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Abstract

Methods that are specialised on sub-classes introduce a number of
well-known challenges for type systems which can now be met in the pat-
tern calculus. It provides a foundation for computation based on pattern-
matching in which different cases may have different specialisations of a
default type. Specialising by both type substitution and sub-typing sup-
ports well-typed functions whose cases correspond to the different special-
isations of a method.

1 Introduction

Various calculi and type systems have been proposed as a foundation for object-
oriented programming, employing a wide variety of concepts such as bounded
quantification [CM94], the self calculus [AC97] and self types e.g. [Bru02] and
[BFSvGO03]. Unfortunately, none of the novel constructions introduced to handle
objects have completely resolved some fundamental typing problems, as sum-
marised in four examples by Bruce [Bru02, Chapter 3]. The heart of the matter
is that a single method may be specialised in various ways that have differ-
ent specialised types. The pattern calculus [Jay03b] (based on the constructor
calculus [Jay01]) supports pattern-matching functions in which different cases
may have different type specialisations of a common default. In previous work
specialisation was only by type substitution. By also supporting specialisation
through sub-typing, this paper shows how to resolve these fundamental typing
problems. Let us consider a familiar example, of points and coloured points.
A conventional class of points can be declared by

class Point = {
position : Float;
(move : Float — Point) d = {Point (this.position + d)}
(smaller : Point — Point) z = {
if this.position < z.position then this else z}
}.

The declaration introduces a class Point with a constructor Point : Float — Point.
Objects in the class support a field position and two methods, move that moves
a point and smaller that compares points. The notation used for method bodies
is functional, but this is not essential. Now suppose that there is a class Colour



of colours and define a sub-class ColourPoint of Point by

class ColourPoint extends Point = {
pointColour : Colour;
(move : Float — ColourPoint) d = {
ColourPoint (this.pointColour) (this.position + d)}
}

The method move has been specialised to ensure that the resulting point is
coloured while smaller has been inherited.

Three typing issues arise in this example. The type of smaller on coloured
points is Point — Point instead of the preferred ColourPoint — ColourPoint.
That is, both the return type and the argument type have failed to adapt in line
with the type of the invoking object. The third problem is how to reconcile the
type of move on coloured points with that of points. A fourth problem posed
in [Bru02] is how to support type parameters, e.g. to define a parametrised
class of lists? Various approaches to this last problem have been proposed, e.g.
[OW97, AFM97, Tho97] but have not yet been realised in practice [GJ].

Happily, type parameters play a key role in solving the three earlier problems
since a type parameter can be used to represent unknown fields of possible sub-
types. For example, the novel class of points is declared by

class Point = {
position : Float;
move d = {Point Null (this.position + d)}
smaller z = {if this.position < x.position then this else z}

1.

The syntax has only two changes, the use of Null as an extra argument to the
constructor Point, and the absence of given types for the methods (which can
now be inferred using a variant of Milner’s algorithm W). However, all of the
typings have been implicitly parametrised. Now the type of an object in class
Point has type Point T for some type T'. In the simplest case T is the top type T
whose unique value is Null. The general case is handled by using a type variable
X as in Point X. Now the constructor Point has type

Point : X — Float — Point X.

The fields and methods are interpreted as functions that act on the given object,
and so have types

position : Point X — Float
move : Point X — Float — Point T
smaller : Point X — Point X — Point X.

Note that the fragility of the move algorithm is exposed by its return type
Point T while the robustness of smaller is revealed by its re-use of the variable
X.

Now consider the sub-class of coloured points given by

class ColourPoint extends Point = {
pointColour : Colour;
move d = {Point (ColourPoint Null this.pointColour) (this.position + d)}

}



Note here that ColourPoint does not construct a whole point, but only the rest
of the fields for a point, which must be constructed by Point.

That coloured points are points is now reflected in both the terms rep-
resenting the coloured points and their types. The latter are of the form
Point (ColourPoint Y) where the type variable X representing the unknown
point fields has been replaced by ColourPoint Y to indicate that there is a colour
field, and perhaps some others, represented by the variable Y. The constructor
ColourPoint is defined to capture the new fields required by coloured points and
so has type

ColourPoint : Y — Colour — ColourPoint Y.

For example, Point (ColourPoint Null Red) 3.3 : Point (ColourPoint T) is a
coloured point. The approach is similar to the use of row wvariables by Remy
[Gun92, Chapter 3] and by Wand [Gun92, Chapter 4] but without the overhead
of introducing distinct syntactic categories for labels, records, etc.

Sub-typing can now be made structural. For example, every type is less than
T and so Point X < Point T for every type X. Hence bounded quantifications
[CM94] such as

V(X < Point).X — Float

can be replaced by
VX. Point X — Float .

This use of type variables to capture sub-typing is reminiscent of the phantom
types in [FP02] but without the need for bounded quantification or the need to
produce abstract and concrete representations.

Now let us consider the methods. Inherited methods like smaller are para-
metrically polymorphic functions that can be applied without change to points
of any kind, coloured or otherwise. This addresses two of our typing challenges.
The final challenges is to type move. Its two cases can be combined into a single,
pattern-matching function

| Point (ColourPoint z y) z —

let this = Point (ColourPoint z y) z in

(| d = Point (ColourPoint Null (pointColour this) (position this + d))
| Point z y —

let this = Point z y in

(| d = Point Null (position this 4 d))

(1)
in which occurrences of this have been bound to the corresponding pattern in
a systematic fashion. Note that evaluation is driven by the internal structure
of the object, rather than by analysing class relationships. The two cases for
move above have distinct types given by Point (ColourPoint Y) — Float —
Point (ColourPoint T) and Point X — Float — Point T.

In standard typings for pattern-matching every case must have the same
type, and so the example above cannot be typed. This is because pattern-
matches are typically reduced (via sums) to conditionals, whose type derivation
rule is based on

b:Bool s:T t:T

if bthen selset: T




Since the test b contains no type information both branches must take the same
type. However, this process ignores the fact that the pattern p has a type P
which does carry type information relevant to the specialisation.

By contrast, the pattern calculus represents pattern-matching directly us-
ing extensions of the form at p use s else t where p is the pattern, s is the
specialisation and t is the default. Since extensions combine variable binding
and branching in a single construct it provides an alternative to A-calculus as a
foundation for computation. Like the latter, its reduction rules are completely
type-free, and it is able to support a variety of (related) type systems. Now let
us consider how to type extensions.

In earlier typings [Jay0l, Jay03b] pattern-matching was based on

p:P s:8 t:T
atpuseselset: T

where type specialisation for the case at p use s ... was permitted but the overall
type T was that of the default. It is used to define generic functional programs
[GJ03] such as map and foldleft that can act on arbitrary data types. This rule
has some structural relationship to that for extensions in EML [MBC02] but
in other respects EML follows the conventional approach to classes, evaluation,
sub-typing, etc. and so, despite the presence of type parameters, is unable to
handle the other typing challenges above.
To handle sub-typing, the rule for extensions is here based on

p:P s:8 t:T
atpuseselset: (P—> S)AT

where A is a form of type intersection indicating that the extension is both a
function from P to S and of type T. Further, S is specialised by sub-typing
as well as type substitution. In general, the relationship between P,S and T
must be constrained to ensure type safety. Two acceptable situations are when
ol = P — S for some substitution ¢ or when T"is P - R and S < R. In
general, both type substitution and sub-typing are involved, as in the type for
move given by

(Point (ColourPoint Y') — Float — Point (ColourPoint T))
A (2)
(Point X — Float — Point T).

There are striking similarities between this approach and the A&-calculus
[CGL92, Cas97] with at p use s else ¢ corresponding to Ap.s & t and (P — S)AT
corresponding to {P — S, T'}. There are also fundamental differences, however.
Unlike the type-free approach to pattern-matching, evaluation of terms in A&
is driven by explicit type information which is used to determine the best fit
between the (run-time) type of the object and the possible types of the method.
Also, the types of the A& calculus do not include type variables, which are likely
to complicate, if not invalidate, the machinery underpinning this approach. Of
course, there is a large body of research on intersection types for object-oriented
languages, but the relationships to this work appear to be superficial. For
example, [CP96] uses intersection types (with bounded quantification) to model
multiple inheritance.



The main technical contribution of this paper is an account of structural sub-
typing and its use in typing extensions that solves the four key typing problems
above, and provides a basis for modeling objects, classes and methods.

The remaining sections of this abstract are as follows. Section 2 introduces
the untyped pattern calculus and its (Church-Rosser) reduction rules. Section 3
introduces the combinatory types and their sub-typing rules. Section 4 intro-
duces the type derivation rules, including the separation of the patterns from the
terms in general. Section 5 indicates how the fundamental concepts of object-
orientation such as class, self and dynamic dispatch, can be modeled in the
pattern calculus. Section 6 shows how to represent datatypes in the functional
style. Section 7 draws conclusions and discusses the significant further potential
of this approach. The appendix provides lemmas and the proof that reduction
preserves typing.

2 The pure pattern calculus

The syntax of the patterns (meta-variable p) and raw terms (meta-variable t) of
the pattern calculus is given by

p = zlclpp
t == z|c|tt|atpusetelset|letz=1tint.

The variables are represented by the meta-variable . The constructors (meta-
variable ¢) are constants of the language which do not appear at the head
of any evaluation rule. Other constants may be added if desired but their
evaluation rules will not be considered explicitly in the formal development.
The application s t applies the function s to its argument ¢. The novel term
form is the extension at p use s else t where p is the pattern, s is the specialisation
and t is the default. The let-term let £ = s in ¢ binds = to s in t. The declaration
is recursive, in that free occurrences of z in s are bound to s itself.

Extensions combine abstraction over bound variables with a branching con-
struction. For example, the A-abstraction Az.s is short-hand for the extension

at = use s else err

where err is some form of error term, e.g. a non-terminating expression (such as
let z = x in z) or an exception. Also, the conditional if b then s else ¢ is given
by

(at True use s else at False use t else err) b

where True and False are the usual booleans. This term may also be written as
match b with

| True — s
| False — ¢

using the conventions that match b withf stands for f b and | p — s stands for
at p use s else and that the elided final default is err.



(atzuseselset)yu > s{u/z}
(atcuseselset)c > s
(atcuseselset)u > twu ifucannot become c
(atprpouseselset)c > tc
(at p1 p2 use s else t) (u; u2) > (at py
use at py use s else at y use ¢ (py y) else err
else at x use at y use t (z y) else err else err
) w1 ug if u; is constructed
(at p1 po use selset) u > tuif u cannot become applicative
letz=sint > t{letz=sins/x}

Figure 1: Reduction rules for the pattern calculus

The set of free variables fu(t) of a raw term ¢ are given by:

fo(z) = {=}

fo(e) = {}

fo(s t) = fu(s) U fo(t)

fu(at p use s else t) = fo(t) U (fu(s) — fu(p))
fo(let z = s in t) = (fo(t) U fo(s)) — {z}.

Note that the free variables in a pattern bind their occurrences in the speciali-
sation. The substitution s{u/z} of a term u for a variable z in term s is defined
in the usual way, as are bound variables and their a-conversion. The terms are
defined to be equivalence classes of raw terms under a-conversion.

A constructed term is a term whose head is a constructor, i.e. a term which
is either a constructor or of the form t; t» in which ¢; is constructed. Let ¢
be a constructor. A term w cannot become c if it is either a constructed term
other than ¢ or an extension. A term u cannot become applicative if it is either
a constructor or an extension.

The basic reduction rules of the constructor calculus are given by the relation
> in Figure 1. Let us consider the cases. Suppose that the pattern is a variable z.
Specialisation is achieved by 3-reduction, with the argument u being substituted
for z in the specialisation. Suppose that the pattern is some constructor ¢ and
the argument is a constructed term w. If u is ¢ then the specialisation is returned
else the default is applied to u. Suppose that the pattern is an application p; ps
and the argument is a constructed term w. If u is an application u; us then
specialisation tries to match p; with u; and py with us; if either of these matches
fails then evaluation reverts to applying the default to a reconstructed version of
uy uz (not uy us itself since this may require re-evaluation). If u is a constructor
then the default is applied to it. Reduction of a let-term replaces the bound
variable by its recursive definition.

A one-step reduction t —1 t' is given by the application of a basic reduction
to a sub-term of ¢. A reduction t — t' is given by a finite sequence of one-step
reductions t —»1 t1 — ... — t'. Reduction is Church-Rosser [Jay03b].



3 The combinatory type system
A combinatory type system [Jay03b] has types (meta-variable T') given by
T:=X|C|TT

consisting of type variables (meta-variable X), type constants (meta-variable C)

and type applications ST of a type S to a type T. Constants will be introduced

as required. One we will have immediate need of is the function type constructor

— written infix as S — T (and associating to the right). The head of a type

variable or constant is itself: the head of an application ST is the head of S.
Raw type schemes (meta-variable 7) are given by

Tu=T|VX.7

consisting of the types themselves, and the quantification of type schemes by
type variables. The free and bound variables of a type or raw type scheme
are defined in the usual way, as is a-conversion of bound type variables. Type
schemes are defined to be equivalence classes of well-formed raw type schemes
under a-conversion of bound variables. A type scheme is closed if it has no
free variables. If A is a sequence Xi,...,X, and 7 is a type scheme we may
write VA.7 in place of VX,1.VX5...VX,,.7. Type substitutions, their action and
composition are defined in the usual way. The most general unifier of types S
and T may be written U (S,T') while U(S,T) 1 indicates that S and T do not
have any unifiers.

Now let us consider the types of methods. The use of type parameters to
represent unknown fields requires a top type T which is a super type of every
type. Similarly, to give a type to specialised methods such as move in (2)
requires a form of type intersection represented by the constant A (written infix,
associating to the right, and binding less tightly than —). A typical specialised
method m will have a type of the form

m: 01(02((Can) )) — Rn/\ .../\Cl(CQXQ) — Ro /\Cle — Ry

where C,,, ..., represents an ascending chain in the class hierarchy. That is,
in the root class represented by C the type of m is C; X — R;. Then in the
sub-class represented by Cs its type is C1(Cy X3) — Rs. Again, C3 may or
may not represent a sub-class of that of Cy but certainly represents a sub-class
of the root. Abstracting from this a little, our concern is with types of the form

m:Q,— R, N...ANQ1 — R;.

Type safety will require that if Q2 = @1 then Ry is a sub-type of Ry written
Ry < R;. More generally, if ¢ > j and 0@Q; = 0@Q; for some substitution o then
oR; < oR;. This is true of the type (2).

At first sight, it is natural to assume that m has type @); — R; for each ¢
but before this can happen it is necessary to “balance the accounts” vis-a-vis
type variables. That is,

Qn >R, AN...ANQ1 > R <Q; = R;

requires that ; = (1. This side condition on sub-typing is captured by a
relation < defined by mutual induction with <.



T < Ty
X< X c<C STy < ST
T <T T, <T
- [t e 2> 1,47,
T<T ToNTy <T ToNTy <T
S<R ST
P> S<P—>R ST, ATy

Figure 2: Sub-typing

The sub-typing rules are given in Figure 2. They are defined to ensure
that sub-typing is reflexive and transitive. Sub-typing on type applications is
constrained by requiring that the applied types be the same. In particular, this
constraint applies to function types, i.e. S; = T} < Sy — T5 implies S; = S,.
That is, specialisation on argument type is limited to type variable instantiation.
The rules for intersections have a side condition involving < as described above.

The typing of extensions will require that patterns have types that are as
general as possible while being compatible with the type of the default. These
various constraints are captured by the definition of the case type V(T, P) for
the default type T' and pattern type P given by

VQ—-R A T,P)= V(Q — R,P) =
match U(P, Q) with match U(P, Q) with
| o0 = if 0S < oR then V(T1, P) else nomatch | v = (v,vR)
| 1+ = V(T1,P) | T — nomatch

with V(T, P) 1 otherwise. nomatch indicates the absence of a match, while 1
represents failure. While case types suffice for creating the type derivation rules
below, their precise nature or role is not yet clear.

4 The typed pattern calculus

The typing of the pattern calculus in Figure 3 is based on that of [Jay03b] which
should be consulted for a detailed discussion. The main adjustment is to the
typing of extensions which employs intersection types to capture the subtleties
of sub-typing. The price for this is an additional constraint on the typing of
constructors which will be addressed first.

If the constructor ¢ has given type scheme VA. Ty — ... - T,, 1 — T}, then
we require that every type variable in A be free in T,, and that the head of T, is
a constant, the leading type constant of c. It follows that if X is free in T; then
it is free in T}, since the given type scheme of a constant is always closed. In
order to handle sub-typing correctly, let us now impose a further constraint, that
distinct constructors have distinct leading constants. When types are introduced
to support classes this is a natural restriction but is inconsistent with the usual
account of sum types, which must now be handled by sub-typing, as explained
in Section 6.
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Figure 3: The typed pattern calculus

The formal type derivation rules are given in Figure 3. A contert (meta-
variable I') is a sequence of distinct term variables (meta-variable ) with asso-
ciated type schemes. The judgement I' | asserts that I is a well-formed context.
The set of free type variables tv(T) of a term context I' contains all the free type
variables of all the type schemes of all the term variables in T'.

The patterns (meta-variable p) are terms built from variables, constructors
and application using type derivation rules designed to ensure that patterns
do not contain any repeat variables and are given their most general types. In
particular, term variables are given a variable type, constructors take their most
general type, and applications are typed by unifying types as necessary. The
judgement I' -, p : P asserts that p is a well-formed pattern of type P in context
T.

The judgement I' F ¢ : T asserts that ¢t is a well-formed term of type T
in context I'. The derivation rules for variables and constants introduce type
substitutions, but subsumption is handled by a separate rule. The rule for
applications is standard. Extensions are typed by providing a type T for the
default in context I' and a type P for the pattern in completely separate context
I'y. If the case type V(T, P) exists and is (v, R) then the specialisation s must
have type S < R in a context specialised by v. In providing support for type
inference this is the only case of interest, but unfortunately, substitution may



cause unification to fail, so that V becomes nomatch. In this case, the specialisa-
tion can never be accessed and so its well-formedness becomes irrelevant. This
property is captured by the second rule for typing extensions.

The let-declarations are a little unusual in that they support implicit, poly-
morphic recursion. That recursion is implicit is important for supporting dy-
namic dispatch by adding cases to existing functions. Polymorphic recursion is
useful when defining functions that are generic over many data types.

Theorem 4.1 Reduction preserves typing.

The proof is in the appendix.

5 Interpreting classes

There appears to be a large gap between the pattern calculus, with its emphasis
on (pattern-matching) functions and its Church-Rosser reduction rules, and the
notion of an object responsible for its own state and behaviour. This section
will show how the behaviour of objects can be captured, including the notion
of “self” and dynamic dispatch; the treatment of state is pending.

A distinguishing property of object-oriented languages is the use of dynamic
dispatch, that in the invocation o.m of a method m by an object o it is o that
determines the meaning of m rather than the program environment in which
the invocation was made. A natural means of implementing this is to store the
methods with the objects or, in a class-based language, to store the method
values in a run-time representation of the class. With the introduction of sub-
classes, the same method may have many different algorithms, indexed first by
class and then by method name. An equivalent approach is to index by method
name and then by class. The approach adopted here is to index by method
name, but then to return a pattern-matching algorithm whose cases correspond
to the relevant classes. Dynamic dispatch is respected since pattern-matching
against the invoking object determines which case is used. Note that classes do
not appear as part of the run-time system. Of course, one is free to implement
using classes if desired, e.g. to maintain separate compilation of classes, but the
standard for typing and execution is not class-based.

The pattern-matching program for a method is generated incrementally as
various (sub-)classes are declared. Let us examine this in a little more detail.
Each declaration of a root class C introduces C' as a type with a single construc-
tor C of the same name. Fields and methods are given by pattern-matching
against a pattern p obtained by fully applying C' to some distinct variables, one
for each field and one for the unknown sub-fields, i.e. “the rest”. Self-reference
is given by the variable this which is implicitly bound to p. Method invocation
o.m calling the method m of the object o is given by function application m o.

When a sub-class S of C is declared then S becomes a type and constructor
just as before, the arguments being given by the new fields in S and its “rest”.
When a method m is specialised in S then the current global value ¢ of m is
replaced by an extension at q use s else t where s is the new method body and ¢
is a pattern for objects in class S built using both of the constructors C' and S.
Since the constructor S is new-minted, the meaning of m for existing objects is
unchanged, the new case only affecting objects in class S.

10



A final example of a class declaration is for a parametric class of list nodes
given by
class Node X = {
val : X;
next : Node Rest X;

}

It introduces a type, its constructor and some functions as before, but now, for
the first time, the type parameter Rest which is implicitly bound to the type
of the additional fields appears in the type of a field (just as this is implicitly
bound to the object). For example, next has type

next : Node Rest X — Node Rest X.

This account of Node supports the definition of parametrically polymorphic
functions such as mapping on lists; fully generic mapping over arbitrary classes
as in [Jay03b] can be anticipated.

The interaction between type parameters and sub-typing can be seen by
considering a sub-class of doubly-linked lists are given by a sub-class

class doubleNode extends Node X = {
previous : Node (doubleNode Rest) X;

}

with constructor

doubleNode : Rest X — Node (doubleNode Rest) X — doubleNode Rest X.

6 Interpreting data types

While the types associated to classes need only have one constructor, reflecting
the fixed choices of fields, typical datatype definitions allow for alternatives,
whose semantics are given by coproduct types. For example, the data type
declaration

datatype List X = Nil | Cons of X and List X

typically introduces the type constant List and constructors
Nil : List X
Cons : X — List X — List X
However, in the typing of the pattern calculus considered here, Nil and Cons
cannot both be constructors since their result types have the same head List.
The issues are more easily explored in the fundamental example of booleans,

whose two values True and False are typically considered to be constructors.
Without this restriction on the types of constructors we could infer the type

f= | True = s | False — r : Bool - S A Bool = R

given that s : S and r : R and S < R. However, Bool - S A Bool =+ R is
a sub-type of Bool — S and so it would follow that f False has type S even
though it reduces to r : R.

11



The solution is to exploit sub-typing to separate the alternatives. For exam-
ple, introduce constants

HostBool : X — HostBool X
TrueBool : TrueBool
FalseBool : FalseBool

and define the type Bool of booleans to be HostBool T with

True = HostBool TrueBool : HostBool TrueBool < Bool
False = HostBool FalseBool : HostBool FalseBool < Bool.

Now at False use r else err : HostBool FalseBool -+ R A Bool X — R and so
f : HostBool TrueBool — S A HostBool FalseBool -+ R A Bool X — R

or, by subsumption (and substitution) f : Bool — R.

7 Conclusions

The combination of type variable quantification and sub-typing is powerful
enough to type both inheritance by parametric polymorphism and method spe-
cialisation by type specialisation, provided that the type derivation rules for
pattern-matching are sufficiently liberal. In particular, the four typing chal-
lenges summarised in [Bru02] (parametricity in argument and result types, sub-
typing on return types, and parametrised types for given fields) can all be met.
Dynamic dispatch is handled by global update of existing function with new
cases that involve new constructors. The self object becomes an implicit pa-
rameter in function definitions. The type of self is handled by a type parameter
representing any unknown fields.

Now that the fundamental typing obstacles are removed, the next step is to
define a complete object-oriented language in this way, preferably including the
representation of state. Here are some comments on its anticipated properties.

e Access to methods of the super class can be achieved by ignoring the first
match in a pattern-match.

e Multiple inheritance of classes cannot be supported in this system since
the order of constructors in an object is fixed.

e A naive implementation of the pattern calculus would store all cases for
a method together, instead of storing all methods for a class. However,
there is nothing to stop classes being compiled separately, providing the
naive semantics is respected.

e The evaluation rules pick out the first pattern that fits the argument, but
when the pattern-match represents a method then the first fit is always
the best fit since sub-classes must be declared after super-classes.

e Multi-methods can be easily supported.

12



e Algorithms to determine whether a pattern-matching covers all possible
patterns for a type can be anticipated, but none have yet been developed
for this calculus.

The consequences of having such a language may prove to be dramatic. First,
the typed pattern calculus is significantly simpler than existing practice (let
alone the various theoretical alternatives) since sub-typing is structural, classes
are banished from the run-time system and evaluation is type-free. Second,
wholly novel forms of expressive power are likely when this work is combined
with generic functions for operations such as mapping and traversing to pro-
vide, say, a generic method for deep cloning, or wisitors [PJ98]. Our prototype
implementation already supports both suites of features in isolation. Third, the
typed pattern calculus may prove to be a natural foundation for typed program-
ming in general including such things as a generic function for in-place update
[JLNO2]. These ideas may lead to a calculus able to support all of the key
concepts from imperative, functional and object-oriented languages in a simple
unified foundation.
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8 Appendix: the proof of type preservation

Lemma 8.1 Let o be a type substitution and let S and T be types. If S < T
then 0S < oT. If ST thenoS <oT.

Proof Both statements are proved by a single induction over the length of
the derivation of the premise. |

Lemma 8.2 Let o be a type substitution and T and P be types. If V(oT, P) =
(v1,S1) then V(T, P) is of the form (v, S) where via = pv for some substitution
p such that pS = S;.

Proof The proof is by induction on the structure of 7. If T is a function
type @ — R then o1 = U(0Q, P) and so v = U(Q, P) exists and o10 = puv as
required. If T is an intersection @ — R A T then V(oT, P) = (01,S1) and so
V(T», P) = (v, S) exists and is V(T, P) where 10 = pv for some substitution p
as required. O

Lemma 8.3 Type derivations are stable under type substitution.

Proof The proof is by induction on the length of the derivation. For sub-
sumption, use Lemma 8.1. For extensions use Lemma 8.2. O

Lemma 8.4 From derivations of T1 Fo p : P and T';oI'y F s : S can be
constructed o derivation of T' - at p use s else err : oP — S. In particu-
lar, from a deriwation of T,z : P+ s : S can be constructed a derivation of
'kFXx.s:P—S.

Proof We can infer err : P — S and then V(6P — S, P) = (0,5) which
yields the result. |

Lemma 8.5 Typings of terms are stable under term substitution. That is, if
there are derivations I'y;z : U F s: S and T' - u : U then there is a derivation of

Tt s{u/z}:S.
Proof The proof is by induction on the structure of s. O

Lemma 8.6 If V(T,P) = (v,S) and vP - SAT < Q — R then there is
a type Qo — Ry such that T < Qo — Ry and V(Qo — Ry, P) = (v,S) and
vP = SAQy— Ry <@ — R.

Proof The proof is by induction on the structure of 7. If T is a function
type then we are done. Without loss of generality it is an intersection type
Ty A T>. Since V(P,T) is defined, it follows that T; is a function type, say,
Q1 — Ry and V(T»,P) = V(T,P). Suppose that T < Q@ - R. f T < Q@ - R
then vP — S ATy < @ — R and now induction yields the result. Otherwise
@1 — Ry < T3 and 1 — R; < @ — R. By the definitions of < and V we may
assume that Th = Q2 — R2. Hence Q1 = Q2 (since Q1 — Ry < Q2 = R2) and
so V(Q1 = R1,P) = (v, S) (since (v, S) = V(T, P)).

If it is not the case that T' < @ — R then vP - S<T and vP - S < Q —
R. Then T may be replaced by T5 and induction applied. O

Theorem 8.7 Reduction preserves typing.
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Proof The proof is by case analysis on the basic reductions in Figure 1 since
the result extends to arbitrary reductions by Lemma 8.5. Similarly, reduc-
tion of let-terms preserves typing since typing is stable under type substitution
(Lemma 8.3).
Consider the typing of an application (at p use s else t) u. If the case type
exists then it takes the form
'kt:T Tibkop:P ol kFs: S
I'Fatpuseselset:vP— SAT
'Fatpuseselset:Q — R
Tk (atpuseselset) u: R

'Fu:@Q

where (v, Sg) = V(T, P) and S < Sg and vP - SAT < @) — R. By Lemma 8.6,
T may be asumed to be a function type @1 — R;. Now let us consider the
possible patterns and associated reductions.

Let p be a variable x. Then I'; is some z : X. Also B-reduction produces
s{u/z} so it suffices, by Lemma 8.5, to find a derivation of T,z : Q@ + s : R.
Now there is a derivation of I,z : vX F s : S since the domain of v is just X
and now vX = @1 = Q.

Let p and u both be some constructor ¢. Then reduction produces s and so
it suffices to establish a derivation of ' F s : R. Observe that we have vT' F s5: .S
since I'y is empty. Observe that ¢ : Q) implies that @) is pP for some substitution
p- Q1 > Ry <@ - Rthen Q1 =Q =pPandsovl =T and S = R, < R.
Alternatively, if vP - S <1 @1 - Ry and vP -+ S < Q — R then vP = 1
and so vI' =T'. Also, S < R. Either way, the desired derivation is obtained by
subsumption.

Now let p be some constructor ¢ and u be some term that cannot become
c. If u is a constructed term then P and () have no unifiers and so )1 — R; <
@ — R. Hence I' F t u : R as required. A similar argument applies when p is
an application p; p2 and u cannot become applicative.

Now let p be an application p; p2 and u be an application u; us where u; is
constructed. The type derivation for the pattern is of the form

Fol_op12P3—)P0 FQ"OPQIPQ
vol'o, vol's o p1 P2 : V0 P

Vg = U(PQ,P;;).

IfQ; >R <Q — Rthen Q1 = Q and R; < R.
We can derive types for the sub-terms appearing in the result of the special-
isation as follows (using Lemma 8.4) where appropriate):

’U1F,’U1F0 F f = /\y t (p1 y) Z’U1P3 — ’U1R1

vl vyiTgFg=atpy use selse f:vvgPs =+ S A v1Ps - v Ry

F'Fh=Xx Myt (zy): T

'k k=atp usegelse h: (v Ps—v1Py)— (vuoPs =S AviPs— v Ry) AT

where v; = U(Py, Q1) and T"is (Y — Q1) - Y = R;.

Now consider the type of the original extension applied to a constructed
term w1 us. If Q1 - R1 < @ — Rthen '+ k uy us : Ry and we are done. If
vP - S < @1 — Ry and vP —- S < Q — R then v unifies everything desired
andsol'F &k uj us : S < R.

O
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