
A Core Calculus for Mixin-Types

Tetsuo Kamina and Tetsuo Tamai
University of Tokyo

{kamina,tamai}@graco.c.u-tokyo.ac.jp

Abstract

The programming constructmixinwas invented to implement mod-
ules that provide the mechanism of abstracting uniform extensions
and modifications to superclasses. One approach to implement a
mixin is to parameterize a superclass of a generic class using a
type parameter; however, this approach lacks the ability to declare
a mixin that is also used as a type.

In this paper, we propose a programming language McJava, an ex-
tension of Java that is equipped with mixin-types, a mechanism to
declare a mixin that is also used as a type. Then, we develop Core
McJava, a core language for McJava, and show its type soundness
theorem. This core language is based on Featherweight Java (FJ), a
minimum core calculus for Java. FJ is a very small subset of Java.
Focusing on a few key issues, we have developed a flexible subtyp-
ing relation among mixin compositions.

1 Introduction

Object-oriented programming languages like Java and C# offer
class systems that provide a simple and flexible mechanism for
reusing collections of program pieces. Using inheritance and over-
riding, programmers may derive a new class by specifying only the
elements that are extended and modified from the original class.
However, a pure class-based approach lacks the mechanism of ab-
stracting uniform extensions and modifications to classes.

The programming constructmixinwas invented to implement mod-
ules that provide such uniform extensions and modifications [5]. A
mixin is a partially implemented subclass whose superclass is not
provided in its declaration. To use a mixin, we compose an ac-
tual superclass with the mixin to create a new class. For example,
we may declare a mixinColor that is intended to be composed
with GUI components likeLabel or TextField , to produce new
classesColor::Label 1 or Color::TextField , respectively. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

1We use an operator:: to denote mixin compositions.

reusing implementation, it is also useful to compose a mixinColor
with another mixin, e.g.,Font , a mixin that provides “font” feature.
This composition, writtenColor::Font , is considered as a mixin
that has both feature ofColor andFont . We call this mechanism
mixin-mixin composition.

One approach to implementing mixins is to parameterize a super-
class of a generic class using a type parameter [22, 15]. A mech-
anism of generic classes (also known as templates) is provided by
C++ [16], [1], and GJ, an extension of Java with generic types [6].
Even though a generic type in GJ does not support parameteriza-
tion of a superclass, a recent research shows an implementation and
a type soundness proof of an extension of GJ that allows parame-
terization of superclasses [2].

One of the limitations of a generic type is that it may not be used
as a type unless it is instantiated by substituting type variables with
real types. For example, the following GJ-like code shows a mixin
Font that is supposed to be composed with some other classes:

class Font<Widget> extends Widget {
String font;
void paint(Graphics g) {

g.setFont(this);
super.paint(g);
...

}
void setFontName(String font) {

this.font=font; }
String getFontName() { return font; }

}

In this approach, mixins are simply a coding convention and have
no formal status. TheFont may not be used as a type. Instead, by
using a type parameter for methods, we may write a method like

<X> void setFont(Font<X> f) { ... }

that is intended to be applied to instances of all the results
of composing Font with some classes. However, this ap-
proach does not provide the power of mixin-mixin composition
where Color::Font has both feature ofColor and Font . The
above method actually cannot take an instance of, for example,
Color<Font<Label>> that seems to be allowed if mixin-mixin
compositions are supported.

In this paper, we propose a programming language McJava, an ex-
tension of Java that is equipped withmixin-types, a mechanism of
declaring a mixin that may also be used as a type. Then, we develop
Core McJava, a core calculus for McJava, and show its type sound-

ness theorem. This calculus is based on Featherweight Java (FJ),
a minimum core calculus for Java [11]. FJ is a very small subset
of Java. Focusing on a few key issues, we have developed a flexi-
ble subtyping relation among mixin compositions with mixin-mixin
compositions.

The rest of this paper is structured as follows. In section 2, we pro-
pose a programming language McJava and explain how the use of
mixin-types solves the realistic problems by showing an example.
In section 3, we develop Core McJava, a core calculus for mixin-
types, and show its type soundness theorem. Then, we discuss the
relationship between this work and other related work in section
4. Finally, in section 5 we conclude this paper with some further
research directions.

2 Programming Language McJava

To explain the expressive power of McJava, we start with introduc-
ing an interesting example of integrated systems. In [18], an inte-
grated system is defined as “a collection of software tools that work
together, freeing the user from having to coordinate them manu-
ally.” For example, an integrated system with tools for text edit-
ing, compiling, and debugging will ensure that when the debugger
reaches a breakpoint, the editor scrolls to the corresponding source
statement.

One of the main problems in implementing an integrated system
is its difficulty for evolution. Managing the complexity of inte-
grated systems is hard. The solution of this problem is separating
the components (i.e. the integrated software tools) and their rela-
tions at the design and implementation level; however, Sullivan et
al. argued that an integrated system implemented by a traditional
object-oriented language and even by an aspect-oriented language
like AspectJ [12] hardly evolves [17]. In this section, we propose
a solution to this problem with McJava, and show how the mecha-
nism of mixin-types is used in this solution.

We show a simplified example of integrated systems originally de-
scribed in [17]. In this example, the software tools that are subject
to integration are the binary objects that have two states,on and
off. We call these objectsBits. An instance of Bit has operations
namedsetandclear, to change its state to “on” and “off,” respec-
tively. Binary relations,Equality andTrigger, are defined among
Bits. The Equality relation always makes the states of the related
Bits the same, while the Trigger relation activates thetargetBit to
be “on” if the sourceBit becomes “on,” but takes no action on the
other situations.

For example, let us assume the following structure:

b1 b2

b3b4

Equality

Equality

Trigger

In this system, the four objects, b1, b2, b3 and b4, are instances of
Bit; b1 and b2, and b2 and b3 are connected by Equality relations;

class Equality {
public boolean busy;
EqAdaptor role1, role2;

public void join1(EqAdaptor e) {
role1=e;
e.equalities.add(this);

}
public void join2(EqAdaptor e) {

role2=e;
e.equalities.add(this);

}
public EqAdaptor getOpponent(EqAdaptor e){

if (role1 == e) return role2;
else if (role2 == e) return role1;
else return null;

}
}

Figure 1. Equality in McJava

interface eqI {
void set();
void clear();

}

mixin EqAdaptor requires eqI {
public Vector equalities = new Vector();

public void set() {
super.set();
for (Iterator i=equailties.iterator();

i.hasNext();) {
Equality e = (Equality)i.next();
if (!e.busy) {

e.busy = true;
e.getOpponent(this).set();
e.busy = false; }}}

public void clear() {
super.clear();
for (Iterator i=equalities.iterator();

i.hasNext();) {
Equality e = (Equality)i.next();
if (!e.busy) {

e.busy = true;
e.getOpponent(this).clear();
e.busy = false; }}}

}
Figure 2. A role for equality in McJava

b3 is a trigger of b4. If b1 receives a message “set,” then the “set”
message is sent to b2, that also activates sending the “set” message
to b3. Furthermore, the “set” message is sent to b4 because b3 is
a trigger of b4. However, no matter what is sent to b4, nothing
happens to b3.

The problem is to make this system evolvable, separating the imple-
mentation of the Bit objects and the Equality and Trigger relations,
and make this system modular and scalable. Modularity means im-
plementation of relations should be able to adapt to other imple-
mentations of Bit objects, and the implementation of the Bit objects
should be reusable in other contexts. Scalability means that we may
add new Bit objects and even new relations other than Equality or
Trigger to that system with no difficulty.

A sample solution for this problem written in McJava is given in
Figures 1 and 2. A statement beginning withmixin is amixin dec-
laration. A mixin declaration has the following form:

class Main {
public static void main(String[] args) {

EqAdaptor::Bit b1=new EqAdaptor::Bit();
EqAdaptor::Bit b2=new EqAdaptor::Bit();
TrAdaptor::EqAdaptor::Bit b3 =

new TrAdaptor::EqAdaptor::Bit();
Bit b4 = new Bit();
Equality e1 = new Equality();
Equality e2 = new Equality();
Trigger t1 = new Trigger();

e1.join1(b1); e1.join2(b2);
e2.join1(b2); e2.join2(b3);
t1.join1(b3); t1.join2(b4);
...

}
}
Figure 3. An example program of integrated systems

mixin X requires I { ... }
whereX denotes the name of mixin andI denotes the interface that
the mixinrequires. A mixin may invoke methods declared in the su-
perclass, even though the superclass is not specified when the mixin
is declared. The required interface is used to ensure that no “mes-
sage not understood” error occurs at run-time; if a mixin invokes its
superclasses’ methods, they must be declared in the interface that
the mixin requires. More details can be found in section 3.

In McJava, a mixin cannot be instantiated. Instead, a mixin may
be composed with other classes. Thismixin-class compositionmay
make instances. A mixin may also be composed with other mix-
ins; however, thismixin-mixin compositioncannot be instantiated.
The syntax of composition is concatenating mixin names and class
names by:: , like Id1 :: · · · :: Idn.

Figure 1 gives an implementation ofEquality relation. An
Equality is a binary relation, so it has two instance variables
role1 and role2 to hold the Bit objects that are linked with the
Equality relation. But we would like to apply thisEquality to
other implementations of Bit objects. Therefore, the type ofrole1
androle2 is declared asEqAdaptor that abstracts a set of opera-
tions theEquality is interested in.

EqAdaptor is declared as a mixin in Figure 2. It declares methods
set() andclear() . Because those methods invokesuper.set()
and super.clear() respectively,EqAdaptor requires the inter-
face eqI that declaresset() and clear() . EqAdaptor may be
composed with any class that implements the methods declared in
eqI . For example, the following classBit may be composed with
EqAdaptor .

class Bit {
boolean state=false;
void set() { state=true; }
void clear() { state=false; }
boolean get() { return state; }

}

At first, the method set() /clear() of EqAdaptor invokes
the same method declared in the superclass (for example, the
set() /clear() of Bit class). Then, it sends theset() /clear()
message to all the objects that have theEquality relation linkage
with the sender. The instance variablebusy declared inEquality
is a flag that ensures the transition of these method invocations does
not end up with an infinite loop.

The Trigger relation is also implemented in the same way. Then,
the integrated system may be implemented as in Figure 3. Be-
cause b1 and b2 only join in theEquality relation, they are created
as instances of the composition ofEqAdaptor and Bit (as men-
tioned before, in McJava the syntax for mixin composition is::).
On the other hand, b3 is created as an instance of the composi-
tion of TrAdaptor , EqAdaptor andBit (TrAdaptor is a mixin for
Trigger), because it joins in both theEquality relation and the
Trigger relation.

This solution is modular because the implementation of relations
may be adapted to other implementations of Bit objects, if they im-
plement the methods declared ineqI . Of course, the implementa-
tion of the Bit objects may be reused in other contexts. Further-
more, this solution is scalable because we may add new Bit ob-
jects easily viajoin methods declared in the relations. Adding
new relations is also easy. The key of this solution is using mixin
EqAdaptor that abstracts the operations in which theEquality is
interested, and ability to use the nameEqAdaptor as the type names
in formal parameters and field declarations.

At the moment we have developed a preliminary version of
McJava compiler that has many restrictions including it still
does not have the capability of accessing Java standard li-
braries. The latest version of McJava compiler is downloadable
at http://kumiki.c.u-tokyo.ac.jp/˜kamina/mcjava/ . In the
next section, we define formal semantics of the core of McJava.

3 Core McJava: A Core Calculus for McJava

The design of Core McJava is based on FJ [11], a minimum core
language for Java. FJ is a very small subset of Java, focusing on just
a few key constructs. For example, in FJ constructors always take
the same stylized form: there is one parameter for each field, with
the same name as the field. FJ provides no side-effective operations,
that means a method body always consists ofreturn statement fol-
lowed by an expression. Because FJ provides no side-effects, the
only place where the assignment operations may appear is a con-
structor declaration. In FJ, all the fields are initialized at the object
instantiation time. Once initialized, the FJ objects never change its
state.

Core McJava shares the same features of FJ explained above. In
the following subsections, we present the syntax and operational
semantics of Core McJava and its type soundness theorem.

3.1 Syntax

T ::= ~X :: C | ~X
LC ::= class C extends ~X :: C {~T ~f ; KC ~M}
LX ::= mixin X requires I {~T ~f ; KX ~M}
LI ::= interface I { ~MI ; }
KC ::= C(~S~g, ~T ~f){super(~g); this. ~f =~f ; }
KX ::= X(~T ~f){ this. ~f =~f ; }
M ::= T m(~T ~x){ return e; }

MI ::= T m(~T ~x)
e ::= x | e. f | e.m(~e) | new ~X :: C(~e) | (T)e

Figure 4. Abstract syntax of Core McJava

The abstract syntax of Core McJava is given in Figure 4. In this pa-
per, the metavariablesd ande range over expressions;KC andKX
range over constructor declarations;m ranges over method names;

M ranges over method declarations;C and D range over class
names;X andY range over mixin names;R, S, T, U andV range
over type names;I ranges over interface names;x ranges over vari-
ables;f andg range over field names. As in FJ, we assume that the
set of variables includes the special variablethis , that is consid-
ered to be implicitly bound in every method declaration.

We write~f as a shorthand for a possibly empty sequencef1, · · · , fn
and write~M as a shorthand forM1 · · ·Mn. The length of a sequence
~x is written as#(~x). Empty sequences are denoted by·. Similarly,
we write “~T ~f ” as a shorthand for “T1 f1, · · · ,Tn fn”, “ ~T ~f ; ” as a
shorthand for “T1 f1; · · ·Tn fn; ”, “ this .~f = ~f ; ” as a shorthand for
“ this . f1 = f1; · · · this . fn = fn; ”, ~X as a shorthand forX1 :: · · · ::
Xn.

As in Figure 4, there are two kinds of types:~X and~X :: C. The for-
mer denotes amixin-mixin compositionthat is generated by com-
posing mixin names, while the latter denotesmixin-class composi-
tion that is a result of composing mixin names (possibly empty se-
quence) and a class name. We may instantiate a mixin-class compo-
sition bynew expression but may not instantiate mixin-mixin com-
position.

We write T <: U when T is a subtype ofU . Subtype relation
between classes, mixins, and compositions is defined in Figure 5,
i.e., subtyping is a reflexive and transitive relation of the immediate
subclass relation given by theextends clauses in class declarations.

T <: T (S-REFL)

∀T ∈ subsequences(U) U <: T (S-COMP)

T <: S S<: U

T <: U
(S-TRANS)

class C extends ~X :: D {... }
C <: ~X :: D

(S-CLASS)

subsequencesis defined as follows:

subsequences(C) = {C}
subsequences(X) = {X}
subsequences(X :: T) = {X :: U |U ∈ subsequences(T)}

∪subsequences(T)∪{X}

Figure 5. Subtype relation

One of the novel features of Core McJava is the flexibility of sub-
typing relation for compositions. A composition is a subtype of
all its subsequences. For example,TrAdaptor::EqAdaptor::Bit
is a subtype ofBit , EqAdaptor , TrAdaptor , EqAdaptor::Bit ,
TrAdaptor::EqAdaptor , and TrAdaptor::Bit . This subtype
rules provide more chances of code reuse. For example, a method
whose formal parameter type is a composition typeT may be ap-
plied to an expression with a composition type that “mixes” some
mixins with T.

3.2 Class Table

A Core McJava program is interpreted by a pair of(CT,e) of a
class tableCT and an expressione. A class table is a map from

class names and mixin names to class declarations and mixin dec-
larations. The expressione may be considered as themain method
of the “real” McJava program. The class table is assumed to satisfy
the following conditions: (1)CT(C) = class C ... for everyC∈
dom(CT); (2) CT(X) = mixin X ... for every X ∈ dom(CT);
(3)Object 6∈ dom(CT); (4) T ∈ dom(CT) for every class name and
mixin name appearing inran(CT); (5) there are no cycles in the
subtype relation induced by CT.

In the induction hypothesis, we abbreviateCT(C) = class C ...
andCT(X) = mixin X ... asclass C ... andmixin X ... ,
respectively.

3.3 Auxiliary functions

For the typing and reduction rules, we need a few auxiliary defini-
tions, given in Figure 6, 7 and 8.

The fields of typeT, written fields(T), is defined in Figure 6 as a
sequence~T ~f pairing the type of each field with its name. IfT is
a class,fields(T) is a sequence for all the fields declared in class
T and all of its superclasses, placing the fields declared inT be-
fore the fields declared inT ’s superclass. IfT is a mixin,fields(T)
is a sequence for all the fields declared in that mixin. IfT is a
composition,fields(T) is a sequence for all the fields declared in
all of its constituent mixins and a class, placing the fields declared
in the left operand of composition after the fields declared in the
right operand. For the field lookup, we also have the definition of
ftype(fi ,T) that is a type of fieldfi declared inT. In contrast with
Java, field hiding is not allowed in Core McJava.

fields(Object) = ·

class C extends ~X :: D {~T ~f ; KC ~M}
fields(~X :: D) =~S~g

fields(C) =~S~g, ~T ~f

mixin X requires I {~T ~f ; KX ~M}
fields(X) = ~T ~f

fields(X) = ~T ~f fields(T) =~S~g

fields(X :: T) =~S~g, ~T ~f

fields(T) = ~T ~f

ftype(fi ,T) = Ti

Figure 6. Field lookup

The type of methodm in type T is given bymtype(m,T). The
function mtype is defined in Figure 8 by a pair~S→ S, where~S
is a sequence of argument types andS is a result type. IfT is a
composition, the left operand of :: is searched first. Ifm is not
found inT, we define itnil . The type of methodm in interfaceI
is also defined in the same way. Similarly, the body of methodm
in typeT, writtenmbody(m,T), is a pair, written~x.e of a sequence
of parameters~x and an expressione. In contrast with Java, method
overloading is not allowed in Core McJava.

mtype(m,Object) = nil

class C extends ~X :: D {~T ~f ; KC ~M}
S m(~S~x){ return e; } ∈ ~M

mtype(m,C) =~S→ S

class C extends ~X :: D {~T ~f ; KC ~M} m 6∈ ~M

mtype(m,C) = mtype(m,~X :: D)

mixin X requires I {~T ~f ; KX ~M}
S m(~S~x){ return e; } ∈ ~M

mtype(m,X) =~S→ S

mixin X requires I {~T ~f ; KX ~M} m 6∈ ~M

mtype(m,X) = mtype(m, I)

interface I { ~MI ; } T m(~T ~x) ∈ ~MI

mtype(m, I) = ~T → T

interface I { ~MI ; } m 6∈ ~M

mtype(m, I) = nil

mtype(m,X) = ~T → T

mtype(m,X :: T0) = ~T → T

mtype(m,X) = nil mtype(m,T0) = ~T → T

mtype(m,X :: T0) = ~T → T

Figure 7. Method type lookup

3.4 Dynamic Semantics

The reduction relation is of the forme−→ e
′
, read “expressione re-

duces to expressione
′
in one step”. We write−→∗ for the reflexive

and transitive closure of−→.

The reduction rules are given in Figure 9. There are three reduction
rules, one for field access, one for method invocation, and one for
casting. The field access reduces to the corresponding argument
for the constructor. Due to the stylized form of object constructors,
the constructor has one parameter for each field, in the same order
as the fields are declared. The method invocation reduces to the
expression of the method body, substituting all the parameter~x with
the argument expressions~d and the special variablethis with the
receiver (we write[~d/~x,e/y]e0 for the result of substitutingx1 by
d1,...,xn by dn andy by e in e0).

3.5 Typing

The typing rules for class declarations, mixin declarations, compo-
sitions and expressions are given in Figure 10 and 11. An environ-
mentΓ is a finite mapping from variables to types, written~x : ~T.
The typing judgment for expressions has the formΓ ` e : T, read
“in the environmentΓ, expressionehas typeT”.

Figure 10 shows the typing rules for methods, classes, mixins, and
compositions. The type of the body of the method declaration is

mbody(m,Object) = nil

class C extends ~X :: D {~T ~f ; KC ~M}
S m(~S~x){ return e; } ∈ ~M

mbody(m,C) =~x.e

class C extends ~X :: D {~T ~f ; KC ~M} m 6∈ ~M

mbody(m,C) = mbody(m,~X :: D)

mixin X requires I {~T ~f ; KX ~M}
S m(~S~x){ return e; } ∈ ~M

mbody(m,X) =~x.e

mixin X requires I {~T ~f ; KX ~M} m 6∈ ~M

mbody(m,X) = nil

mbody(m,X) =~x.e

mbody(m,X :: T) =~x.e

mbody(m,X) = nil mbody(m,T) =~x.e

mbody(m,X :: T) =~x.e

Figure 8. Method body lookup

a subtype of the declared type, and, for the method in a class, the
static type of the overriding method is the same as that of the overri-
den method. A class definition is well-formed if all the methods de-
clared in that class and the constructor are well-formed. Similarly,
a mixin is well-formed if all the method declared in that mixin are
well-formed.

The typing rule for compositions checks that the following require-
ments are met. First, there are no fields declared with the same
name between the left component and the right component of the
composition. Second, there is no method collision, that is, if some
methods are declared with the same name in the left and the right,
the static type of both methods is the same. Finally, for all the meth-
ods declared in the interface that is required by the left mixin, if the
right operand of the composition is a class, it declares the methods
named and typed as the same as the interface.

Figure 11 shows the typing rules for expressions. These rules are
syntax directed, with one rule for each form of expression, except
that there are three rules for casts. Most of them are straightfor-
ward extension of the rules in FJ. The typing rules for constructor
and method invocations check that the type of each argument is a
subtype of the corresponding formal parameter. The typing rule for
constructor invocations also checks that there are no instances of
mixins and mixin-mixin compositions.

3.6 Properties

We show that Core McJava is type sound. The proof is given in the
accompanying Appendix A. We start by stating some lemmas used
in the proof of type soundness.

LEMMA 3.1. If ftype(f ,U) = T, thenftype(f ,S) = T for all S <:
U.

Computation:

fields(~X :: C) = ~T ~f

new ~X :: C(~e).f i −→ ei
(R-FIELD)

mbody(m, ~X :: C) = ~x.e0

new ~X :: C(~e).m(~d) −→ [~d/~x,new ~X :: C(~e)/this]e0
(R-INVK)

~X :: C <: T

(T)new ~X :: C(~e)−→ new ~X :: C(~e)
(R-CAST)

Congruence:

e0 −→ e
′
0

e0. f −→ e
′
0. f

(RC-FIELD)

e0 −→ e
′
0

e0.m(~e)−→ e
′
0.m(~e)

(RC-INVK-RECV)

ei −→ e
′
i

e0.m(· · · ,ei , · · ·)−→ e0.m(· · · ,e′i , · · ·)
(RC-INVK-ARG)

ei −→ e
′
i

new ~X :: C(· · · ,ei , · · ·)−→ new ~X :: C(· · · ,e′i , · · ·)
(RC-NEW)

e0 −→ e
′
0

(T)e0 −→ (T)e
′
0

(RC-CAST)

Figure 9. Operational semantics

LEMMA 3.2. If mtype(m,U) = ~T → T0, thenmtype(m,T) = ~T →
T0 for all T <: U.

LEMMA 3.3. If Γ,~x : ~S` e : U, Γ ` ~d : ~R where~R <: ~S, then
Γ ` [~d/~x]e : T for someT <: U.

LEMMA 3.4. If Γ ` e : T whereΓ does not includex, thenΓ,x :
U ` e : T.

LEMMA 3.5. If mtype(m,~X :: C) = ~U → U and mbody(m,~X ::
C) =~x.e, then, for someU0 with~X :: C <: U0, there existsT <: U
such that~x : ~U , this : U0 ` e : T.

From the lemmas established above, we derive the type soundness
theorem for Core McJava:

THEOREM 3.1 (SUBJECTREDUCTION). If Γ ` e : T ande−→
e
′
, thenΓ ` e

′
: T

′
for someT

′
<: T.

THEOREM 3.2 (PROGRESS). Suppose e is a well-typed expres-
sion.

1. If e includesnew ~X :: C(~e). f as a subexpression, then
fields(~X :: C) = ~T ~f and f ∈ ~f for some~T and~f .

2. If e includesnew ~X :: C(~e).m(~d) as a subexpression, then
mbody(m,~X :: C) =~x.e0 and#(~x) = #(~d) for some~x ande0.

~x : ~T, this : C ` e0 : U0 U0 <: T0

class C extends ~X :: D {... }
if mtype(m,~X :: D) =~S→ S0, then~S= ~T andS0 = T0

T0 m(~T ~x){ return e0; } OK IN C
(T-CMETHOD)

~x : ~T, this : X ` e0 : S0 S0 <: T0
mixin X requires I {... }

T0 m(~T ~x) { return e0; } OK IN X
(T-XMETHOD)

KC = C(~S~g, ~T ~f){super(~g); this. ~f =~f ; }
fields(~X :: D) =~S~g ~M OK IN C

class C extends ~X :: D {~T ~f ; KC ~M} OK
(T-CLASS)

KX = X(~S~f){ this. ~f =~f ; }
~M OK IN X

mixin X {~T ~f ; KX ~M} OK
(T-MIXIN)

fields(X)∩fields(T) = /0 interface I { ~MI}
mixin X requires I { ... ~M }

∀m∈ ~M mtype(m,X) = mtype(m,T) or
mtype(m,T) = nil

If T is a composition~X :: C, then
∀n∈ ~MI mtype(n, I) = mtype(n,T)

X :: T ok
(T-COMP)

Figure 10. Typing rules for classes, mixins, and compsitions

To state type soundness formally, we introduce a valuev of an ex-
pressioneby v ::= new ~X :: C(~v) .

THEOREM 3.3 (CORE MCJAVA TYPE SOUNDNESS). If /0 ` e :
T ande−→∗ e

′
with e

′
a normal form, thene

′
is either (1) a value

v of e with /0 ` v : U andU <: T, or (2) an expression containing
(U)new T(~e) whereU 6<: T.

4 Related Work

McJava is anominally typedclass-based language, that means the
name of a class (or mixin) determines its subtype relationship. On
the other hand, in object-oriented languages withstructural sub-
typing, the subtype relation between classes is determined by their
structures. A core calculus of classes and mixins for structurally
typed language was proposed by Bono et al.[4]. Instead, we take
a nominal approach, because the host language (Java) is nominaly
typed. With nominal approach, we directly define flexible subtype
rules regarding to mixin-mixin composition that is not supported by
Bono’s approach.

To our knowledge, core calculus for mixin types extending Java
was originally developed by Flatt et al.[9]. The novel feature of
this calculus, named MixedJava, is its ability to implement hygienic
mixins [2, 13]. Hygienic mixins postpone the timing of method
look up to run-time, avoiding the problem of method collision. This
feature is achieved by changing the protocol of method lookup; in
MixedJava, each reference to an object is bundled with itsviewof
the object, the run-time context information. A view is represented
as a chain of mixins for the object’s instantiation type. It designates

Γ ` x : Γ(x) (T-VAR)

Γ ` e0 : S ftype(f ,S) = T T ok

Γ ` e0. f : T
(T-FIELD)

Γ ` e0 : S mtype(m,S) =~S→ T
Γ `~e : ~T ~T <: ~S T ok

Γ ` e0.m(~e) : T
(T-INVK)

fields(~X :: C) =~S~f Γ `~e : ~T ~T <: ~S
~X :: C ok

Γ ` new ~X :: C(~e) : ~X :: C
(T-NEW)

Γ ` e0 : S S<: T T ok

Γ ` (T)e0 : T
(T-UCAST)

Γ ` e0 : S T <: S T 6= S T ok

Γ ` (T)e0 : T
(T-DCAST)

Γ ` e0 : S T 6<: S S 6<: T T ok
stupid warning
Γ ` (T)e0 : T

(T-SCAST)

Figure 11. Typing rules for expressions

a specific point in the full mixin chain, the static type of that object,
for selecting methods during dynamic dispatch.

Even though the proposal of hygienic mixins itself is useful and fea-
sible in the practical programming languages [2, 13], implement-
ing the operational semantics and the type system of MixedJava
(that supports mixin-types) on the JVM (that contains no infor-
mation for views) is difficult. Furthermore, McJava defines very
flexible subtyping relations. For example, the subtype relation
X :: Y :: C <: X :: C does not exist in MixedJava. McJava does
not support hygienic mixins. Instead, the type system of McJava
detects the method collisions statically, allowing programmers to
treat them manually.

Jam [3] is a practical proposal for adding mixin-types to Java. Jam
gives semantics of mixin compositions formally by translation to
Java. Based on that semantics, mixin-types in Jam have some sig-
nificant limitations; In Jam, a mixin-mixin composition is not al-
lowed. Furthermore, using the keywordthis in mixins is very re-
stricted. For example, usingthis as the argument value for the
method invocation is not allowed in Jam. Formulating operational
semantics at an abstract level, these limitations are resolved in Core
McJava.

Mixin modules[7], essentially motivated by the problem of inter-
action with recursive constructs that cross module boundaries in
module systems of functional languages, mainly focus on facilitat-
ing reusing large scale programming constructs such as frameworks
[8]. Our work, on the other hand, mainly focuses on integrating
mixin-types and its flexible subtyping with real programming lan-
guages. The work [8] sacrifices mixin subtyping in favor of allow-
ing method renaming.

MixJuice [10] is also independently proposed by Ichisugi et al. to
modularize large scale compilation unit. MixJuice is designed as

an extension of Java withdifference-based modulesthat are sep-
arately compilable units of encapsulation. The design of mixins
in MixJuice is actually different from our work. In MixJuice, the
providersof mixins control encapsulation. In the case of diamond
inheritance, the users have the responsibility of composing them
without breaking encapsulation. In McJava, on the contrary, the
usersof mixins control encapsulation because these mixins are
parametrized over their superclasses. Users add superclasses to
mixins and there are no case of diamond inheritance.

Scḧarly et al. proposedtraits [14], fine grained reusable compo-
nents as building blocks for classes. Traits support method renam-
ing that overcomes the problem of method collision. When traits
are composed, the members of those traits are “flatterned” into one
class, which also solves the ordering problem of mixins. Our work,
in contrast with traits, has more focus on declaring a mixin as a
type, and studying their subtype relations. We would also like to
note that the ordering of mixins is useful particularly when we “ex-
tend” a parametrized superclass with the same name of method as
the superclass, and invoke it viasuper. m, wherem is a method
name.

Mixins may be used as vehicles to directly implementrolesin terms
of role modeling [19]. Epsilon [21, 20], a role-based executable
model, was also proposed for this purpose. Currently Epsilon lacks
the feature of static typing. We consider McJava and its core cal-
culus provides some basic understanding to study static typing on
Epsilon.

5 Conclusion and Directions for Further Re-
search

As shown in section 2, adding mixin-types to a traditional object-
oriented language significantly improves its expressive power.
Based on FJ, the core language for Java, we have developed the
core language for Java with mixin-types. We have shown the core
language for mixin-types is type sound. We believe that these re-
sults provide a convincing way for adding mixin-types to nominally
typed object-oriented languages such as Java and C#.

Finally, we point out some issues remained for the future work:

Formal reasoning of compilation We have developed a McJava
compiler that translates McJava programs into Java programs.
Using a formal method will enhance understanding on the cor-
rectness of that translation. To do this, a possible way is to
design a core language of the target language and show the
compilation from Core McJava to the core language is cor-
rect. We consider FJ is not adequate for the target language,
because the compilation strongly depends on the existence of
interfaces in the target language. Thus, we have to extend FJ
to obtain an appropriate target core language.

Core McJava with generic types J2SE 1.5 is the next major revi-
sion to the Java platform and language that will include major
enhancements such as generic types. It is interesting to inte-
grate the feature of genericity with mixin-types.

McJava compiler for practical use Even though a preliminary
version of McJava compiler is implemented, it is desirable
to develop a McJava compiler for practical use. The compiler
should support, for example, separate compilation that is not
supported by the current version.

Acknowledgements: The authors would like to thank Atsushi

Igarashi, Hidehiko Masuhara and Etsuya Shibayama for their very
helpful comments on the earlier version of this calculus.

6 References

[1] Ole Agesen, Stephen N. Freund, and John C. Mitchell.
Adding type parameterization to the Java language. InCon-
ference Proceedings of OOPSLA ’97, Atlanta, pages 49–65.
ACM, 1997.

[2] Eric Allen, Jonathan Bannet, and Robert Cartwright. A first-
class approach to genericity. InProceedings of OOPSLA2003,
pages 96–114, 2003.

[3] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam –
A smooth extension of java with mixins. InECOOP 2000,
pages 154–178, 2000.

[4] Viviana Bono, Amit Patel, and Vitaly Shmatikov. A Core Cal-
culus of Classes and Mixins. InProceedings of ECOOP’99,
LNCS 1628, pages 43–66, 1999.

[5] Gilad Bracha and William Cook. Mixin-based inheritance. In
OOPSLA 1990, pages 303–311, 1990.

[6] Gilad Bracha, Martin Odersky, David Stroutamire, and Philip
Wadler. Making the future safe for the past: Adding genericity
to the Java programming language. InOOPSLA 1998, pages
183–200, 1998.

[7] Dominic Duggan and Constantinous Sourelis. Mixin mod-
ules. InICFP’96, pages 262–272, 1996.

[8] Dominic Duggan and Ching-Ching Techaubol. Modular
mixin-based inheritance for application frameworks. InOOP-
SLA 2001, pages 223–240, 2001.

[9] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. Classes and mixins. InPOPL 98, pages 171–183,
1998.

[10] Yuuji Ichisugi and Akira Tanaka. Difference-Based Modules:
A Class-Independent Module Mechanism. InProceedings of
ECOOP 2002, pages 62–88, 2002.

[11] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Feath-
erweight Java: A minimal core calculus for Java and GJ.ACM
TOPLAS, 23(3):396–450, 2001.

[12] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Grisword. An overview of As-
pectJ. InECOOP 2001, pages 327–353, 2001.

[13] Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh. Jiazzi:
New-age components for old-fashioned Java. InProceedings
of OOPSLA2001, 2001.

[14] Nathanael Scḧarly, Stéphane Ducasse, Oscar Nierstrasz, and
Andrew Black. Traits: Composable units of behavior. In
ECOOP 2003, LNCS 2743, pages 248–274, 2003.

[15] Yannis Smaragdakis and Don Batory. Implementing Layered
Designs with Mixin Layers. InProceedings ECOOP’98, vol-
ume 1445 ofLecture Notes in Computer Science, pages 550–
570, 1998.

[16] B. Stroustrup.The C++ Programming Language. Addison-
Wesley, 3rd edition, 1997.

[17] Kevin Sullivan, Lin Gu, and Yuanfang Cai. Non-Modularity
in Aspect-Oriented Languages: Integration as a Crosscut-
ting Concern for AspectJ. InProceedings of 1st Interna-
tional Conference on Aspect-Oriented Software Development

(AOSD 2002), pages 19–26, 2002.

[18] Kevin J. Sullivan and David Notkin. Reconciling environment
integration and software evolution.ACM Transaction on Soft-
ware Engineering and Methodology, 1(3):229–268, 1992.

[19] Tetsuo Tamai. Objects and roles: modeling based on
the dualistic view. Information and Software Technology,
41(14):1005–1010, 1999.

[20] Tetsuo Tamai. Evolvable Programming based on
Collaboration-Field and Role Model. InInternational
Workshop on Principles of Software Evolution (IWPSE’02),
pages 1–5, 2002.

[21] Naoyasu Ubayashi and Tetsuo Tamai. Separation of Concerns
in Mobile Agent Applications. InMetalevel Architectures and
Separation of Crosscutting Conserns – Proceedings of the 3rd
International Conference (Reflection 2001), volume 2192 of
Lecture Notes in Computer Science, pages 89–109, 2001.

[22] Michael VanHislt and David Notkin. Using C++ templates to
implement role-based designs. InJSSST International Sym-
posium on Object Technologies for Advanced Software, pages
22–37. Springer-Verlag, 1996.

A Proof of Core McJava Type Soundness
Theorem

Intuitionally, the step of proving Core McJava type soundness is
almost the same as that of FJ, but details vary a little.

A.1 Proof of Lemma 3.1

Straightforward induction on the derivation of subtype relation<:
andftype. 2

A.2 Proof of Lemma 3.2

Straightforward induction on the derivation of subtype relation<:,
mtype and T-COMP. Note that whetherm is defined inC or not,
mtype(m,C) = mtype(m,~X :: D) whereclass C extends ~X :: D
{... }. Similarly, note that whetherm is defined inX or not,
mtype(m,X :: T) = mtype(m,X) (see the rule T-COMP). 2

A.3 Proof of Lemma 3.3

By induction on the derivation ofΓ,~x :~S` e : U .

Case T-VAR.

e= x U = Γ(x)

If x 6∈ ~x, then the conclusion is immediate, since[~d/~x]x = x. If
x = xi , andU = Si , then lettingRi = T finishes the case because
[~d/~x]x = [~d/~x]xi = di , di : Ri andRi <: Si = U .

Case T-FIELD.

e= e0. fi Γ,~x :~S` e0 : ~X :: C
fields(~X :: C) = ~T ~f U = Ti

By the induction hypothesis, there is someT0 such thatΓ` [~d/~x]e0 :
T0 and T0 <: ~X :: C. Then, by Lemma 3.1,ftype(fi ,T0) =
ftype(fi ,~X :: C). Therefore, by the rule T-FIELD, Γ ` ([~d/~x]e0). fi :
Ti .

Case T-INVK .

e= e0.m(~e) Γ,~x : ~S` e0 : ~X :: C mtype(m,~X :: C) =~V →U
Γ,~x :~S`~e : ~U ~U <: ~V

By the induction hypothesis, there are someT0 and~X such that

Γ ` [~d/~x]e0 : T0 T0 <: ~X :: C
Γ ` [~d/~x]~e : ~T ~T <: ~U

By Lemma 3.2,mtype(m,T0) = mtype(m,~X :: C) =~V →U . Then,
by S-TRANS, ~T <: ~V. Therefore, by the rule T-INVK , Γ `
[~d/~x]e0.m([~d/~x]~e) : U .

Case T-NEW.

e= new ~X :: C(~e) fields(~X :: C) = ~U ~f
Γ,~x : ~S`~e : ~T ~T <: ~U

By the induction hypothesis, there are some~V such thatΓ ` [~d/~x]~e:
~V and~V <: ~T. Then, by the rule S-TRANS, ~V <: ~U . Therefore,
by the rule T-NEW, Γ ` new ~X :: C([~d/~x]~e) : ~X :: C.

Case T-UCAST.

e= (U)e0 Γ,~x : ~S` e0 : T T <: U

By the induction hypothesis, there are someV such thatΓ `
[~d/~x]e0 : V andV <: T. Then, by the rule S-TRANS, V <: U .
Therefore, by the rule T-UCAST, Γ ` (U)([~d/~x]e0) : U .

Case T-DCAST.

e= (U)e0 Γ,~x :~S` e0 : T U <: T U 6= T

By the induction hypothesis, there are someV such thatΓ `
[~d/~x]e0 : V and V <: T. If V <: U or U <: V, then Γ `
(U)([~d/~x]e0) : U by the rule T-UCAST or T-DCAST, respectively.
On the other hand, by the rule T-SCAST, Γ ` (U)([~d/~x]e0) :U (with
astupid warning).

Case T-SCAST.

e= (U)e0 Γ,~x : ~S` e0 : T U 6<: T T 6<: U

By the induction hypothesis, there are someV such thatΓ `
[~d/~x]e0 : V andV <: T. If V 6<: U , then, by the rule T-SCAST,
Γ ` (U)([~d/~x]e0) : U (with a stupid warning). If V <: U , then, by
the rule T-UCAST, Γ ` (U)([~d/~x]e0) : U . 2

A.4 Proof of Lemma 3.4

Straightforward induction.2

A.5 Proof of Lemma 3.5

By induction on the derivation ofmbody. In the base case (wherem
is defined inCT(T0)), it is easy to prove by the rule T-CMETHOD,
if T0 is a class type, or by the rule T-XMETHOD, if T0 is a mixin
type. The induction step is also straightforward.2

A.6 Proof of Theorem 3.1

By induction on a derivation ofe−→ e
′
.

Case R-FIELD.

e= (new ~X(C)(~e)). fi e
′
= ei fields(~X(C)) = ~U ~f

By the rule T-FIELD, we haveΓ ` new ~X :: C(~e) :~Y :: D, T = Ui for
some~Z :: E. Then, by the rule T-NEW, we haveΓ `~e : ~T, ~T <:
~U , ~Y :: D = ~X :: C. In particular,Γ ` ei : Ti , finishing the case, since
Ti <: Ui .

Case R-INVK .

e= (new ~X :: C(~e).m(~d) mbody(m,~X :: C) =~x.e0

e
′
= [~d/~x,(new ~X :: C(~e))/this]e0

By the rule T-INVK and T-NEW, we have

Γ ` new ~X :: C : ~X :: C mtype(m,~X :: C) = ~U → T
Γ ` ~d : ~T ~T <: ~U

for some~T and~U . By Lemma 3.5,~x : ~U , this : U0 ` e0 : S for
someU0 andSwhere~X :: C <: U0 andS <: T. By Lemma 3.4,
Γ,~x : ~U , this : U0 ` e : S. Then, by Lemma 3.3,Γ ` [~d/~x,(new ~X ::
C(~e))/this]e0 : V for someV <: S. Then we haveV <: T by
transitivity of<:. Finally, lettingV = T

′
finishes this case.

Case R-CAST.

e= (U)(new ~X :: C(~e)) ~X :: C(~e) <: U e
′
= new ~X :: C(~e)

Because of the assumption~X :: C <: T, the proof of Γ `
(T)new ~X :: C(~e) : U must end with the rule T-UCAST. By the rules
T-UCAST and T-NEW, we haveΓ ` (U)new ~X :: C(~e) : U .

The cases for congruence rules are easy.2

A.7 Proof of Theorem 3.2

If ehasnew ~X ::C(~e). f as a subexpression, by well-typedness of the
subexpression, it is easy to check thatfields(~X :: C) is well defined
and f appears in it. Similarly, ife hasnew ~X :: C(~e).m(~d) as a
subexpression, it is also easy to showmbody(m,vecX:: C) =~x.e0

and#(~x) = #(vecd), sincemtype(m,~X :: C) = ~T →U where#(~x) =
#(T). 2

A.8 Proof of Theorem 3.3

Immediate from Theorem 3.1 and 3.2.2

