
A typed calculus of traits

Kathleen Fisher
AT&T Labs — Research

kfisher@research.att.com

John Reppy
University of Chicago
jhr@cs.uchicago.edu

December 14, 2003

1 Introduction

Scḧarli et al. recently proposed a mechanism calledtraits as a way to foster code reuse in object-oriented
programs [SDNB03]. They have prototyped the mechanism in the context of the Squeak implementation
of Smalltalk. Using traits, they refactored the Smalltalk collection classes achieving a 25% reduction in
the number of method implementations and a 10% reduction in source code size [BSD03]. This early
experience suggests that traits are a promising mechanism for factoring class hierarchies and supporting
code reuse. Smalltalk, however, is a dynamically-typed language, so it is not clear if this mechanism can
be added to a statically-typed language such as Java [AG98] or Moby [FR99, FR03]. In this paper, we
present a typed calculus of traits that can serve as the foundation for integrating traits into a statically-
typed object-oriented language.

In languages with single inheritance, such as Smalltalk, it is often the case that inheritance does not
provide sufficient flexibility when structuring a class hierarchy. Consider the case of two classes in differ-
ent subtrees of the inheritance hierarchy and assume that they both implement some common protocol.
Attempting to share the implementation of this protocol may result in having the common methods de-
fined too highin the inheritance hierarchy (i.e., these methods will be inherited by other classes that do
not provide the protocol in question). On the other hand, keeping the methods at the “right” height results
in code duplication. Multiple inheritance [Str94] is one possible solution to this problem, but it is a com-
plicated mechanism that suffers from other problems (e.g., multiple copies of instance variables). Mixins
are a mechanism designed to give many of the benefits of multiple inheritance in single-inheritance lan-
guages There are strong similarities between traits andmixins [BC90, FKF98, OAC+03], which are
another mechanism designed to address code sharing in single-inheritance languages. The main differ-
ence between mixins and traits is that mixins force a linear order in their composition. This order avoids
the complexities of the diamond property, but it makes mixins a more fragile mechanismn [SDNB03].

A trait is collection of named methods. In Smalltalk traits, these methods cannot directly reference
instance variables; instead, they must be “pure behavior.” The methods defined in a trait are called the
provided methods, while any methods that are referenced, but not provided, are calledrequired methods.
An important property of traits is that while they help structure the implementation of classes, they do
not affect the inheritance hierarchy. Traits are formed by definition (i.e., listing a collection of method
definitions) or by using one of several trait operations:

Symmetric summerges two disjoint traits to create a new trait.1

Override forms a new trait by layering additional methods over an existing trait. This operation is an
asymmetric sum. When one of the new methods has the same name as a method in the original
trait, the override operation replaces the original method.

1The most recent description of Smalltalk traits ([BSD03]) allows name conflicts, but replaces the conflicting methods with a
special method bodyconflict that triggers a run-time error if evaluated.

Alias creates a new trait by adding a new name for an existing method.

Exclusion forms a new trait by removing a method from an existing trait. Combining the alias and
exclusion operations yields a renaming operation, although the renaming is shallow.

The other important operation on traits isinheritance, the mechanism whereby traits are integrated with
classes. This operation merges a classC, a trait, and additional fields and methods to form a new subclass
of C. Often, the additional methods provide access to the newly added fields. The additional methods,
plus the methods inherited fromC, provide the required methods of the trait. An important aspect of
traits is that the methods of a trait are only loosely coupled; they can be removed and replaced by other
implementations. In this way traits are a lighter-weight mechanism than either multiple inheritance or
mixins.

There is similarity between traits and the use of premethod collections to encode classes [AC96,
RR96], but previous work on premethods focused on building a complete suite of methods and not on
independent combinable traits. We have explored using the combination of modules, object types, and
premethods to encode traits in Moby [FR03], but the encoding is cumbersome.

The termtraitshas been used indelegation-based (orprototype-based) languages, such as Self [US87],
to describe objects that serve as repositories of methods. In Self, new objects are generated by cloning
prototype objects, which, in turn, may delegate behavior to methods defined in trait objects. Like
Smalltalk, Self is a dynamically typed language, so it does not address the issue of statically typing
trait objects.

Bracha’s Jigsaw framework is often cited as the first formal account of mixins [Bra92]. While his
framework shares with traits the goal of replacing a monolithic class mechanism with simplier operators,
it is a more powerful and complicated system with operators for global renaming of methods, static
binding (or freezing), and visibility control. Traits can be viewed as a restricted subset of Jigsaw. While
Bracha gave a dynamic semantics for Jigsaw and a type system, he did not prove type soundness.

The remainder of the paper is organized as follows. In the next section, we present the syntax and
informal semantics of a typed object calculus that models traits. We take as a starting point for our
calculus the untyped formal model of Smalltalk traits developed by Schärli et al. [SDN+02]. We then
present a dynamic and static semantics for our calculus. In Section 5, we prove type soundness for our
system using the standard technique of subject reduction and progress theorems. We conclude with a
discussion of future directions.

2 A trait calculus

In this section, we present the syntax and informal semantics of a small calculus that models traits.
Unlike the earlier work on traits, our calculus is designed to be statically typechecked. Because our main
interest is in the factoring and assembly of classes, we have made simplifying choices in other areas of
our design (e.g., using functional objects and width-only subtyping).

2.1 Syntax

At the core of our calculus is a simple object-oriented language with immutable objects and first-class
functions.2 The language includes variables, function abstraction and application, object creation, self
reference, method dispatch, super-method dispatch, field selection, and functional field update. The
complete syntax and semantics of expressions are covered in Appendices A and C.

The most important parts of our calculus are the mechanisms for manipulating traits and classes and
the corresponding type system. Before giving the syntax of these forms, we introduce some notation.

2We could have encoded functions as objects, but their presence clarifies the dynamic semantics.

2

Let FU andMU be disjoint, countable sets of field and method names, respectively. Collectively, we
refer to method and field names as labels. We define the following notations:

f ∈ FU field names

F
fin
⊂ FU finite sets of field names

m ∈ MU method names

M
fin
⊂ MU finite sets of method names

S
fin
⊂ MU finite sets of super-method names

LU = FU ∪MU universe of labels
l ∈ LU labels (field or method names)

L
fin
⊂ LU finite sets of labels

R
fin
⊂ LU finite sets of required fields and methods

In addition, we assume disjoint, countable sets of trait names TNAME, class names CNAME, and expres-
sion variables VARIABLES. The syntax of our trait forms is taken from the formal model of Smalltalk
traits developed by Schärli et al. [SDN+02].

T ::= t trait name: t∈ TNAME

| 〈|M ; 〈θ〉; S |〉 trait formation
| T1 + T2 symmetric concatenation
| T − (m : τ) method exclusion
| T [m′ 7→ m] method alias

M ::= 〈µm
m∈M〉M method suite

µ ::= m (x : τ) ⇒ e method definition

A trait expression can be the name of a previously defined trait, the formation of a base trait from
a method suite and auxiliary information, the symmetric (or disjoint) concatenation of two traits, the
exclusion of a method from a trait, or the addition of a method alias to a trait.

Our syntax differs from Scḧarli et al. in four significant ways. First, trait formation includes a row-
typeθ and a set of method namesS. The typeθ specifies the names and types of the required methods
and fields of the trait. The setS specifies the names of any super-methods that are referenced inM .
This information is necessary to type check mixing a trait with a class. The second modification is
that method exclusion includes a type annotation that specifies the type of the excluded method. This
annotation is required for the evaluation of the exclusion operation, since an excluded method becomes
required.3 The third change is that we permit traits to require fields,i.e., trait methods may reference
fields directly, rather than using accessor functions. Traits still cannot define fields, however. As we will
see below, allowing field references in traits provides a cleaner separation between traits and classes. The
last difference is that our calculus does not have a direct analogue to the “D with T ” form that adds a
dictionary of methodsD to a traitT , possibly overriding some of the methods inT . This effect can be
achieved in our calculus using a combination of method removal and symmetric concatenation.

Our syntax for class definition is simple because we have stripped it of all but the features necessary
to understand the interactions between classes and traits.

C ::= c class name: c∈ CNAME

| nil empty class
| F in T extends c inheritance (subclass formation)

F ::= 〈f = ef
f∈F 〉F fields definition

A class definition may be the name of an existing class, the empty class, or a new subclass formed by
extending an existing class with a fields definition and a trait. A fields definition is a record of expressions
labeled by field names. Our calculus does not model the passing of arguments at object construction time;

3This annotation could be avoided by adding return type annotations to methods or, perhaps, by changing the way we evaluate
traits. We intend to explore these options in future work.

3

instead the values of fields are determined by the expressions in the fields definition. Note that in our
minimal calculus, the definition of methods is left to traits. The class forms are concerned only with the
inheritance hierarchy and field initialization.

This separation is not possible with Smalltalk traits because their trait methods cannot access in-
stance variables (what we call fields), and instead must use accessor methods provided by host classes
to reference instance variables. For example, to create a new classD, a Smalltalk user extends a classC
with a traitT and a collection of instance variables and glue methods. These glue methods must provide
the necessary access methods. While there may be pedagogical advantages to the Smalltalk design, we
have chosen to allow field references in traits and to adopt the more restrictive form of class definition to
simplify the calculus.

A program in our trait calculus is a sequence of trait and class declarations followed by an expression.

P ::= D; P | e

D ::= t = T trait declaration
| c = C class declaration

Our type system distinguishes between two value types: function types and object types (θ). Object
types assign types to a collection of field and method names. We use these types both to describe the
type of object values and to specify aspects of traits and classes. Our type system also has types for field
definitions, traits, and classes, although the corresponding terms are not first-class. The syntax of types
is as follows:

θ ::= 〈l : τl
l∈L〉 row type

τ ::= τ1 → τ2 function type
| θ object type
| 〈f : τf

f∈F 〉F field record type
| 〈| θ; S; R|〉 trait type
| {| θ |} class type

In a trait type〈| θ; S; R|〉, row typeθ describes the types of all required and provided methods and fields.
SetS contains the names of super-methods that must be available from any class that can be merged with
the trait. The setR names the required methods and fields. A class type is similar to an object type in
that it assigns types to the collection of fields and methods that it defines.

2.2 A small example

As an example of how traits are used in our calculus, consider the definition of a small two-level class
hierarchy that contains a classNameCof objects with anameFfield andshowMandprintM methods,
and a subclassNamePC, that overrides theshowMmethod to parenthesize its result. The following code
shows how this hierarchy is defined in our calculus:4

ShowNameT = 〈| 〈showM() ⇒ self .nameF〉M; 〈nameF : string 〉; {} |〉
PrintT = 〈| 〈printM () ⇒ print (self .showM())〉M; 〈showM : () → string 〉; {} |〉
NameC = 〈nameF = "Bob" 〉F in ShowNameT + PrintT extends nil

ShowPT = 〈| 〈showM() ⇒ " (" + super .showM() + ") " 〉M; 〈〉; {showM} |〉
NamePC = 〈〉F in ShowPT extends NameC

TheshowNameT trait defines theshowMmethod for showing the name field of an object, while the
printT trait defines theprintM method for printing the result ofshowM. We concatenate these traits
to form the method suite for theNameCclass. TheNamePCclass is defined by using theshowPT trait
to override theshowMmethod.

4For the purposes of this example, we have extended our calculus with strings, string concatenation, and a globalprint
function.

4

Because we are using traits to factor the implementation, we can reuse our method definitions in a
different class hierarchy. For example, we can define a classHelloC that is unrelated to the previous
classes, but still shares the implementation ofprintM .

HelloT = 〈| 〈showM() ⇒ "Hello, World!" 〉M; 〈〉; {} |〉
HelloC = 〈〉F in HelloT + PrintT extends nil

3 Evaluation

We split the evaluation of programs in our calculus into two phases:linking andexecution. In the linking
phase, trait and class expressions are reduced to normal forms and bound to trait and class names in their
respective environments. The resulting class environment is then used during the execution phase, which
evaluates the body of the program. In this section, we describe the evaluation rules for our trait calculus.
Our main focus is the linking phase, since traits have no run-time rôle in our system. We divide the
linking phase into three parts: trait evaluation, class evaluation, and declaration evaluation.

3.1 Trait evaluation

Trait evaluation reduces trait expressions to trait values, which are of the form “〈|M ; θ; S |〉.” We use
TRAITVALS to denote the set of trait values andtv to denote elements of TRAITVALS. The trait evalu-
ation judgment has the form “TE ` T ⇒ tv,” whereTE is a trait environment (a finite map from trait
names to trait values).

Trait variables are evaluated by looking them up in the trait environment.

t ∈ dom(TE)

TE ` t ⇒ TE(t)

The trait formation expression is already a trait value.

TE ` 〈|M ; θ; S |〉 ⇒ 〈|M ; θ; S |〉

The rule for symmetric concatenation of two traits (T1 + T2) forms a new trait value that is the union of
T1 andT2’s disjoint method suites.5 Since some of the methods required byT1 may be provided byT2

(andvice versa), the set of required methods of the new trait is defined to be the union ofT1 andT2’s
required methods after removing any overlap with the provided methods. The required super methods
are the union of the super methods required byT1 andT2.

TE ` T1 ⇒ 〈| 〈µm
m∈M1〉M; 〈l : τl

l∈R1〉; S1 |〉 TE ` T2 ⇒ 〈| 〈µm
m∈M2〉M; 〈l : τl

l∈R2〉; S2 |〉
M1 t M2 M3 = M1 ∪M2 R3 = (R1 ∪R2) \M3 S3 = S1 ∪ S2

TE ` T1 + T2 ⇒ 〈| 〈µm
m∈M3〉M; 〈l : τl

l∈R3〉; S3 |〉

Excluding a method from a trait causes its definition to be removed from the trait’s methods, but it also
causes the excluded method to be added to the list of required methods, which is necessary because the
method may be mentioned in one of the trait’s remaining methods.

TE ` T ⇒ 〈| 〈µm
m∈M〉M; 〈l : τl

l∈R〉; S |〉 τm = τ m ∈M
TE ` T − (m : τ) ⇒ 〈| 〈µm

m∈M\{m}〉M; 〈l : τl
l∈R∪{m}〉; S |〉

Lastly, the rule for method aliasing looks up the aliased method’s definition, binds the definition to the
new namem’ and removesm’ from the collection of required names.

TE ` T ⇒ 〈| 〈µm
m∈M〉M; 〈l : τl

l∈R〉; S |〉
m ∈M µm = m (x : τ) ⇒ e m′ 6∈ M

TE ` T [m′ 7→ m] ⇒ 〈| 〈µm
m∈M, m′ (x : τ) ⇒ e〉M; 〈l : τl

l∈R\{m′}〉; S |〉
5We use the notationS1 t S2 to denote that setsS1 andS2 are disjoint.

5

3.2 Class evaluation

The second part of linking is the evaluation of class expressions. To express class evaluation, we add a
new syntactic form for classes, called aflattened class, which consists of a record of fields and a method
suite.

C ::= . . . previous forms
| {|F ; M |} flattened class

Flattened classes serve asclass valuesand are the result of evaluating a class expression. We use
CLASSVALS to denote the set of class values andcv to denote an element of CLASSVALS. A class
environmentCE is a finite map from class names to class values. We writeTE,CE ` C ⇒ cv to mean
that a class expressionC evaluates to class valuecv. We define this judgment form by the rules given
below.

For class names, we lookup the class value in the class environment.

c ∈ dom(CE)

TE, CE ` c ⇒ CE(c)

The root class evaluates to the “empty” class value.

TE, CE ` nil ⇒ {| 〈〉F; 〈〉M|}

Forming a new subclass from the combination of a record of fields, a trait expression, and a superclass is
the heart of our system. One complication in the assembly of a class is the static resolution of superclass
methods. We address this complication by eliminating references tosuper in method bodies before
constructing a subclass. The judgment formM ` M1 =⇒ M2 specifies that the method suiteM1 is
rewritten with respect to the super-class method suiteM to produce the suiteM2. This rewriting has
the effect of statically resolving super-method dispatch by replacing instances of super-class method
dispatch with the application of the statically determined super-class method to self. The full details of
this judgment form are described in Appendix B. The following rule defines the inheritance form:

TE ` T ⇒ 〈| 〈µ′m
m∈MT 〉M; 〈l : τl

l∈RT 〉; ST |〉
TE, CE ` c ⇒ {| 〈f = ef

f∈Fc〉F; 〈µm
m∈Mc〉M|}

〈µm
m∈Mc〉M` 〈µ′m

m∈MT 〉M =⇒ 〈µm
m∈MT 〉M

RT ⊆ F ∪ Fc ∪Mc ST ⊆Mc

TE, CE ` 〈f = ef
f∈F 〉F in T extends c ⇒ {| 〈f = ef

f∈F∪Fc〉F; 〈µm
m∈MT∪Mc〉M|}

The first two lines specify the normalization of the trait and superclass expressions. The third line
rewrites the trait’s methods to remove references to super by in-lining methods fromc , and the fourth
line ensures that the required and super methods are provided.

3.3 Declaration evaluation

The final part of linking is evaluation of trait and class declarations. The basic judgment form is
TE,CE ` D ⇒ TE′,CE′, which extends the trait and class environmentsTE andCE with the declara-
tion D to produceTE′ andCE′. The rules for this judgment can be found in Appendix C.

3.4 Program evaluation

The evaluation of programs combines the linking and execution phases into a single evaluation judgment.
The definitions of the program evaluation judgments are left to Appendix C, but we summarize the
notation here.

The judgment form “TE,CE ` P ⇒ CE′, e” says that linking the programP yields a pair of the
class environmentCE and the expressione. Executing an expressione for n steps is denotede →n

CE e′,
whereCE is the class environment used to define object creation ande′ is the result of evaluation.
Finally, the judgment “TE,CE ` P →n e” denotes linking the programP and then executing the
resulting expression forn steps producinge as a result.

6

4 The static semantics of traits

In this section, we give an overview of the type system for our calculus, focusing on the typing rules for
traits and classes. Appendix D contains the complete type system.

4.1 Contexts

All of our typing judgments are written in terms of a contextΓ, which maps trait names, class names,
and variables to associated types. We use the following typing judgments to formulate our type system:

Γ ` ok well-formed contextΓ
Γ ` τ well-formed typeτ
Γ ` R : τ well-typed expression, trait, class, field record, or method
Γ ` τ1 <: τ2 typeτ1 is a subtype of typeτ2

Γ ` D ⇒ Γ′ well-formed declarationD, yielding extended environmentΓ′

Γ `P P : τ well-typed programP

4.2 Trait typing

In this section, we describe selected rules for typing trait expressions. The first rule types trait formation.

τsuper = 〈l : τl
l∈S〉 τself = 〈l : τl

l∈M∪R〉
Γ, super : τsuper, self : τself ` µm′ : τm′ forall m′ ∈M

Γ ` τl′ forall l′ ∈ R Γ ` ok
Γ ` τself <: τsuper M t R

Γ ` 〈| 〈µm
m∈M〉M; 〈l : τl

l∈R〉; S |〉 : 〈| τself ; S; R|〉

This rule checks each of the method bodies in the trait’s method suite under assumptions about the type of
super andself . The type ofself , τself , contains each of the methods of the method suite with the type
inferred for that method. It also contains all of the required methods of the trait with their programmer-
supplied types. The type ofsuper is the restriction ofτself to methods declared to come from the
superclass. The inference rule also ensures that the types of the required methods are well-formed, that
the type ofself is a subtype of the type ofsuper, and that no method implemented in the trait is marked
as required. The resulting type for the trait is a triple of the types of all of the trait’s fields and methods
(both provided and required), the set of methods that must be provided by any host superclass (S), and
the set of required methods (R).

The rule for type checking symmetric concatenation of two traits is

Γ ` T1 : 〈| 〈l : τl
l∈L1〉; S1; R1 |〉

Γ ` T2 : 〈| 〈l : τl
l∈L2〉; S2; R2 |〉

M1 = L1 \ R1 M2 = L2 \ R2 M1 t M2

R′
1 = R1 \M2 R′

2 = R2 \M1

Γ ` T1 + T2 : 〈| 〈l : τl
l∈L1∪L2〉; S1 ∪ S2; R′

1 ∪R′
2 |〉

This rule requires that the methods provided by the two traits are disjoint (M1 t M2). The new
collection of required methods is the union of the methods required byT1 but not implemented inT2

(i.e., R′1) and those required byT2 but not implemented inT1 (i.e., R′2). Shared abstract methods are
required to have the same type.

To type check method exclusion, we ensure that the method being removed was provided by the trait
(i.e., m ∈ L \ {m}).

Γ ` T : 〈| 〈l : τl
l∈L〉; S; R |〉 m ∈ L \ R τm = τ

Γ ` T − (m : τ) : 〈| 〈l : τl
l∈L〉; S; R∪ {m} |〉

The evaluation semantics requires that the method being removed be annotated with its type. Here, we
check that the type annotation matches the type of the method in the trait.

7

Finally, the typing rule for method aliasing checks that the new namem′ does not have a binding
(m′ 6∈ L \ R), while ensuring that the old namem does have one (m ∈ L \ R).

Γ ` T : 〈| 〈l : τl
l∈L〉; S; R |〉

m ∈ L \ R m′ 6∈ L \ R τm′ = τm

Γ ` T [m′ 7→ m] : 〈| 〈l : τl
l∈L∪{m′}〉; S; R \ {m′} |〉

The requirement thatτm′ = τm is subtle: ifm′ ∈ L, then the condition requires that the type given for
m′ in the type forT match the typeτm. If m′ 6∈ L, then the condition definesτm′ to beτm.

4.3 Class typing

The key typing rule for classes is the rule for subclass formation.

Γ ` F : 〈f : τf
f∈F 〉F

Γ ` T : 〈| 〈l : τl
l∈LT 〉; ST ; RT |〉

Γ ` c : {| 〈l : τl
l∈Lc〉 |}

ST ⊆ Lc RT ⊆ (Lc ∪ F) F t Lc L = F ∪ LT ∪ Lc

Γ ` F in T extends c : {| 〈l : τl
l∈L〉 |}

This rule infers types for the field definitionsF , trait T , and classc that are being merged to form a new
class and checks that these pieces fit together appropriately. To verify thatc satisfies all of the trait’s
superclass requirements, we check thatST ⊆ Lc. ConditionRT ⊆ (Lc ∪ F) ensures that eitherF or c
provides all the methods and fields required by the trait. To guarantee that new fields do not conflict with
existing fields, we check thatF t Lc. The label setL collects together the names of all the fields and
methods of the new class. The formation of the class type ensures that if the trait requires a given field
or methodl with a typeτl, then the supplier ofl (eitherF or c) must give the syntactically identical type
to l.

5 Type soundness

We prove type soundness using the standard technique of subject reduction and progress theoreoms. To
establish both of these theorems, we need to introduce an auxiliary judgment to relate trait and class
environments with a typing context:

Γ ` TE(t) : Γ(t) forall t ∈ dom(TE)
Γ ` CE(c) : Γ(c) forall c ∈ dom(CE)

Γ |= TE, CE

In addition, we need to define what it means for one context to refine another.

Definition 5.1 ContextΓ′ refinesΓ, writtenΓ′ ≤ Γ, if the following conditions hold:Γ′ ` ok, dom(Γ) ⊆
dom(Γ′), and for all id ∈ dom(Γ), Γ′ ` Γ′(id) <: Γ(id).

Given these definitions, we can state subject reduction and progress theorems, from which a type sound-
ness theorem follows directly.

Theorem 5.1 (Subject Reduction)If we may derive a typingΓ `P P : τ , and an evaluationTE,CE `
P →n e, and show thatΓ |= TE, CE whereΓ t VARIABLES, then there exists a contextΓ′ such that
Γ′ ≤ Γ andΓ′ ` e : τ .

Theorem 5.2 (Progress)If we may derive a typingΓ `P P : τ whereΓ t VARIABLES and show that
Γ |= TE, CE for trait and class environmentsTE andCE, then either there exists a natural numbern
such thatTE, CE ` P →n ev or for all n there exists an expressione such thatTE, CE ` P →n e.

8

Theorem 5.3 (Type Soundness)If P is a closed, well-typed program (ε `P P : τ), then eitherP
evaluates to a value with typeτ (∅, ∅ ` P →n ev for somen and there exists a contextΓ t VARIABLES

such thatΓ ` ev : τ) or P runs forever (for all natural numbersn, we may derive an evaluation
∅, ∅ ` P →n e).

6 Conclusion

Traits are a promising new mechanism for constructing class hierarchies from reusable components [SDNB03].
While this mechanism has been designed for Smalltalk, we expect it to be useful for statically-typed
object-oriented programming languages as well.

This paper is the first step in developing statically-typed traits as a programming language mech-
anism. In it, we have presented a statically-typed calculus of traits and classes and have shown type
soundness for our calculus. There are a number of refinements to this calculus that we plan to explore
and we discuss these in the remainder of this section.

We have purposefully omitted a number of common features from our calculus in the interest of
simplicity. These features include depth subtyping, imperative objects, and mechanisms for object ini-
tialization. We do not expect any of these features to have a significant interaction with traits, but adding
them to the calculus will move our model closer to practical programming languages. Another feature
that we omitted is any form of privacy. In our previous work, we support privacy using signature ascrip-
tion at the module level [FR99]. In principal, this technique should apply to our trait calculus, but we
have not worked out the details of trait signatures.

The typing system for traits maintains information about the required fields and methods. In our
system, we associate this information with individual traits, but it would also be possible to keep per-
method information about required fields and methods, which would improve the typing precision for
method exclusion.6

In our current design, the addition of types does limit code reuse in some situations. For example,
Scḧarli et al. give an example of a synchronization trait that overrides read and write methods to imple-
ment synchronized read and write methods [SDNB03]. While we can define such a trait in our calculus,
the types of the read and write methods in the trait restrict the trait to similarly typed classes (e.g., we
cannot define a synchronization trait that works for both string and integer-valued read/write methods).
The obvious solution to this problem is some form of parametric polymorphism, which could be provided
either by allowing traits to be parameterized over types or by the use of parameterized modules.

A more speculative direction is to make traits and classes first-class. We have not yet explored this
possibility in detail.

References

[AC96] Abadi, M. and L. Cardelli.A Theory of Objects. Springer-Verlag, New York, NY, 1996.

[AG98] Arnold, K. and J. Gosling.The Java Programming Language. Addison-Wesley, Reading, MA, 2nd
edition, 1998.

[BC90] Bracha, G. and W. Cook. Mixin-based inheritance. InECOOP’90, New York, NY, October 1990. ACM,
pp. 303–311.

[Bra92] Bracha, G.The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance. Ph.D.
dissertation, University of Utah, March 1992.

[BSD03] Black, A. P., N. Scḧarli, and S. Ducasse. Applying traits to the Smalltalk collection classes. InOOP-
SLA’03, New York, NY, October 2003. ACM. (to appear).

[FKF98] Flatt, M., S. Krishnamurthi, and M. Felleisen. Classes and mixins. InPOPL’98, New York, NY, January
1998. ACM, pp. 171–183.

6Of course, a programming style in which all traits have a single method achieves the same result.

9

[FR99] Fisher, K. and J. Reppy. The design of a class mechanism for Moby. InPLDI’99, New York, NY, May
1999. ACM, pp. 37–49.

[FR03] Fisher, K. and J. Reppy. Object-oriented aspects of Moby.Technical Report TR-2003-10, Dept. of
Computer Science, U. of Chicago, Chicago, IL, September 2003.

[OAC+03] Odersky, M., P. Altherr, V. Cremet, B. Emir, S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, and
M. Zenger. The Scala Language Specification (Draft). Switzerland, October 2003. Available from
lamp.epfl.ch/scala .

[RR96] Reppy, J. H. and J. G. Riecke. Classes in Object ML via modules. InFOOL3, July 1996.

[SDN+02] Scḧarli, N., S. Ducasse, O. Nierstrasz, R. Wuyts, and A. Black. Traits: The formal model.Technical
Report CSE 02-013, OGI School of Science & Engineering, November 2002. (revised February 2003).

[SDNB03] Scḧarli, N., S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behavior. In
ECOOP’03, LNCS, New York, NY, July 2003. Springer-Verlag. (to appear).

[Str94] Stroustrup, B.The Design and Evolution of C++. Addison-Wesley, Reading, MA, 1994.

[US87] Ungar, D. and R. B. Smith. Self: The power of simplicity. InOOPSLA’87, October 1987, pp. 227–242.

A The expression language

This appendix gives the syntax for the expression language underlying our trait-calculus. We assume
a countable set of variables VARIABLES and usex to denote an arbitrary variable. The syntax of the
language is as follows:

e ::= x variable: x∈ VARIABLES

| λ(x : τ).e function abstraction
| e1e2 function application
| new c object instantiation
| self host object
| e.m method dispatch
| super.m super-method dispatch
| e.f field selection
| e1.f := e2 field update

The language contains variables (x), function abstraction and application, object creation, self reference,
method dispatch (including super-method dispatch), field selection, and field update. Because objects
are immutable, updating a fieldf does not modify the state of its argument, but rather produces a new
object with the same field values except forf , which holds the new value.

B Method-suite rewriting

In this appendix, we present the details a method suite rewriting, which is used to resolve super-method
dispatch statically. To eliminate references tosuper, we rewrite method bodies before they are installed
in classes, essentially inlining the superclass’s method bodies. We rewrite method bodies with respect to
a superclass method suite. For this purpose, we treat method suites as finite maps from their index set to
their method bodies,i.e., 〈µm

m∈M〉M(m′) = µm′ as long asm′ ∈M.

Method-suite rewriting judgment forms:

M ` M1 =⇒ M2 Method suite rewriting
M ` m (x : τ) ⇒ e1 =⇒ m (x : τ) ⇒ e2 Method body rewriting
M ` e1 =⇒ e2 Expression rewriting

We have the following rules for rewriting terms to removesuper references:

10

M ` µm′ =⇒ µ′m′ forall m′ ∈M
M ` 〈µm

m∈M〉M =⇒ 〈µ′mm∈M〉M M ` e1 =⇒ e2

M ` m (x : τ) ⇒ e1 =⇒ m (x : τ) ⇒ e2

M ` x =⇒ x M ` e1 =⇒ e2

M ` λ(x : τ).e1 =⇒ λ(x : τ).e2

M ` e1 =⇒ e′1 M ` e2 =⇒ e′2
M ` e1e2 =⇒ e′1e

′
2

M ` new c =⇒ new c

M ` self =⇒ self M ` e1 =⇒ e2

M ` e1.m =⇒ e2.m

M(m) = m (x : τ) ⇒ e

M ` super.m =⇒ λ(x : τ).e

M ` e1 =⇒ e2

M ` e1.f =⇒ e2.f

M ` e1 =⇒ e′1 M ` e2 =⇒ e′2
M ` e1.f := e2 =⇒ e′1.f := e′2

C Other evaluation rules

This appendix collects together those evaluation rules that were omitted from the main text.

C.1 Declaration evaluation rules

TE ` T ⇒ tv t 6∈ dom(TE)

TE, CE ` t = T ⇒ TE ∪ {t 7→ tv}, CE

TE, CE ` C ⇒ cv c 6∈ dom(CE)

TE, CE ` c = C ⇒ TE, CE ∪ {c 7→ cv},

C.2 Program linking rules

TE, CE ` D ⇒ TE′, CE′ TE′, CE′ ` P ⇒ TE′′, CE′′, e

TE, CE ` D; P ⇒ TE′′, CE′′, e

TE, CE ` e ⇒ TE, CE, e

C.3 Expression evaluation rules

To evaluate expressions, we need to add a run-time form to represent dyamic objects:

e ::= ... previous forms
| 〈F ; M〉 dynamic object

ev = λ(x : τ).e | 〈fv; M〉
fv = 〈f = evf

f∈F 〉F

Evaluation contexts:

E ::= [] | E e | ev E | E.l | E.f := e | ev.f := E

| 〈f = evf
f∈F1 , f = E, f = ef

f∈F2〉F | 〈E; M〉

11

Redexes :
r ::= λ(x : τ).e1 ev

| new c
| 〈F ; M〉.m m ∈ dom(M)

| 〈〈f = evf
f∈F 〉F; M〉.f ′ f ′ ∈ F

| 〈〈f = evf
f∈F 〉F; M〉.f ′ := ev f ′ ∈ F

We use the notatione2[x 7→ e1] to denote the capture-avoiding substitution ofe1 for x in e2.

Evaluation axioms:

λ(x : τ).e1 ev →CE e1[x 7→ ev]

new c →CE 〈F ; M〉 if CE(c) = {|F ; M |}
〈F ; M〉.m →CE λ(x : τ).e[self 7→ 〈F ; M〉] if M(m) = m (x : τ) ⇒ e

〈〈f = evf
f∈F 〉F; M〉.f ′ →CE evf ′ if f ′ ∈ F

〈〈f = evf
f∈F 〉F; M〉.f ′ := ev →CE 〈〈f = evf

f∈F\{f ′}, f ′ = ev〉F; M〉 if f ′ ∈ F

Congruence closure:
e = E[r] r →CE r′ e′ = E[r′]

e →CE e′

Note: Superclass invocations have been inlined during class evaluation.

The notation E[r] denotes filling the hole in contextE with redexr. We use the notatione →n
CE e′ to

denote that under class environmentCE, expressione reduces toe′ in n steps.

C.4 Program evaluation rules

TE, CE ` P ⇒ TE′, CE′, e e →n
CE′ e′

TE, CE ` P →n e′

D The type system

This appendix gives the details of the type system for our calculus. All of our typing judgments are
written in terms of contexts, which map trait names, class names, and variables to associated types.

id ∈ TNAME ∪ CNAME ∪ VARIABLES

Γ ::= ε | Γ, id : τ

For convenience, we often treat the keywordsself andsuper as variable names and allow them to be
bound in contexts. We assume that the sets TNAME, CNAME, and VARIABLES are mutually disjoint.
We useR as a meta-variable ranging over expressions, traits, classes, field records, and methods:

R ::= e | F | T | C | µ

The rules for context formation are standard and we omit them here.

D.1 Well-formed types

Γ ` τ1 Γ ` τ2

Γ ` τ1 → τ2

Γ ` τf forall f ∈ F Γ ` ok

Γ ` 〈f : τf
f∈F 〉F

Γ ` τl forall l ∈ L Γ ` ok

Γ ` 〈l : τl
l∈L〉

Γ ` 〈l : τl
l∈L〉 S ∪ R ⊆ L

Γ ` 〈| 〈l : τl
l∈L〉; S; R|〉

12

Γ ` 〈l : τl
l∈L〉

Γ ` {| 〈l : τl
l∈L〉 |}

D.2 Subtyping

Γ ` τ

Γ ` τ <: τ

Γ ` 〈l : τl
l∈L1〉 L2 ⊆ L1

Γ ` 〈l : τl
l∈L1〉 <: 〈l : τl

l∈L2〉

Γ ` τ ′2 <: τ ′1 Γ ` τ ′′1 <: τ ′′2

Γ ` τ ′1 → τ ′′1 <: τ ′2 → τ ′′2

D.3 Well-typed expressions

Γ ` ok

Γ ` x : Γ(x)

Γ ` e : τ Γ ` τ <: τ ′

Γ ` e : τ ′

Γ, x : τ1 ` e : τ2

Γ ` λ(x : τ1).e : τ1 → τ2

Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` e1 e2 : τ

Γ ` ok Γ(c) = {| 〈l : τl
l∈L〉 |}

Γ ` new c : 〈l : τl
l∈L〉

Γ ` e : τ Γ ` τ <: 〈l : τl〉
Γ ` e.l : τl

Γ ` e1 : τ Γ ` τ <: 〈f : τf 〉 Γ ` e2 : τf

Γ ` e1.f := e2 : τ

Γ ` F : 〈f : τf
f∈F 〉F τself = 〈l : τl

l∈F∪M〉
Γ, self : τself ` µm′ : τm′ forall m′ ∈M

Γ ` 〈F ; 〈µm
m∈M〉M〉 : τself

D.4 Field record typing

Γ ` ef : τf forall f ∈ F Γ ` ok

Γ ` 〈f = ef
f∈F 〉F : 〈f : τf

f∈F 〉F

D.5 Method body typing

Γ, x : τ ` e : τ ′

Γ ` m (x : τ) ⇒ e : τ → τ ′

D.6 Trait typing

Γ ` ok

Γ ` t : Γ(t)

13

τsuper = 〈l : τl
l∈S〉 τself = 〈l : τl

l∈M∪R〉
Γ, super : τsuper, self : τself ` µm′ : τm′ forall m′ ∈M

Γ ` τl′ forall l′ ∈ R Γ ` ok
Γ ` τself <: τsuper M t R

Γ ` 〈| 〈µm
m∈M〉M; 〈l : τl

l∈R〉; S |〉 : 〈| τself ; S; R|〉

Γ ` T1 : 〈| 〈l : τl
l∈L1〉; S1; R1 |〉 Γ ` T2 : 〈| 〈l : τl

l∈L2〉; S2; R2 |〉
M1 = L1 \ R1 M2 = L2 \ R2 M1 t M2

R′
1 = R1 \M2 R′

2 = R2 \M1

Γ ` T1 + T2 : 〈| 〈l : τl
l∈L1∪L2〉; S1 ∪ S2; R′

1 ∪R′
2 |〉

Γ ` T : 〈| 〈l : τl
l∈L〉; S; R |〉 m ∈ L \ R τm = τ

Γ ` T − (m : τ) : 〈| 〈l : τl
l∈L〉; S; R∪ {m} |〉

Γ ` T : 〈| 〈l : τl
l∈L〉; S; R |〉 m ∈ L \ R m′ 6∈ L \ R τm′ = τm

Γ ` T [m′ 7→ m] : 〈| 〈l : τl
l∈L∪{m′}〉; S; R \ {m′} |〉

D.7 Class typing

Γ ` ok

Γ ` c : Γ(c)

Γ ` ok

Γ ` nil : {| 〈〉 |}

Γ ` F : 〈f : τf
f∈F 〉F Γ ` T : 〈| 〈l : τl

l∈LT 〉; ST ; RT |〉 Γ ` c : {| 〈l : τl
l∈Lc〉 |}

ST ⊆ Lc RT ⊆ (Lc ∪ F) F t Lc L = F ∪ LT ∪ Lc

Γ ` F in T extends c : {| 〈l : τl
l∈L〉 |}

Γ ` F : 〈f : τf
f∈F 〉F τself = 〈l : τl

l∈F∪M〉
Γ, self : τself ` µm′ : τm′ forall m′ ∈M

Γ ` {|F ; 〈µm
m∈M〉M|} : {| τself |}

D.8 Declaration typing

t 6∈ dom(Γ) Γ ` T : τ

Γ ` t = T ⇒ Γ, t : τ

c 6∈ dom(Γ) Γ ` C : τ

Γ ` c = C ⇒ Γ, c : τ

D.9 Program typing

Γ ` e : τ

Γ `P e : τ

Γ ` D ⇒ Γ′ Γ′ `P P : τ

Γ `P D; P : τ

14

