A Core Calculus for Mixin-Types

Tetsuo Kamina and Tetsuo Tamai
University of Tokyo
{kamina,tamai} @graco.c.u-tokyo.ac.jp

Abstract reusing implementation, it is also useful to compose a niixior
with another mixin, e.gFont , a mixin that provides “font” feature.
The programming construntixinwas invented to implement mod- This composition, writterColor::Font , is considered as a mixin

ules that provide the mechanism of abstracting uniform extensions that has both feature @olor andFont . We call this mechanism

and modifications to superclasses. One approach to implement amixin-mixin composition

mixin is to parameterize a superclass of a generic class using a

type parameter; however, this approach lacks the ability to declare One approach to implementing mixins is to parameterize a super-

a mixin that is also used as a type. class of a generic class using a type parameter [22, 15]. A mech-
anism of generic classes (also known as templates) is provided by

In this paper, we propose a programming language McJava, an ex-C++ [16], [1], and GJ, an extension of Java with generic types [6].

tension of Java that is equipped with mixin-types, a mechanism to Even though a generic type in GJ does not support parameteriza-

declare a mixin that is also used as a type. Then, we develop Coretion of a superclass, a recent research shows an implementation and

McJava, a core language for McJava, and show its type soundness type soundness proof of an extension of GJ that allows parame-

theorem. This core language is based on Featherweight Java (FJ), #&rization of superclasses [2].

minimum core calculus for Java. FJ is a very small subset of Java.

Focusing on a few key issues, we have developed a flexible subtyp-One of the limitations of a generic type is that it may not be used

ing relation among mixin compositions. as a type unless it is instantiated by substituting type variables with
real types. For example, the following GJ-like code shows a mixin

1 Introduction Font that is supposed to be composed with some other classes:

class Font<Widget> extends Widget {

Object-oriented programming languages like Java and C# offer String font;
class systems that provide a simple and flexible mechanism for void paint(Graphics g) {
reusing collections of program pieces. Using inheritance and over- g.setFont(this);

riding, programmers may derive a new class by specifying only the super.paint(g);
elements that are extended and modified from the original class.
However, a pure class-based approach lacks the mechanism of ab-

stracting uniform extensions and modifications to classes. void setFontName(String font) {
. L .) this.font=font; }
The programming construatixinwas invented to implement mod- String getFontName() { return font; }

ules that provide such uniform extensions and modifications [5]. A

mixin is a partially implemented subclass whose superclass is not

provided in its declaration. To use a mixin, we compose an ac- In this approach, mixins are simply a coding convention and have
tual superclass with the mixin to create a new class. For example,no formal status. ThEont may not be used as a type. Instead, by
we may declare a mixiColor that is intended to be composed using a type parameter for methods, we may write a method like
with GUI components likd.abel or TextField , to produce new)

classe<Color:Label 1 or Color: TextField , respectively. For <X> void setFont(Font<X> f) { ... }

that is intended to be applied to instances of all the results
of composing Font with some classes. However, this ap-
proach does not provide the power of mixin-mixin composition
where Color::Font has both feature o€olor andFont. The
above method actually cannot take an instance of, for example,

Color<Font<Label>> that seems to be allowed if mixin-mixin
Permission to make digital or hard copies of all or part of this work for personal or - compositions are supported.
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation . .
on the first page. To copy otherwise, to republish, to post on servers or to redistribute 1N this paper, we propose a programming language McJava, an ex-
to lists, requires prior specific permission and/or a fee. tension of Java that is equipped witfixin-types a mechanism of
declaring a mixin that may also be used as a type. Then, we develop

Core McJava, a core calculus for McJava, and show its type sound-

IWe use an operator to denote mixin compositions.

ness theorem. This calculus is based on Featherweight Java (FJ),
a minimum core calculus for Java [11]. FJ is a very small subset
of Java. Focusing on a few key issues, we have developed a flexi-
ble subtyping relation among mixin compositions with mixin-mixin
compositions.

The rest of this paper is structured as follows. In section 2, we pro-
pose a programming language McJava and explain how the use of
mixin-types solves the realistic problems by showing an example.
In section 3, we develop Core McJava, a core calculus for mixin-
types, and show its type soundness theorem. Then, we discuss the
relationship between this work and other related work in section
4. Finally, in section 5 we conclude this paper with some further
research directions.

2 Programming Language McJava

To explain the expressive power of McJava, we start with introduc-
ing an interesting example of integrated systems. In [18], an inte-
grated system is defined as “a collection of software tools that work
together, freeing the user from having to coordinate them manu-
ally” For example, an integrated system with tools for text edit-
ing, compiling, and debugging will ensure that when the debugger
reaches a breakpoint, the editor scrolls to the corresponding source
statement.

One of the main problems in implementing an integrated system
is its difficulty for evolution. Managing the complexity of inte-
grated systems is hard. The solution of this problem is separating
the components (i.e. the integrated software tools) and their rela-
tions at the design and implementation level; however, Sullivan et
al. argued that an integrated system implemented by a traditional
object-oriented language and even by an aspect-oriented language
like AspectJ [12] hardly evolves [17]. In this section, we propose
a solution to this problem with McJava, and show how the mecha-
nism of mixin-types is used in this solution.

We show a simplified example of integrated systems originally de-
scribed in [17]. In this example, the software tools that are subject
to integration are the binary objects that have two staiesand

off. We call these objectBits. An instance of Bit has operations
namedsetandclear, to change its state to “on” and “off,” respec-
tively. Binary relations Equality and Trigger, are defined among
Bits. The Equality relation always makes the states of the related
Bits the same, while the Trigger relation activates tdrget Bit to

be “on” if the sourceBit becomes “on,” but takes no action on the
other situations.

For example, let us assume the following structure:

(e ()
>
(g o (=

class Equality {
public boolean busy;
EgAdaptor rolel, role2;

public void join1(EgqAdaptor e) {
rolel=e;
e.equalities.add(this);

}

public void join2(EqAdaptor e) {
role2=e;
e.equalities.add(this);

}

public EgAdaptor getOpponent(EqAdaptor e){
if (rolel == e) return role2;
else if (role2 == e) return rolel;
else return null;

}

}
Figure 1. Equality in McJava

interface eql {
void set();
void clear();

}

mixin EqAdaptor requires eql {
public Vector equalities = new Vector();

public void set() {
super.set();
for (Iterator i=equailties.iterator();
i.hasNext();) {
Equality e = (Equality)i.next();
if (le.busy) {
e.busy = true;
e.getOpponent(this).set();
e.busy = false; }}}

public void clear() {
super.clear();
for (lterator i=equalities.iterator();
i.hasNext();) {
Equality e = (Equality)i.next();
if (fe.busy) {
e.busy = true;
e.getOpponent(this).clear();
e.busy = false; }}}

Figure 2. A role for equality in McJava

b3 is a trigger of b4. If bl receives a message “set,” then the “set”
message is sent to b2, that also activates sending the “set” message
to b3. Furthermore, the “set” message is sent to b4 because b3 is
a trigger of b4. However, no matter what is sent to b4, nothing
happens to b3.

The problem is to make this system evolvable, separating the imple-
mentation of the Bit objects and the Equality and Trigger relations,
and make this system modular and scalable. Modularity means im-
plementation of relations should be able to adapt to other imple-
mentations of Bit objects, and the implementation of the Bit objects
should be reusable in other contexts. Scalability means that we may
add new Bit objects and even new relations other than Equality or
Trigger to that system with no difficulty.

A sample solution for this problem written in McJava is given in

In this system, the four objects, b1, b2, b3 and b4, are instances ofFigures 1 and 2. A statement beginning witlin is amixin dec-

Bit; b1 and b2, and b2 and b3 are connected by Equality relations;

laration. A mixin declaration has the following form:

class Main {

public static void main(String[] args) {
EgAdaptor::Bit bl=new EgAdaptor::Bit();
EgAdaptor::Bit b2=new EgAdaptor::Bit();
TrAdaptor::EqAdaptor::Bit b3 =

new TrAdaptor::EqAdaptor::Bit();

Bit b4 = new Bit();
Equality el = new Equality();
Equality e2 = new Equality();
Trigger t1 = new Trigger();

el.joinl(bl); el.join2(b2);
e2.joinl(b2); e2.join2(b3);
t1.join1(b3); tl.join2(b4);

The Trigger relation is also implemented in the same way. Then,
the integrated system may be implemented as in Figure 3. Be-
cause bl and b2 only join in thuality relation, they are created

as instances of the composition BjAdaptor andBit (as men-
tioned before, in McJava the syntax for mixin compositior i$.

On the other hand, b3 is created as an instance of the composi-
tion of TrAdaptor , EqAdaptor andBit (TrAdaptor is a mixin for
Trigger), because it joins in both thequality —relation and the
Trigger relation.

This solution is modular because the implementation of relations
may be adapted to other implementations of Bit objects, if they im-
plement the methods declareddgl . Of course, the implementa-

} tion of the Bit objects may be reused in other contexts. Further-
more, this solution is scalable because we may add new Bit ob-
jects easily vigioin methods declared in the relations. Adding
new relations is also easy. The key of this solution is using mixin
EgAdaptor that abstracts the operations in which Hggiality is
interested, and ability to use the naBtyddaptor as the type names

in formal parameters and field declarations.

Figure 3. An example program of integrated systems

mixin X requires | { .. }

whereX denotes the name of mixin ahdlenotes the interface that At the moment we have developed a preliminary version of
the mixinrequires A mixin may invoke methods declared in the su- McJava compiler that has man prestriczons inclgding it still
perclass, even though the superclass is not specified when the mixindoes not have the capability 3; accessing Java standard Ii-
is declared. The required interface is used to ensure that no “mes-bralries The latest vers?on of McJava compﬁer is downloadable
sage not understood” error occurs at run-time; if a mixin invokes its :

superclasses’ methods, they must be declared in the interface thaﬁgﬁggﬁgﬁl%ttggfﬁ?#g(;??gr;ngmgs of the core of.l\}lgjgs a
the mixin requires. More details can be found in section 3. ' ’

In McJava, a mixin cannot be instantiated. Instead, a mixin may 3 Core McJava: A Core Calculus for McJava

be composed with other classes. Timiin-class compositiomay

make instances. A mixin may also be composed with other mix- The design of Core McJava is based on FJ [11], a minimum core
ins; however, thisnixin-mixin compositiorannot be instantiated. language for Java. FJis a very small subset of Java, focusing on just

The syntax of composition is concatenating mixin names and classa few key constructs. For example, in FJ constructors always take
names by: , like Idy :: -+~ 2 Idp. the same stylized form: there is one parameter for each field, with

the same name as the field. FJ provides no side-effective operations,
Figure 1 gives an implementation &quality relation. An that means a method body always consistetafn statement fol-
Equality is a binary relation, so it has two instance variables lowed by an expression. Because FJ provides no side-effects, the
rolel androle2 to hold the Bit objects that are linked with the ~ only place where the assignment operations may appear is a con-
Equality relation. But we would like to apply thiEquality —to structor declaration. In FJ, all the fields are initialized at the object
other implementations of Bit objects. Therefore, the typmief instantiation time. Once initialized, the FJ objects never change its
androle2 is declared aggAdaptor that abstracts a set of opera- State.
tions theEquality is interested in.

Core McJava shares the same features of FJ explained above. In
EgAdaptor is declared as a mixin in Figure 2. It declares methods the following subsections, we present the syntax and operational
set() andclear() . Because those methods invakemer.set() semantics of Core McJava and its type soundness theorem.
and super.clear() respectively,EqAdaptor requires the inter-
faceeql that declareset() andclear() . EgAdaptor may be 3.1 Syntax
composed with any class that implements the methods declared in
eql . For example, the following clait may be composed with

EgAdaptor . T = X:C|X
. Lc == class Cextends X:C {T f; Kc M}
class Bit { o Lx == mixin X requires | {T f; Kyx M}
boolean state=false; L o= interface | { M}
void set() { SIate:tiue; }, Kc == C(8g T f){super(g); this. f=f;1
void clear() { state=false; } Kx = X(TD{ths F=F:}
boolean get() { return state; } MX o T m(F 0] réturn_ ‘e_}

At first, the methodset() /clear() of EgAdaptor invokes

the same method declared in the superclass (for example, the
set() /clear() of Bit class). Then, it sends tiset() /clear()
message to all the objects that have Haeality relation linkage

with the sender. The instance variablsy declared irEquality The abstract syntax of Core McJava is given in Figure 4. In this pa-
is a flag that ensures the transition of these method invocations doeger, the metavariables ande range over expressionkz andKx

not end up with an infinite loop. range over constructor declaratiomsyanges over method names;

TmTR)
x|ef|em(@) |new X:C@) |(T)e

)
|

Figure 4. Abstract syntax of Core McJava

M ranges over method declarationS; and D range over class
names;X andY range over mixin name®, S, T, U andV range
over type named;ranges over interface namesanges over vari-
ables;f andg range over field names. As in FJ, we assume that the
set of variables includes the special variathie , that is consid-
ered to be implicitly bound in every method declaration.

We write f as a shorthand for a possibly empty sequefice -, f,
and writeM as a shorthand fdvl; - - - Mp. The length of a sequence
X is written as#(X). Empty sequences are denoted-bgimilarly,
we write “T f” as a shorthand forTy fq,---,Tn fn", “T ;" as a
shorthand for Ty fq; -~ Ty fn; ”, “this .f = f: " as a shorthand for
“this .fy = fq; ---this .fn = fn; ", X as a shorthand foxg ;- &
Xn-

As in Figure 4, there are two kinds of typeé:andX :: C. The for-
mer denotes anixin-mixin compositiorthat is generated by com-
posing mixin names, while the latter denoteiin-class composi-
tion that is a result of composing mixin names (possibly empty se-

class names and mixin names to class declarations and mixin dec-
larations. The expressia@may be considered as thain method

of the “real” McJava program. The class table is assumed to satisfy
the following conditions: (1LT(C) =class C ... foreveryC e
dom(CT); (2) CT(X) =mixin X .. for everyX € domCT);
(3)Object ¢ dom(CT); (4) T € dom(CT) for every class name and
mixin name appearing iran(CT); (5) there are no cycles in the
subtype relation induced by CT.

C ..
X oy

In the induction hypothesis, we abbrevi&t&(C) = class
andCT(X) =mixin X .. asclass C .. andmixin
respectively.

3.3 Auxiliary functions

For the typing and reduction rules, we need a few auxiliary defini-
tions, given in Figure 6, 7 and 8.

quence) and a class name. We may instantiate a mixin-class compo-he fields of typeT, written fields(T), is defined in Figure 6 as a

sition by new expression but may not instantiate mixin-mixin com-
position.

We write T <: U whenT is a subtype ofJ. Subtype relation
between classes, mixins, and compositions is defined in Figure 5
i.e., subtyping is a reflexive and transitive relation of the immediate
subclass relation given by tlegtends clauses in class declarations.

T<T (S-REFL)
VT € subsequencés) Uu<T (s-comMB
T<:'S S<: U
U (S-TRANY
class C extends X:D
Xends LE (S-CLASS
C < XD
subsequencas defined as follows:
subsequencés) = {C}
subsequencéx) = {X}
subsequenc€é::T) = {X:U |U e subsequencés)}
UsubsequencéB) U {X}

Figure 5. Subtype relation

One of the novel features of Core McJava is the flexibility of sub-
typing relation for compositions. A composition is a subtype of
all its subsequences. For exampilgAdaptor::EqAdaptor::Bit

is a subtype oBit , EqAdaptor , TrAdaptor , EgAdaptor:Bit
TrAdaptor::EqAdaptor , and TrAdaptor::Bit This subtype

rules provide more chances of code reuse. For example, a metho

whose formal parameter type is a composition tfpmay be ap-
plied to an expression with a composition type that “mixes” some
mixins with T.

3.2 Class Table

A Core McJava program is interpreted by a pair(6fT,e) of a
class tableCT and an expressioa A class table is a map from

sequencd f pairing the type of each field with its name. Tifis
a class,fielddT) is a sequence for all the fields declared in class
T and all of its superclasses, placing the fields declaretl be-
fore the fields declared il’s superclass. IT is a mixin, fields(T)

'is a sequence for all the fields declared in that mixin.T Ifs a

composition,fieldgT) is a sequence for all the fields declared in
all of its constituent mixins and a class, placing the fields declared
in the left operand of composition after the fields declared in the
right operand. For the field lookup, we also have the definition of
ftype(fi,T) that is a type of fieldf; declared inT. In contrast with
Java, field hiding is not allowed in Core McJava.

fields(Object) =-

class C extends X:D {T f; Kc M}

fields(X :: D) = Sg
fieldgC) =Sg, T f
mixin - X requires | {T f; Kyx M}
fieldgX) =T f
fieldgX)=T f fieldgT)=Sg

fieldgX = T)=8g, T f
fieldgT) =T
ftype(fi,T) =T

Figure 6. Field lookup

dl'he type of methodn in type T is given bymtyp€m,T). The

function mtype is defined in Figure 8 by a p&r— S, whereS
is a sequence of argument types &\ a result type. IfT is a
composition, the left operand of :: is searched first.mlis not
found inT, we define imil . The type of methodn in interfacel

is also defined in the same way. Similarly, the body of method
in typeT, written mbodym, T), is a pair, writterX.e of a sequence
of parameterg and an expressio@ In contrast with Java, method
overloading is not allowed in Core McJava.

mtypgm, Object) = nil mbodym, Object) = nil

class C extends X:D {T f, Kc M} class C extends X:D {T f; Kc M}
SmS%){ retun e }eM SMSX){ retum & }eM
mtypgm,C) =S— S mbodym,C) = X.e
class C extends X:D {T f; Kc M} m¢gM class C extends X:D {T f; Kc M} m¢M
mtypgm,C) = mtypgm X :: D) mbodym,C) = mbodym X :: D)
mixin X requires | {T f, Ky M} mixin X requires | {T f; Kx M}
SnS){ retun g }eM Sm(Sx){ retun & }eM
mixin X requires | {T f; Kx M} m¢gM mixin X requires | {T f; Kx M} m¢M

mtypgm, X) = mtypgm, 1) mbodym, X) = nil
mbodym,X) =X.e

interface | { Mi; } TmTxeM
mbodym, X :: T) =X.e

mtypem, 1) =T —» T

mbodym, X) = nil mbodym, T) =X.e
mbodym, X :: T) =X.e

interface 1 { Mi; } mgM
mtypgm,1) = nil

. Figure 8. Method body lookup
mtypm X) =T — T

mtypgm X = To) =T =T

a subtype of the declared type, and, for the method in a class, the

mtypem, X) = nil miypem To) =T — T static type of the overriding method is the same as that of the overri-
mtypgm X ::To) =T - T den method. A class definition is well-formed if all the methods de-
clared in that class and the constructor are well-formed. Similarly,
Figure 7. Method type lookup a mixin is well-formed if all the method declared in that mixin are
well-formed.
3.4 Dynamic Semantics The typing rule for compositions checks that the following require-

ments are met. First, there are no fields declared with the same

The reduction relation is of the fore— €, read “expressioare- name between the left component and the right component of the

. i N i . composition. Second, there is no method collision, that is, if some

duces to expressia in one step”. We write—" for the reflexive methods are declared with the same name in the left and the right,

and transitive closure of—. the static type of both methods is the same. Finally, for all the meth-

. . - . ods declared in the interface that is required by the left mixin, if the

The reduction r_ules are given in Figure 9. There are three reduction right operand of the composition is a class, it declares the methods
rules_, one for fl_eld access, one for method |nvocat|on,_and one for named and typed as the same as the interface.

casting. The field access reduces to the corresponding argument

for the constructor. Due to the stylized form o_f obje_ct constructors, Figure 11 shows the typing rules for expressions. These rules are
the constructor has one parameter for eac_:h f'EIdz in the same Orde'rs.yntax directed, with one rule for each form of expression, except
as the fields are declared. The method invocation reduces to theyhat there are three rules for casts. Most of them are straightfor-

expression of the method body, substituting all the parantatith ward extension of the rules in FJ. The typing rules for constructor

the argument expressiodsand the special variabléis with the and method invocations check that the type of each argument is a
receiver (we write{d/X, e/yep for the result of substituting; by subtype of the corresponding formal parameter. The typing rule for
d1,...Xn by dy andy by ein ep). constructor invocations also checks that there are no instances of

mixins and mixin-mixin compositions.

3.5 Typing

The typing rules for class declarations, mixin declarations, compo- 3.6 Properties
sitions and expressions are given in Figure 10 and 11. An environ-

mentT is a finite mapping from variables to types, writtén T. We show that Core McJava is type sound. The proof is given in the
The typing judgment for expressions has the fdim e: T, read accompanying Appendix A. We start by stating some lemmas used
“in the environmenf’, expressiore has typeT”. in the proof of type soundness.

Figure 10 shows the typing rules for methods, classes, mixins, andLEMMA 3.1. If ftype(f,U) =T, thenftype(f,S) =T forall S <:
compositions. The type of the body of the method declaration is U.

Computation:

fieldgX :C)=T f

- (R-FIELD)
new X ::C(®&.f i —a
mbodym, X ::C) = X.&
new X :: C(&).m(d) — [d/%,new X :: C(&)/this]ep
(R-INVK)
4X::C<:T _ (R-CAST)
(T)new X :: C(8) — new X :: C(8)
Congruence:
& (RC-FIELD)
e.f — g.f

_ ®™% (RC-INVK-RECV)

€0.M(E) — &,.M(€)

a—¢
eom(:+-,@,) — em(-+-,€,-)
(RC-INVK-ARG)
a—¢
S = 7 RC-NE
newX::C(---,g,--) —newX :C(---,8g,--) (W
Leo/ (RC-CAST)
(Teo — (T)ey

Figure 9. Operational semantics

LEMMA 3.2. If mtypgmU) =T — To, thenmtypgm,T) =T —

Toforall T <: U.

LEMMA 3.3. If I,X:Ske:U, I'+d:RwhereR <: § then
It [d/Xle: T for someT <: U.

LEMMA 3.4. If T+ e: T wherel' does not include, thenl,x:
Uke:T.

LEMMA 3.5. If mtypdm X ::C) = U — U and mbodym,X ::
C) = X.e, then, for somé&Jy withX : C <: Up, there exist <: U
such tha: U, this :Ugke:T.

From the lemmas established above, we derive the type soundnesg

theorem for Core McJava:

THEOREM3.1 (SUBJECTREDUCTION). IfF'+e: T ande —
e, thenl e : T forsomeT <: T.

THEOREM 3.2 (PROGRESY. Suppose e is a well-typed expres-

sion.

1. If e includesnew X :: C(€).f as a subexpression, then

fieldgX ::C) =T fandf e f for someT and f.

—

2. If e includesnew X :: C(8).m(d) as
mbodym,X :: C) = X.eg and#(X) = #(d) for somex andeg.

a subexpression, then

X:T,this :Chep:Up Ug <: To
class C extends X:D {.. }
if mtypgm, X :: D) =S— S, thenS=T andSH=To
Tom(T %){ retum e; } OKINC
(T-CMETHOD)

R:Tths Xtegp:'S S < To
mixin -~ X requires | {.. }
Tom(T %{ retun ey; } OK IN X

(T-XMETHOD)

fieldsX :D)=8g M OK IN c
class C extends X:D {T

(T-CLASS)

(o]
— = = (T-MIXIN)
mixin X {T f

fields(X) N fieldgT) = interface 1 {M}
mixin - X requires | { .. M}
YmeM mtypgm X) = mtypgm,T) or

mtypem, T) = nil
If T is a compositiorX :: C, then
¥n e M mtypegn,|) = mtypen, T)
X T ok

(T-COMP)

Figure 10. Typing rules for classes, mixins, and compsitions

To state type soundness formally, we introduce a valakan ex-
pressioreby v 1= newX:C(V) .

THEOREM 3.3 (COREMCJAVA TYPE SOUNDNESS. If 0 e:
T ande —* € with e a normal form, there is either (1) a value
vofewith 0Fv:U andU <: T, or (2) an expression containing
(U)new T (&) whereU «£: T.

4 Related Work

McJava is anominally typedclass-based language, that means the
name of a class (or mixin) determines its subtype relationship. On
the other hand, in object-oriented languages sittuctural sub-
typing the subtype relation between classes is determined by their
structures. A core calculus of classes and mixins for structurally
ped language was proposed by Bono et al.[4]. Instead, we take
nominal approach, because the host language (Java) is nominaly
typed. With nominal approach, we directly define flexible subtype
rules regarding to mixin-mixin composition that is not supported by
Bono's approach.

To our knowledge, core calculus for mixin types extending Java
was originally developed by Flatt et al.[9]. The novel feature of
this calculus, named MixedJava, is its ability to implement hygienic
mixins [2, 13]. Hygienic mixins postpone the timing of method
look up to run-time, avoiding the problem of method collision. This
feature is achieved by changing the protocol of method lookup; in
MixedJava, each reference to an object is bundled withiés of

the object, the run-time context information. A view is represented
as a chain of mixins for the object’s instantiation type. It designates

an extension of Java witlifference-based moduleékat are sep-

MEx:T(x) (T-VAR) arately compilable units of encapsulation. The design of mixins
in MixJuice is actually different from our work. In MixJuice, the
Me:S fype(f,9=T Tok providersof mixins control encapsulation. In the case of diamond
Fref T (T-FIELD) inheritance, the users have the responsibility of composing them
without breaking encapsulation. In McJava, on the contrary, the
. usersof mixins control encapsulation because these mixins are
MFep:S — miypgm,S)=S—T parametrized over their superclasses. Users add superclasses to
r-e:T T<S Tok (T-INVK) mixins and there are no case of diamond inheritance.
M-e.m@:T
Scharly et al. proposedraits [14], fine grained reusable compo-
fieldsX :C)=8f rre:T T<§ nents as building blocks for classes. Traits support method renam-
% = C ok ing that overcomes the problem of method collision. When traits
T newX :C(@):X=C (T-NEW) are comp_osed, the members of th.ose traits are “flqttgrned“ into one
class, which also solves the ordering problem of mixins. Our work,
in contrast with traits, has more focus on declaring a mixin as a
MFe:S S<tT Tok (T-UCAST) type, and studying their subtype relations. We would also like to
r-(Teo: T note that the ordering of mixins is useful particularly when we “ex-
tend” a parametrized superclass with the same name of method as
Nl-e:S T<:'S T#S Tok (T-DCAST) the superclass, and invoke it vsaper. m wheremis a method
TF(T)eo: T name.
MNe:S T#S S&T Tok Mixins may be used as vehicles to directly implemetesin terms
stupid warning of role modeling [19]. Epsilon [21, 20], a role-based exgcutable
FF (Theo T (T-SCAST) model, was also proposed for this purpose. Currently Epsilon lacks

the feature of static typing. We consider McJava and its core cal-
culus provides some basic understanding to study static typing on

Figure 11. Typing rules for expressions Epsilon.

a specific point in the full mixin chain, the static type of that object, © Conclusion and Directions for Further Re-
for selecting methods during dynamic dispatch. search

Even though the proposal of hygienic mixins itself is useful and fea- As shown in section 2, adding mixin-types to a traditional object-
sible in the practical programming languages [2, 13], implement- oriented language significantly improves its expressive power.
ing the operational semantics and the type system of MixedJavaBased on FJ, the core language for Java, we have developed the
(that supports mixin-types) on the JVM (that contains no infor- core language for Java with mixin-types. We have shown the core
mation for views) is difficult. Furthermore, McJava defines very language for mixin-types is type sound. We believe that these re-
flexible subtyping relations. For example, the subtype relation sults provide a convincing way for adding mixin-types to nominally
X:Y :C <: X::C does not exist in MixedJava. McJava does typed object-oriented languages such as Java and C#.

not support hygienic mixins. Instead, the type system of McJava

detects the method collisions statically, allowing programmers to Finally, we point out some issues remained for the future work:
treat them manually.

Formal reasoning of compilation We have developed a McJava
compiler that translates McJava programs into Java programs.
Using a formal method will enhance understanding on the cor-
rectness of that translation. To do this, a possible way is to
design a core language of the target language and show the
compilation from Core McJava to the core language is cor-
rect. We consider FJ is not adequate for the target language,
because the compilation strongly depends on the existence of
interfaces in the target language. Thus, we have to extend FJ
to obtain an appropriate target core language.

Jam [3] is a practical proposal for adding mixin-types to Java. Jam
gives semantics of mixin compositions formally by translation to
Java. Based on that semantics, mixin-types in Jam have some sig-
nificant limitations; In Jam, a mixin-mixin composition is not al-
lowed. Furthermore, using the keywathis in mixins is very re-
stricted. For example, usint)is as the argument value for the
method invocation is not allowed in Jam. Formulating operational
semantics at an abstract level, these limitations are resolved in Core
McJava.

Core McJava with generic types J2SE 1.5 is the next major revi-
sion to the Java platform and language that will include major
enhancements such as generic types. It is interesting to inte-
grate the feature of genericity with mixin-types.

Mixin moduleq7], essentially motivated by the problem of inter-
action with recursive constructs that cross module boundaries in
module systems of functional languages, mainly focus on facilitat-
ing reusing large scale programming constructs such as frameworks
[8]. Our work, on the other hand, mainly focuses on integrating McJava compiler for practical use Even though a preliminary
mixin-types and its flexible subtyping with real programming lan- version of McJava compiler is implemented, it is desirable
guages. The work [8] sacrifices mixin subtyping in favor of allow- to develop a McJava compiler for practical use. The compiler
ing method renaming. should support, for example, separate compilation that is not
supported by the current version.
MixJuice [10] is also independently proposed by Ichisugi et al. to
modularize large scale compilation unit. MixJuice is designed as Acknowledgements: The authors would like to thank Atsushi

Igarashi, Hidehiko Masuhara and Etsuya Shibayama for their very
helpful comments on the earlier version of this calculus.

6 References

[1] Ole Agesen, Stephen N. Freund, and John C. Mitchell.
Adding type parameterization to the Java languageCadn-
ference Proceedings of OOPSLA '97, Atlanpages 49-65.
ACM, 1997.

Eric Allen, Jonathan Bannet, and Robert Cartwright. A first-
class approach to genericity. Rtoceedings of OOPSLA2003
pages 96-114, 2003.

Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam —
A smooth extension of java with mixins. IBCOOP 2000
pages 154-178, 2000.

[4] Viviana Bono, Amit Patel, and Vitaly Shmatikov. A Core Cal-
culus of Classes and Mixins. Proceedings of ECOOP’99
LNCS 1628, pages 43-66, 1999.

Gilad Bracha and William Cook. Mixin-based inheritance. In
OOPSLA 1990pages 303—-311, 1990.

Gilad Bracha, Martin Odersky, David Stroutamire, and Philip
Wadler. Making the future safe for the past: Adding genericity
to the Java programming language. O®PSLA 1998pages
183-200, 1998.

Dominic Duggan and Constantinous Sourelis. Mixin mod-
ules. InICFP’96, pages 262-272, 1996.

Dominic Duggan and Ching-Ching Techaubol. Modular
mixin-based inheritance for application frameworksO@P-
SLA 2001 pages 223-240, 2001.

Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. Classes and mixins. POPL 98 pages 171-183,
1998.

Yuuji Ichisugi and Akira Tanaka. Difference-Based Modules:
A Class-Independent Module Mechanism.Rroceedings of
ECOOP 2002pages 62—88, 2002.

Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Feath-
erweight Java: A minimal core calculus for Java and 8&JM
TOPLAS 23(3):396-450, 2001.

[12] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Grisword. An overview of As-
pectd. INECOOP 2001pages 327-353, 2001.

Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh. Jiazzi:
New-age components for old-fashioned JavaPtoceedings
of OOPSLA20012001.

Nathanael Scirly, Stephane Ducasse, Oscar Nierstrasz, and
Andrew Black. Traits: Composable units of behavior. In
ECOOP 2003LNCS 2743, pages 248-274, 2003.

Yannis Smaragdakis and Don Batory. Implementing Layered
Designs with Mixin Layers. IfProceedings ECOOP’9&o0l-
ume 1445 ol ecture Notes in Computer Sciengages 550—
570, 1998.

B. Stroustrup.The C++ Programming LanguageAddison-
Wesley, 3rd edition, 1997.

Kevin Sullivan, Lin Gu, and Yuanfang Cai. Non-Modularity
in Aspect-Oriented Languages: Integration as a Crosscut-
ting Concern for AspectJ. IfProceedings of 1st Interna-
tional Conference on Aspect-Oriented Software Development

(2]

(3]

(5]
(6]

(7]

(8]

9]

[10]

[11]

[13]

[14]

[15]

[16]

[17]

(AOSD 2002)pages 19-26, 2002.

[18] Kevin J. Sullivan and David Notkin. Reconciling environment
integration and software evolutioACM Transaction on Soft-
ware Engineering and Methodologi/(3):229-268, 1992.

Tetsuo Tamai. Objects and roles: modeling based on
the dualistic view. Information and Software Technolqgy
41(14):1005-1010, 1999.

Tetsuo Tamai. Evolvable Programming based on
Collaboration-Field and Role Model. Innternational
Workshop on Principles of Software Evolution (IWPSE;02)
pages 1-5, 2002.

Naoyasu Ubayashi and Tetsuo Tamai. Separation of Concerns
in Mobile Agent Applications. IMetalevel Architectures and
Separation of Crosscutting Conserns — Proceedings of the 3rd
International Conference (Reflection 200¢plume 2192 of
Lecture Notes in Computer Scienpages 89-109, 2001.

(19]

(20]

[21]

[22] Michael VanHislt and David Notkin. Using C++ templates to

implement role-based designs. J8SST International Sym-
posium on Object Technologies for Advanced Softywzages
22-37. Springer-Verlag, 1996.

A Proof of Core McJava Type Soundness

Theorem

Intuitionally, the step of proving Core McJava type soundness is
almost the same as that of FJ, but details vary a little.

A.1 Proof of Lemma 3.1

Straightforward induction on the derivation of subtype relatan
andftype O

A.2 Proof of Lemma 3.2

Straightforward induction on the derivation of subtype relatian
mtypeand T-COMP. Note that whethem is defined inC or not,
mtypgm,C) = mtypgm, X :: D) whereclass C extends X ::D
.. }. Similarly, note that whethem is defined inX or not,
mtypegm, X :: T) = mtypdm, X) (see the rule T-OMP). O

A.3 Proof of Lemma 3.3

By induction on the derivation df,X: S-e: U.
Case T-\AR.
e=x U=T(x)

If x ¢ X, then the conclusion is immediate, sinEﬂa’X}x =x If
x =¥, andU = S, then lettingR; = T finishes the case because

[d/X)x = [d/X|x = di, di : R andR <: § =U.
Case T-FELD.
e=egp.fi r%:Ske:X:C
fieldgX :C)=Tf U=T

By the induction hypothesis there is sofiesuch thaf + [d/X]eg
Toand Ty <: X :C. Then, by Lemma Slftype(f.,To)

ftype(fi, X :: C). Therefore, by the rule TIELD, I + ([d/X]ep). fi
Ti.

Case T-NVK.
e=em@E [,X:Ske:X:C mypgmX::C)=V —U
rx:S+e:0 U <V
By the induction hypothesis, there are sofgendX such that
M-[d/Xep:To To <: X::C
r-[d/xe:T T <:U

By Lemma 3.2mtypgm, To) = mtypgm, X :: C) =V — U. Then,
by S-TRANS, T <: V. Therefore, by the rule TNVK, I +
(d/Xeo.m([d/xX]8) : U.

Case T-NeW.

e=new X :: C(8)
rX:Sre:T

fieldgX ::C)=U f
T<dU

By the induction hypothesis, there are sovhsuch thaf - [d/X|&:
V andV <: T. Then, by the rule S®ANS,V <: U. Therefore,
by the rule T-New, I - new X :: C([d/X]&) : X :: C.
Case T-UQ@ST.

e=U)g I,X:Ske:T T<:U

By the induction hypothesis, there are somesuch thatl -
[d/Xep:V andV <: T. Then, by the rule SRANS,V <: U.
Therefore, by the rule T-USST, I - (U)([d/X]ep) : U.

Case T-D@ST.
e=(U)eg IRX:She:T U<T U#AT

By the induction hypothesis, there are somesuch thatl' -
[d/Xeg:V andV <: T. IfV <: UorU <: V, thenl -

(U)(|d/X]ep) : U by the rule T-UGST or T-DCAST, respectively.

On the other hand, by the rule T-8€T, I' - (U)([d/X]ep) : U (with
a stupid warning.

Case T-S@ST.
e=(U)eg IMX:Ske:T UL T T#£U

By the induction hypothesis, there are somesuch thatl' -
[(T/X}eo 'V andV <: T. If V &£ U, then, by the rule T-S&ST,
I+ (U)([d/Xep) : U (with a stupid warning. If V_ <: U, then, by
the rule T-UGST, I + (U)([d/X]ep) :U. O

A.4 Proof of Lemma 3.4

Straightforward inductiond

A.5 Proof of Lemma 3.5
By induction on the derivation ahbody In the base case (wheme
is defined inCT(Tp)), it is easy to prove by the rule T-CETHOD,

if To is a class type, or by the rule T-X&rHOD, if Ty is a mixin
type. The induction step is also straightforwalrd.

A.6 Proof of Theorem 3.1

By induction on a derivation of — €.

Case R-FELD.

e=(newX(C)(@®).fi e =g field(X(C))=U f

By the rule T-FELD, we have -new X :: C(&): Y : D, T = Uj for
someZ :: E. Then, by the rule T-EW, we havel -&: T, T <:
U, YD =X:C. Inparticular[g : T, finishing the case, since
T <: U;.

Case RNVK.

e= (new X :: C(&).m(d)
e =[d/%, (new X :: C(8))/this]ep

By the rule T-NVK and T-NEw, we have

mbodym X :: C) = X.eg

FEnewX::C:X:C mtypgmX::C)=U0 —T
red:T T<dU

for someT andU. By Lemma 3.5%:U,this :Ugk ep: S for

someUg andSwhereX :: C <: Up andS <: T. By Lemma 3.4,

r,%:U,this :Ugte:S Then, by Lemma 3.3; + [d/%, (new X ::

C(8))/this]ep:V for someV <: S Then we hav&/ <: T by

transitivity of <:. Finally, lettingV = T’ finishes this case.

Case R-@ST.

e=(U)(newX:C(8) X:C(@ <:U € =newX:C(g

Because of the assumptiak :: C <: T, the proof of I
(T)new X :: C(8) : U must end with the rule T-USST. By the rules
T-UCAST and T-Nw, we havel™ + (U)new X :: C(€) : U.

The cases for congruence rules are easy.

A.7 Proof of Theorem 3.2

If ehasnew X :: C(8).f as a subexpression, by well-typedness of the
subexpression, it is easy to check tfiatdsX :: C) is well defined
and f appears in it. Similarly, ife hasnew X :: C(&).m(d) as a
subexpression, it is also easy to showodym,vecX:: C) = X.ey
and#(X) = #(vecd), sincemtypgm,X :: C) =T — U where#(X) =
#(T). O

A.8 Proof of Theorem 3.3

Immediate from Theorem 3.1 and 312.

