND-REFL)

S FBEB B LEBs
YFEB/CBs

(SuB-BRAND-TRANS)

A.2.2 Sub-record judgement

Yy <t

—— (SUB-REC-REFL
YhEy<iy ( )

Y Ey <ty Y by <ivs
by }—’y1 <:73

(SUB-REC-TRANS)

icl..n jEl.n

bi T is a permutation of; : 7;
Yl e < 0T Jel.n

(SuB-REC-PERM)

Sy SeTm (SUB-REC-WIDTH)
YFbm <y ,n>m

foreachi, ¥ Fo; <7
S HY o i€1l..n <l T i€l..n

(SUB-REC-DEPTH)



A.2.3 Subtype judgement

——— SUB-REFL
YkEr<r

E}_Tlng Z"TQSTg
SuB-TRANS
Y <73
Y EBE B
by '_’Yl <:72 b)) "ﬂl(’yl) okX Fﬂg("/g) 0

k
Y FBi(m) < B2(v2) (SuB-NAME)

YFor<n <o

2
SuB-FUNC
ZFT1—>T2§0'1—>0'2 ( )

YrF1r<o YF1<o02 SUB-AR
UB-
YE1r<o1 A o2 ( )

YFrn<o SUB-AL YFr<o SUB-AL
——— (SuB- P ——— T
EFTl/\TQSU( ) ZFTl/\TQSU( 2)

EFEHES

L) ABa(r2) < Bi(m Avz) (SuB-BRAND-AL1)

ErbEh (SuB-BRAND-AL2)
Tk Bi(m) A B2(v2) < Ba(n Ave)

A.3 Evaluation
Definition A.3 (Matching case).

seleck (6, B3; ™) & ietn,
where A -0 C 3,
andVk € 1.n. A FOC By = A F3; C B

Evaluation Relation

’p\A>—>p/|A/

E-B -D
m brand 1 (7) extends Bz in p | A (E-BRAND-DECL)
— p| A, (B extends (32)

!
er—a €

———— (E-Ex
e|A»—>e'|A( PR)

’
€1 ——aA €71

7 (E-APPL)

/
€2 A 62
€1 €2 ——A €1 €2

—— (E-APR2)
V1 €2 A V1 €2

(Az:T.e)v —a [v/z]e (E-APP-ABS)

e —A

e/
’E (E-PrOJ1)

€.£ ——A €

2 i€l.n (E-Pro2)
Bl = v; )l —a vk

’
€; ——aA €;

=

ﬂ(£1 :’Ul,...,éi_l :Ui—17£i = €4y ..
—a Bl b=l )

(E-BRAND-CONS)

/
er—na €

caseeof {---} ——A casee’ of {---}

(E-CAsEL)

selech (0, 3 <" =k

07 =1 = p— (E-CasEe2)
case 0(€ = ’U) of {xz as /61 = e i€ ..n}

—a [0 =) [z ] e
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