
A Core Calculus of Mixin-Based Incomplete Objects
(extended abstract)?

Lorenzo Bettini1 Viviana Bono2 Silvia Likavec2
1Dip. di Sistemi ed Informatica, Univ. di Firenze, Via C. Lombroso 6/17, 50134 Firenze, Italy,

bettini@dsi.unifi.it
2Dip. di Informatica, Univ. di Torino, C.so Svizzera 185, 10149 Torino, Italy,{bono,likavec}@di.unito.it

Abstract. We design a calculus that combines class-based features with object-based ones, with the
aim of fitting into a unifying setting the “best of both worlds”. In a mixin-based approach, mixins
are seen asincomplete classesfrom which incomplete objectscan be instantiated. In turn, incomplete
objects can be completed in an object-based fashion. Our hybrid calculus is shown to be useful in some
real world scenarios that we present as examples.

1 Introduction

In object-orientedclass-basedlanguages, objects (as fully-fledged instances of classes) are the computa-
tional entities of a software system, but they are “passive” with respect to their structure, which is henceforth
fixed by a class hierarchy. In object-orientedobject-basedlanguages, objects are the computational entities
and, at the same time, they govern the inheritance mechanism (through operations like method addition
and method override, that produce new objects starting from the existing ones). The class-based paradigm
is the one of production languages (like Java and C++), mainly because it helps imposing a programming
discipline that is necessary especially in a programming-in-the-large setting. The object-based paradigm is
gaining a renewed interest in the context of script languages, like Java-Script (see for example [10, 22]), and
delegation-based languages (see for example [4, 5]), where programming should produce “plug-and-play”
prototypes easy and quick to implement also for non-expert programmers. For some insightful discussions
about the differences between the two paradigms observed from different angles, we refer the reader to the
books of Abadi-Cardelli [1] and of Bruce [18].

Our aim is to design a calculus that combines class-based features with object-based ones, that is, to
try to fit into one setting the “best of both worlds”, discipline and flexibility first of all. Object-based ob-
jects are prone to be transformed at any point in a program, because they can generate other objects with
more/different functionalities via method addition and override. Mixins can be seen asincompleteclasses,
and their instances would beincompleteobjects that could be completed in an object-based fashion. There-
fore, we think that the best suited inheritance mechanism to be integrated with the object-based paradigm
is a mixin-based one more than a pure class-based one. Hence, in our calculus it will be possible: (i) to
instantiate classes (created via mixin-based inheritance), obtaining fully-fledged objects ready to be used;
(ii) to instantiatemixins, yielding incomplete objectsthat can be partly usable but they might still need to
be completed in an object-based fashion (viamethod additionand/orobject composition). In other words,
it will be possible to design tidy yet flexible hierarchies of classes through mixin application to be used in
the classical way, but also to experiment with prototypical incomplete objects. Section 3 will provide some
scenarios in which it looks desirable having such a hybrid calculus: in object-oriented design there are
some situations when one would like to add simply new features to existing objects by means of functions,
without having to resort to writing new classes and mixins for this purpose only.

Our proposal is a formal calculus equipped with an operational semantics and a type system to cap-
ture statically “message-not-understood” run-time errors, but the aim of this paper is mainly to introduce
the reader to the design of this hybrid “mixin-object-based calculus”. Therefore, the paper can be seen
as divided into two parts: the first one, quite self-contained, is devoted to an informal yet rather com-
plete description of the proposal, and the second one presents its formal description via the operational
semantics. In this extended abstract the type system is omitted, and can be found with the metatheory at
http://www.dsi.unifi.it/~bettini/incproofs.ps. In particular, we proved asoundnessproperty,

? This work has been partially supported by EU within the FET - Global Computing initiative, project MIKADO IST-
2001-32222, DART project IST-2001-33477 and by MIUR project NAPOLI. The funding bodies are not responsible
for any use that might be made of the results presented here.

1

stating that “well-typed computations cannot go wrong”, i.e., that we avoid message-not-understood run-
time errors.

The paper is organized as follows. In Section 2 we describe the most prominent features of our calculus
and its syntax. In Section 3 we present some motivating scenarios for our proposal. Section 4 introduces the
operational semantics of the calculus. We conclude the paper with some comparison with related work and
future research directions.

2 The mixin calculus

Recently, the concept of “mixin” is undergoing a renaissance, both as a mixin “class” (parametrized
(sub)class definition [2, 7, 8]), and as a mixin “module” (module supporting deffered components [3, 24,
30]), due to their flexible nature of “incomplete” entities prone to be completed according to the program-
mer’s needs. In this paper the termmixin refers tomixin classes.

Mixins [17, 28] are (sub)class definitions parameterized over a superclass and were introduced as an
alternative to some forms of multiple inheritance [15, 16, 31]. A mixin could be seen as a function that, given
one class as an argument, produces another class, by adding and/or overriding certain sets of methods. The
same mixin can be used to produce a variety of classes with the same functionality and behavior, since they
all have the same sets of methods added and/or redefined. The superclass definition is not needed at the time
of writing the mixin definition. This minimizes the dependencies between superclass and its subclasses, as
well as between class implementors and end-users, thus improving modularity and code reuse.

In this work we extend the core calculus of classes and mixins of [12] withincomplete objects: a mixin
can (i) be applied to a class to create a fully-fledged subclass; or (ii) be instantiated to obtain an incomplete
object. In turn, an incomplete object can be completed viamethod addition(this operation is discussed to
greater extent in [26] and in [25]) or viaobject composition.

A mixin contains three sorts of method declarations:new methods, which are the newly introduced
methods by the mixin seen as a subclass,redefiningmethods, which wait for a superclass containing a
method with the same name to be redefined, and provide the overriding body, andexpectedmethod names,
which are methods not implemented by the mixin but must be provided by the superclass (because they
might be used by the new and redefining methods). A different choice would be to declare only expected
and new methods, inferring the redefining ones by intersecting the former two, but this choice would not
change much the semantics of the calculus, while making the syntax more difficult to use by a programmer.
Redefining methods can refer to their corresponding superclass implementation via a special keywordnext .
We remark that we choose to refer to the corresponding super-method only, instead of permitting the access
to all of the superclass’ methods (assuper in Java does), because this extension is just a technical matter and
including it would complicate the operational semantics without adding anything relevant to the calculus.
We assume that the programmer must declare the expected method names in the mixins, but that their types
are inferred from new and redefining method bodies1. A mixin type takes into account the types of the
methods already present in the mixin and the expected types of the components not yet present, i.e., the
names and the types of the expected methods and the types of the “super-class” method bodies (nexts) of
the redefining methods.

If we apply a mixin to a class via themixin applicationoperation, we obtain a new fully-fledged subclass.
In order to have a successful mixin application, the (super)class must provide everything that is listed in
the mixin information; in particular, the types of the methods provided by the class must be (according to
a standard subtyping relation) “equal or better” than the ones required by the mixin, with respect to the
expected methods, and “equal or worse” if they are overridden.

When we instantiate a mixin we obtain an incomplete object that can be “incomplete” in two different
respects: (i) it may need some expected methods; (ii) it may contain redefining methods that cannot be
invoked until methods with the functionality of theirnext is added. Method invocation is allowed on in-
complete objects, but only methods that are fully complete, i.e., the ones that do not need anext and do not
use either expected or incomplete methods, can be invoked. An appropriate type rule forbids non-correct
method invocations on incomplete objects.

1 Expected method names could also be inferred, but we decided to have them declared to simplify the description of
the operational semantics. Also inferring the expected types is a choice that can be changed according to the features
of the language we might want to enrich with the mixin machinery, for instance, inference would not be easy in
presence of overloading.

2

Completion can happen in two ways: (i) via method addition, that can add one of the expected methods
or one of the missingnexts; (ii) via object composition, that takes an incomplete object and composes it
with a complete one containing all the required methods. The incomplete object has a type that carries
constraint information like the type of the mixin it has been instantiated from. Thus, method addition and
object composition must respect the same constraints as the mixin application. The type system ensures that
all method additions and object compositions are type safe and that only “complete” methods are invoked
on objects. Furthermore, method addition can only act on incomplete objects, and the object composition
completes an incomplete object with a complete one. This way we totally exploit the type information at the
mixin level, obtaining a “tamed” and safe object-based calculus at the object level. General method addition
and a form of object-based override are under study as extensions of our calculus, but in this paper we want
to focus on the design features and the uses of the “tamed” method addition only.

When a method is added, it becomes an effective component of the host object, i.e., not only the methods
of the host object may invoke it, but also the new added method can use any of its sibling methods. This
is rendered by requiring that all methods, hence also the ones which are added through method addition or
object composition, must be a function ofself . In this way, the reference to the host object can be updated
every time a method addition or an object composition takes place, in order to take into consideration the
new methods. This automatically enables correct dynamic binding for all methods, i.e., if for some of the
methods their correspondingnext methods are provided via addition or composition, the redefined versions
of such methods will be dynamically invoked by the other methods. As explained in Section 3, this ensures
a realdelegationmechanism in object composition.

As in the calculus of [12], our calculus is imperative and does not supportMyType [26] inheritance
(and as such does not supportbinary methods[19]). In this first version of the calculus we assume that
the methods we add to an incomplete object via addition or composition do not introduce incompleteness
themselves, i.e., the set of “non-ready” methods never increases. Moreover, we do not considerhigher-
order mixins (mixins that can also be applied to other mixins yielding other mixins) and related mixin
composition, being an orthogonal issue. We would like to point out, though, that our study of higher-order
mixins (which can be found in [6]) helped us finding the right formalization for incomplete objects.

2.1 Design choices

Our formal design choices are strongly based on the ideas presented in [12, 33]. The leading idea is that
modular program development in a class-based language involves minimizing code dependencies not only
between a superclass and its subclasses, as obtained by using mixin-based inheritance, but also between
class implementation and object users.

As some other theoretical calculi for object-oriented languages, our calculus directly supports modular
object construction ([11, 25, 27, 34, 35]). The mixin implementor only writes the local constructor for his
own mixin. Mixin applications are reduced to generator functions which call all the constructors in the
inheritance chain in correct order, producing a fully initialized object (see Section 4).

Unlike some approaches to encapsulation in object calculi such as existential types, the levels of encap-
sulation describevisibility, and not merelyaccessibility. For example, even the names of private items are
invisible outside the class in which they are defined2. This seems to be a better approach sinceno informa-
tion about data representation is revealed — not even the number and names of fields. One of the benefits of
using visibility-based encapsulation is that no conflicts arise if both the superclass and the subclass declare
a private field with the same name. Among other advantages, this allows the same mixin to be applied twice.

To ensure that mixin inheritance can be statically type checked, the calculus employs subtype-
constrained parameterization. From each mixin definition the type system infers a constraint specifying
to which classes the mixin may be applied so that the resulting subclass is type-safe. The constraint in-
cludes both positive (which methods the class must contain) and negative (which methods the class must
not contain) information. New and redefined methods are distinguished in the mixin implementation. From
the implementor’s viewpoint, a new method may have arbitrary behavior, while the behavior of a redefined
method must be “compatible” with that of the old method it replaces (“behavior” being formalized via
types). Having this distinction in the syntax of our calculus helps mixin implementors avoid unintentional
redefinitions of superclass methods.

2 The reader will see how our operational semantics really implements this feature, more than merely assuming it as a
general property for private fields.

3

e: : = const| x | λx.e | e1 e2 | fix
| ref | ! | := | {xi = ei}i∈I | e.x
| H h.e | classval〈vg,M 〉| new e
| mixin

method mj = vmj ;
(j∈New)

redefine mk = vmk ;
(k∈Redef)

expect mi ; (i∈Expect)

constructor vc;
end
| e1 � e2| e1←+ mi = e2| e1←+ e2

v: : = const| x | λx.e | fix | ref| !
| := | := v | {xi = vi}i∈I

| classval〈vg,M 〉
| mixinval〈vg,New,Redef,Expect〉
| obj〈{mi = vmi}i∈I ,vg〉
| obj〈{mi = vmi}i∈I ,vg, r,New,Redef,Expect〉

Fig. 1.Syntax of the core calculus: expressions and values.

This paper deals with incomplete objects remaining faithful to the above described principles. Mean-
ingful differences and extensions to the original syntax of [12] are commented below.

2.2 Syntax of the calculus

The calculus of classes and mixins of [12] is based onReference MLof Wright and Felleisen [36]. To the
imperative calculus of records, functions, classes and mixins of [12] we add the machinery to work with
incomplete objects. The class and mixin related expressions are:classval (class value),mixin, � (mixin
application), andnew. The (in)complete-object related expressions are:

– mixinval〈vg,New,Redef,Expect〉 (mixin value),
– obj〈{mi = vmi}i∈I ,vg〉 (complete object),
– obj〈{mi = vmi}i∈I ,vg, r,New,Redef,Expect〉 (incomplete object),
– ←+ (method addition/object composition).

Mixins are first class citizens in our calculus, which means that all the usual operations can be performed
on them (they can be passed as arguments to functions, be returned as results to function calls or combined
in order to get new data structures). However, class values, mixin values, and object forms are not intended
to be written directly; instead, these expression forms are used only to define the semantics of programs.
Class values can be created by mixin application, mixin values result from evaluation of mixins, and object
forms can be created by class and mixin instantiation.

The lambda-calculus related forms in Figure 1 are standard. We describe below the other forms.

– ref, !, := are operators3 for defining a reference to a value, for dereferencing a reference and for
assigning a new value to a reference, respectively.

– {xi = ei}i∈I is a record ande.x is the record selection operation.
– h is a set of pairsh:: = {〈x,v〉∗} wherex is a variable andv is a value (first components of the pairs are

all distinct). We also have a concept ofstoreor heap, represented byh in the expressionHh.e, which is
used for evaluating imperative side effects. In the expressionH〈x1,v1〉 . . .〈xn,vn〉.e, H binds variables
x1, . . .xn in v1, . . . ,vn and ine.

– classval〈vg,M 〉 is a class value, and it is the result of mixin application. It is a pair, containing the
functionvg, that is the generator for the class used to generate its instance objects, and the setM of the
indices of all the methods defined in the class. In our calculus method names are of the shapemi , where
i ranges over an index set, and are univocally identified by the index, i.e.,mi = mj if and only if i = j,
so method names are identified with their indices.

– mixin

method mj = vmj ;
(j∈New)

redefine mk = vmk;
(k∈Redef)

expect mi ; (i∈Expect)

constructor vc;
end
is amixin, and it explicitly states the methods that are newly introduced by the mixin (mj), redefined in
the mixin (mk), and expected by the mixin from the superclass (mi). Each method bodyvmj,k is a function

3 Introducingref, !, := as operators rather than standard forms such asrefe, !e, :=e1e2, simplifies the definition of
evaluation contexts and proofs of properties. As noted in [36], this is just a syntactic convenience, as is the curried
version of :=.

4

of the privatefield and ofself , which will be bound to the newly created object at instantiation time. In
method redefinitions,vmk is also a function ofnext , which will be bound to the old, redefined method
from the superclass. Thevc value in theconstructor clause is a function of an argument that returns a
record of two components: thefieldinit value is used to initialize the private field; thesuperinit value is
passed as an argument to the superclass constructor. When evaluating a mixin,vc is used to build the
generator as described in Section 4. The generator basically binds the private field in all method bodies.

– new euses generatorvg of the class value or of the mixin value to whicheevaluates to create a function
that returns a new object (incomplete, in the mixin case), as described in Section 4.

– e1 � e2 denotes the application of mixine1 to class valuee2, producing a new class value which is a
subclass ofe2 (mixin application is considered to be the basic inheritance mechanism in our calculus).

– e1←+ mi = e2 is the method addition operation: it adds the definition for methodmi with bodye2 to
the (incomplete) object to whiche1 evaluates.

– e1←+ e2 is the object composition operation: it composes the (incomplete) object to whiche1 evaluates
with the complete object to whiche2 evaluates.

– mixinval〈vg,New,Redef,Expect〉 is amixin value, and it is the result of mixin evaluation. The generator
vg for the mixin is a “partial generator”, that is, a generator of incomplete objects. This partial generator
is used also in the� operation evaluation, where it is appropriately composed with the class generator
(see the operational semantics in Section 4). The setsNew, RedefandExpectcontain the indices of
new, redefining and expected methods defined in the mixin.

– obj〈{mi = vmi}i∈I ,vg〉 is a fully-fledged object that might have been created by directly instantiating a
class, or by completing an incomplete object. Its first component is a record of methods, the second
component is a generator function, which is kept also for complete objects, since they can be used to
complete the incomplete ones.

– obj〈{mi = vmi}i∈I ,vg, r,New,Redef,Expect〉 is an incomplete object. It contains a record of methods
{mi = vmi}i∈I , a generator functionvg, a recordr containing redefining methods which will be used
when anext for them becomes available during method addition or object composition (as explained
in Section 4), and three setsNew,Redef, and Expect, containing the indices of new, redefining and
expected methods defined in the mixin. When the sets of method namesRedefandExpectbecome
empty (and so does the record of redefining methods) the incomplete object becomes a complete object.

Finally, we define the root of the class hierarchy, classObject , as a predefined class value:

Object
4
= classval〈 λ .λ .{}, [] 〉

The root class is necessary so that all other classes can be treated uniformly. The calculus can then be
simplified by assuming that any user-defined class that does not need a superclass is obtained by applying a
mixin containing all of the class method definitions toObject .

With respect to the calculus of [12], we introducedmixin values(that we studied in the context of higher-
order mixins, see [6]). They are partially evaluated incomplete classes (as it can be seen in Section 4), which
are quite handy to use when creating incomplete objects. It is important to notice that they bear exactly the
same types of the mixins they are evaluated from, and this points out that they are more syntactic sugar
than substantial syntax, which becomes useful when defining the operational semantics. Moreover, in the
original calculus, objects were simply records, while in this paper they are tuples, in order to be able to deal
with incompleteness. Still, invocable methods are all contained in a record-shaped component of the tuple.

3 Examples

In this section, we provide some real life pragmatic examples that demonstrate how incomplete objects and
object completion via method addition and object composition can be used fruitfully to design complex
systems, since they supply programming tools that may make software development easier.

For readability, we will use here a slightly simplified syntax with respect to the calculus presented in
Section 2.2: (i) we will list the methods’ parameters in between “()”; (ii) e1;e2 is interpreted aslet x =
e1 in e2, x 6∈ FV(e2), coherently with a call-by-value semantics; (iii) we will avoid to make references
explicit, thuslet x = e in x.m() should be intended aslet x = refe in (!x).m(); (iv) method bodies are only
sketched.

3.1 Object completion via method addition

In the first example, we present a scenario where it is suitable to add some functionalities to existing objects
without writing new mixins and creating related classes only for this purpose. Let us consider the develop-

5

let Button =
mixin
method display = . . .
method setEnabled = . . .
expect onClick;
. . .

end in

let MenuItem =
mixin
method show = . . .
method setEnabled = . . .
expect onClick;
. . .

end in

let ShortCut =
mixin
method setEnabled = . . .
expect onClick;
. . .

end in

let ClickHandler =
(λ doc.λ self doc.save() . . .self .setEnabled(false)) mydoc
in
let button =new Button("Save") in
let item =new MenuItem("Save") in
let short =new ShortCut("Ctrl+S") in
button.display();
button←+ (OnClick = ClickHandler);
button.setEnabled(true);
mydialog.addButton(button);// now it is safe to use it
item←+ (OnClick = ClickHandler);
item.setEnabled(true);
mymenu.addItem(item);
short←+ (OnClick = ClickHandler);
short.setEnabled(true);
system.addShortCut(short);

Fig. 2.Widget example

ment of an application that makes use of widgets such as graphical buttons, menus and keyboard shortcuts.
These widgets are usually associated to an event listener (e.g., a callback function), that is invoked when
the user sends an event to that specific widget (e.g., one clicks the button with the mouse or chooses a menu
item).

The design patterncommand[29] is very useful for implementing these scenarios, in that it allows
parameterization of the widgets over the event handlers, and the same event handler can be reused for
similar widgets (e.g., the handler for the event “save file” can be associated with a button, a menu item, or
a keyboard shortcut). However, in such a context, it is more convenient to be able to simply add a function
without creating a new mixin just for this aim. Indeed, the above mentioned pattern seems to provide a
solution in pure class-based languages that normally do not supply the object method addition operation.

Within our approach, this problem can be solved with language constructs: mixin instantiation (to obtain
an incomplete object which can be seen as a prototype) and method addition/completion (in order to provide
the further functionalities needed by the prototype). For instance, we could implement the solution as in
Figure 2. The mixinButton expects (i.e., uses but does not implement) a methodonClick that is internally
called when the user clicks on the button (e.g., by the window where it is inserted, in our example the dialog
mydialog). When instantiated, it creates an incomplete object that can be used for invoking methods that
are already usable (e.g.,display, provided it does not useonClick). Then thebutton object is completed
with the event listenerClickHandler (by using method addition). This listener is a function that has the
parameterdoc already bound to the application main document. Once the object is completed it can be
safely enabled. Notice that the added method can rely on methods of the host object (e.g.,setEnabled).
The same listener can be installed (by using method addition again) to other incomplete objects, e.g., the
menu item"Save" and the keyboard shortcut for saving functionalities. Moreover, since we are able to act
directly on instances here, our proposal also enables customization of objects at run-time.

The following piece of code (that works together with the previous one) shows another example of
object completion viamethod addition, where the method to be completed expects the implementation of
the superclass (it refers to it vianext):

let FunnyButton =
mixin
method display = . . .
method setEnabled = . . .
method playSound = . . .
redefine onClick =λself . λnextnext() . . .

self . playSound("tada.wav");
end in

let funnybutton =new FunnyButton("Save") in
funnybutton.display();
funnybutton←+ (OnClick = ClickHandler);
funnybutton.setEnabled(true);
// now it is safe to use it
toolbar.addButton(funnybutton);

6

let File =
mixin
method write = . . .
method read = . . .
. . .
end in

let Socket =
mixin
method write = . . .
method read = . . .
method IP = . . .
. . .

end in

let Console =
mixin
method write = . . .
method read = . . .
method setFont = . . .
. . .

end in
let Compress =
mixin
redefine write = λ level.λ self . λ next . λ data. next (compress(data, level));
redefine read =λ level.λ self . λ next . λ . uncompress(next (), level);
constructor λ (level, arg).{fieldinit=level,superinit=arg};

end in . . .
let Buffer =
mixin
redefine write = λ size.λ self . λ next . λ data. // bufferize write requests;
redefine read =λ size.λ self . λ next . λ . // read from the buffer;
constructor λ (size, arg).{fieldinit=size,superinit=arg};

end in . . .

Fig. 3.Stream example

In fact, the mixinFunnyButton does not simply expect the methodonClick, it expects to redefine such
method: the redefined method relies on the implementation provided bynext method (either provided by a
superclass, or in this example directly added via method addition to an object instance ofFunnyButton)
and adds a “sound” to the previous implementation. Notice that once again the previous event handler can
be reused in this context, too.

3.2 Object completion by object composition

Object composition is often advocated as a powerful alternative to class inheritance in that it is defined at
run-time and it enables dynamic object code reuse and composition by assembling existing components.
Object composition is often used in conjunction withdelegation: a receiving object delegates request han-
dling to another object. However, this mechanism must be programmed explicitly. Furthermore, object
composition is often the right flexible alternative to inheritance when functionalities have to be added dy-
namically to existing objects at run-time. These situations are usually dealt with by the patterndecorator
[29]. However, also in the case of this pattern, explicit programming is required.

With our linguistic constructs for object completion, both object composition and delegation are auto-
matically handled by the language. Indeed, the decorator pattern is easily implementable with these con-
structs. In this section we show how to exploit these features for implementing a logging system based on
streams. Notice that streams are often implemented according to the decorator pattern.

In Figure 3 there are the definitions ofCompress mixin andBuffer mixin that, respectively, implement
compression and buffering functionality on top of any stream class.File, Socket andConsole represent
basic stream functionalities (for I/O on a file, on the net and on the standard input output, respectively). Note
that the class to which the mixin is applied may have more methods than expected by the mixin. For exam-
ple,Compress can be applied toSocket � Object even thoughSocket � Object has other methods besides
read andwrite. Streams are created by composing streams with advanced functionalities likeCompress,
that are incomplete objects (i.e., instances of the appropriate mixin), with streams with basic functionalities
like File:

let fileoutput =
(new Compress("HIGH"))←+(new (File � Object) ("foo.txt")) in
fileoutput.write("bar")

The power of object composition can be seen when we compose more than one stream in a chain of objects.
For example:

let fileoutput =
(new UUEncode("base64"))←+(new Compress("HIGH"))←+(new Buffer(1024))←+
(new (File � Object) ("foo.txt")) in
fileoutput.write("bar")

7

Construction of decorations can be delegated to different parts of the program (thus exploiting modular
programming) and the resulting incomplete objects can then be assembled in order to build a complete
object. For instance, the following code delegates the construction of decorations for buffering and com-
pression to two functions, and then assembles the returned objects and completes them:

let o1 = build compression() in
let o2 = build buffering() in
let out= o1←+ o2←+ (new(File�Object)("foo.txt")) in
out.write("bar")

The functionbuild compression returns a specific incomplete object according, e.g., to user’s requests:
it can return a simpleCompress object, or anUUEncode one. Similarly,build buffering takes care of
building a buffering object. The two returned objects can be then completed with a chain of←+ operations.

Now we can program our logging functionalities exploiting the stream system shown above:

let Logger =
mixin
method doLog =λ verb.λ self . λ msg.
write(self .getTime() +": " + msg);

method getTime = . . .
expect write;
. . .

end in

let logger =new Logger(verbosity)←+ output in
output.doLog("logging started...");
output.doLog("log some actions...");

Theoutput object can be any stream object we showed above. Indeed, it does not have to be a stream: it
is only requested to provide the methodwrite. This allows to build a more complex logging system by
assembling more powerful components. For instance we can program amultiplexer that writes to many
targets and use this multiplexer to complete our logger:

let Multiplexer =
mixin
method addTarget =
// add the target to the list;

method removeTarget =
// remove the target from the list;

method write =
// call “write” on every object in the list

. . .
end in

let multi = new Multiplexer� Object in
multi.addTarget((new Compress("HIGH"))←+
(new (File � Object) ("foo.txt")));

multi.addTarget((new Buffer(1024))←+
(new (Socket� Object) ("www.foo.it:9999")));

let logger =new Logger(verbosity)←+ multi in
output.doLog("logging started...");
output.doLog("log some actions...");

Notice that no explicit programming is required in order to structure classes for object composition and the
presented form of method delegation: the programmer can simply concentrate on assembling the compo-
nents as she likes. Furthermore, the type system will ensure that all object compositions are type safe and
that only “complete” methods are invoked on objects.

4 Operational semantics

Our approach is the one of giving the calculus a semantics as close as possible to an implementation. In
order to do so, the formal operational semantics is a set of rewriting rules including some standard rules
for a lambda calculus with stores (in our case the Reference ML of Wright and Felleisen [36]), and some
rules that evaluate the object-oriented related forms to records and functions, according to the object-as-
record approach and Cook’s class-as-generator-of-object principle. This operational semantics can be seen
as something close to a denotational description for objects, classes, and mixins, and this “identification” of
implementation and semantical denotation is, in our opinion, a good by-product of our approach.

The operational semantics extends the one of the core calculus of classes and mixins [12], therefore
exploits theReference MLof Wright and Felleisen [36] treatment of side-effects. To abstract from a precise
set of constants, we only assume the existence of a partial functionδ :Const× ClosedVal⇀ ClosedValthat
interprets the application of functional constants to closed values and yields closed values.

In Figure 4,R’s arereduction contexts[21, 23, 32]. Reduction contexts are necessary to provide a mini-
mal relative linear order among the creation, dereferencing and updating of heap locations, since side effects

8

const v→ δ(const,v) (δ) refv→ H〈x,v〉.x (ref)
if δ(const,v) is defined H〈x,v〉h.R[!x] → H〈x,v〉h.R[v] (deref)

(λx.e) v→ [v/x] e (βv) H〈x,v〉h.R[:=xv′] → H〈x,v′〉h.R[v′] (assign)
fix (λx.e) → [fix(λx.e)/x]e (fix) R[H h.e] → H h.R[e], R 6= [] (lift)

{. . . ,x = v, . . .}.x→ v (select) H h.H h′.e→ H h h′.e (merge)

Fig. 4.Reduction rules for standard expressions and heap expressions

R: : = [] | R e| v R| R.x | new R | R � e | v � R
| {m1 = v1, . . . ,mi−1 = vi−1,mi = R,mi+1 = ei+1, . . . ,mn = en}1≤i≤n

| R←+ m= e | R←+ e | v←+ m= R | v←+ R

Fig. 5.Reduction contexts


mixin
method mj = vmj ;
redefine mk = vmk ;
expect mi ;
constructor c;
end



j ∈ New
k∈ Redef
i ∈ Expect

→mixinval〈Genm,New,Redef,Expect〉 (mixin)

Genm
4
= λx.

let t = c(x) in

gen = λself .
mj = λy.vmj t.fieldinit self y j∈New

mk = λy. self .mk y k∈Redef

mi = λy. self .mi y i∈Expect

 ,

superinit = t.superinit,

redef = {mk = λy.vmk t.fieldinit y k∈Redef}


new classval〈g,M 〉 → λv.obj〈fix(g v),(g v)〉 (new class)

new mixinval〈Genm,New,Redef,Expect〉 → (new mixin)
λv.let g = (Genm v) in

obj〈fix(g.gen),g.gen,g.redef,New,Redef,Expect〉

obj〈{. . . ,mi = vmi , . . .}, 〉.mi → vmi (obj sel)

obj〈{. . . ,mi = vmi , . . .}, , , , , 〉.mi → vmi (incobj sel)

mixinval〈Genm,New,Redef,Expect〉 � classval〈g,M 〉 → classval〈Gen,New∪M 〉 (mix app)

Gen
4
= λx.λself .
let mixinrec = Genm(x) in
let mixingen = mixinrec.gen in
let mixinred = mixinrec.redef in
let supergen = g(mixinrec.superinit) in

mj = λy.(mixingen self).mj y j∈New

mk = λy.(mixinred.mk self) (supergen self).mk y k∈Redef

mi = λy.(supergen self).mi y i∈M−Redef


Fig. 6.Reduction rules for object-oriented forms

need to be evaluated in a deterministic order. Their definition can be found in Figure 5. We assume the reader
is familiar with the treatment of imperative side-effects via reduction contexts and we refer to [12, 36] for a
description of the related rules.

The meaning of the object-oriented related rules in Figure 6 is as follows.

9

obj〈{. . .},g, r,New,Redef,Expect〉 ←+ (ml = vml)→
let incgen= λself .

mj = λy. (g self).mj y j∈New

mk = λy. self .mk y k∈Redef

mi = λy. self .mi y i∈Expect−{l}

ml = λy. vml self y


in obj〈fix(incgen), incgen, r,New∪{l},Redef,Expect−{l}〉

(meth add 1)

obj〈{. . .},g, r,New,Redef,Expect〉 ←+ (ml = vml)→
let incgen= λself .

mj = λy. (g self).mj y j∈New

mk = λy. self .mk y k∈Redef−{l}

mi = λy. self .mi y i∈Expect

ml = λy. (r.ml self) (vml self) y


in obj〈fix(incgen), incgen, r− r.ml ,New∪{l},Redef−{l},Expect〉

(meth add 2)

obj〈{. . .},g, r,New,Redef,Expect〉 ←+ obj〈{mi = vmi}i∈I ,g′〉 →
let incgen= λself .

mj = λy. (g self).mj y j∈New

mk = λy. (r.mk self) (g′ self).mk y k∈Redef

mi = λy. (g′ self).mi y i∈I−Redef


in obj〈fix(incgen), incgen〉

(obj comp)

obj〈{mi = vmi}i∈I ,g,{}, I , /0, /0〉 → obj〈{mi = vmi}i∈I ,g〉 (completed)

Fig. 7.Reduction rules for object completions

(mixin) rule turns a mixinexpressioninto a mixin value (notice that all the other mixin operations, i.e.,
mixin application and mixin instantiation, are performed on mixin values). Given the parameterx for the
constructorc of the mixin expression (we remind thatc is a function that calculates the initializing values
for the private field of the mixin, and for the generator of the future superclass), the mixin generator returns
a record containing the following:

– a (partial) object generatorgen which binds the private field of the methodsmj (newly defined by
the mixin) tofieldinit (returned by the constructor). Recall that method bodies take parametersfield ,
self , and, if it is a redefinition, alsonext . The output ofgen has “dummy” method bodies in place of
redefined and expected methods to enable the correct instantiation of incomplete objects. Intuitively,
self must refer to all the methods: not only the new ones, but also the ones that are still to be added;

– the argumentsuperinit for the superclass constructor, as returned by the mixin constructorc (the
constructor subexpressionc is a function of one argument which returns a record of two components:
one is the initialization expression for the fieldfieldinit the other is the superclass generator’s argument
superinit);

– theredef component which contains a record of redefined methods that have their private field already
bound tofieldinit (returned by the constructor), and are ready to have theirnext parameter bound to a
method added to the object at run time, with theirself still unbound. This record will be used during
method addition and object composition to recover the actual body of the redefined methods, complete
it, and insert it in the working part of the object.

The above generator is called “partial” since it returns an object that contains redefined and expected meth-
ods that cannot be invoked (present as “dummy” methods). The actual implementation of those methods
can be provided by (meth add 1), (meth add 2), and/or (obj comp).

(new class) rule enables the creation of new objects from class definitions. It builds a function which,
once passed an argumentv, produces thecomplete objectobj〈fix(g v),(g v)〉. (g v) is the object generator,
obtained by applying the class generatorg to an argumentv. This creates a function fromself to a record
of methods.fix(g v) is the record of methods that can be invoked on that object, obtained by applying the
fixed-point operatorfix (following [20]) to (g v) to bindself in method bodies and create a recursive record.

(new mixin) rule createsincomplete objectsfrom mixin values. First, it applies the mixin generatorGenm to
an argumentv, thus binding the private field of new and redefined methods and providing access toGenm’s

10

gen andredef components. The mixin object generatorg.gen is a function fromself to a record of mixin
methods, whileg.redef is the record of the redefined mixin methods that have theirfieldinit bound (self and
next have still to be bound). Theg.redef record is used for “remembering” the partial redefined method
bodies for the future use. The application of the fixpoint operator tog.gen creates a recursive record of
methods4.

(obj sel) enables method invocation on a complete object.

(incobj sel) selects the method from the incomplete object. Note that each methodmi can be called provided
that it only uses methods whose names are inNew(and recursively these methods only call methods that
are inNew). This condition is not checked by the semantics since it is checked by the type system.

(mix app) rule evaluates the application of a mixin value to a class value and represents inheritance in our
calculus. Amixin value is applied to a superclass valueclassval〈g,M 〉, whereM is the set of all method
names defined in the superclass. The resulting class value isclassval〈Gen,New∪M 〉 whereGen is the
generator function, andNew∪M lists all the method names of the subclass. Using a class generator delays
full inheritance resolution until object instantiation time whenself becomes available.

The class generator takes a single argumentx, which is used by the mixin generator, and returns a
function fromself to a record of methods. When the fixed-point operator is applied to the function returned
by the generator, it produces a recursive record of methods representing a new object (see the (new class)
rule).Genfirst callsGenm(x) to computemixinrec, which is used first to compute the mixin object generator
mixingen, a function fromself to a record of mixin methods. Next, it is used to computemixinred, which
provides the record of redefining methods from the mixin. Then,Gen calls the superclass generatorg,
passing argumentmixinrec.superinit, to obtain a functionsupergen from self to a record of superclass
methods. Finally,Genbuilds a function fromself that returns a record containingall methods — from both
the mixin and the superclass.

All methods of the superclass that are not redefined by the mixin,mi wherei ∈M −Redef, areinherited
by the subclass: they are taken intact from the superclass’s object (supergen self). These methodsmi include
all the methods that are expected by the mixin (as checked by the type system). Methodsmj defined by the
mixin are taken intact from the mixin’s object (mixingen self). As for redefinedmethodsmk, next is bound
to (supergen self).mk by Gen, which is then passed to(mixinred.mk) self . Notice that at this stage, all
methods have already received a binding for the private field. Moreover, for all methods in all generator
functions, the method bodies are wrapped insideλy. · · ·y to delay evaluation in our call-by-value calculus.

The next four rules in Figure 7 are the basic rules for manipulating the incomplete objects, i.e., they
enable completing them with the method definitions that they need either as expected or redefined.

(meth add 1) rule adds to an incomplete object a methodml that some other methods expect. The function
incgen mapsself to a record of methods, where new method definitions are taken from the object generator
g, the redefining and expected (excludingml) methods remain “dummy” and the methodml is added.
Therefore, applying thefix operator to incgen produces a recursive record of methods with boundself and
implicitly enables invocation of the methods that could have not been invoked before. Theincgenfunction
is part of the reduct because it must be carried along in the evaluation process, in order to enable future
method additions and/or object compositions.

(meth add 2) rule is similar to the previous one, the difference being that now a method is added in order
to complete a redefining methodml , acting as itsnext . Therefore the definition of the redefined method is
not “dummy” anymore, but gets a new bodyml = λy. (r.ml self) (vml self) y. The body ofml is taken from
r (it is already bound tofieldinit) and(vml self) is passed to it asnext. Naturally, this method becomes fully
functional, therefore its definition is removed fromr, and the indexl is removed fromRedefand added to
New.

The only requirement forml both in rules (meth add 1) and (meth add 2) is that the bodyvml must be
a function ofself .

(obj comp) rule combines two objects in such a way that the new added objecto2 (which must be, in turn,
already complete) completes the incomplete objecto1 and makes it fully functional. The record of methods
in incgenis built by taking the new methods from the incomplete objecto1 (these are the only methods

4 Those methods that do not invoke any expected method and/or that have their reference to theirnext already resolved
can be called on this recursive record component of the newly produced incomplete object.

11

that are fully functional in this object), binding thenext parameter in redefining methods fromo1, and
taking the expected methods from the complete objecto2. During object composition, the objecto2 used
for the completion getsself rebound to the new resulting object (this is the reason why we need to keep
the generator also for complete object values). This rebinding automatically enables dynamic binding of
methods that are redefined even when called from within the methods ofo2. After completion, it is possible
to invoke all the methods on the new created object.

(completed) rule transforms an incomplete object, for which all the missing methods are provided, into a
corresponding complete one.

It might be tempting to argue that object composition is just syntactic sugar, i.e., it can be derived via an
appropriate sequence of method additions, but this is not true. In fact, when adding a method, the method
does not have a state, while a complete object used in an object composition has its own internal state (i.e.,
it has a private field, properly initialized when the complete object was created via a “new” from a class,
or when part of it was created via a “new” from a mixin) . Being able to choose to complete an object via
the composition or via a sequence of method additions (of the same methods appearing in the (complete)
object used in the composition) gives our calculus an extra bit of flexibility.

5 Conclusions

In this work we integrate some features from class-based and object-based programming realities. As a
step forward towards designing a flexible object-oriented language, we decided that the promising starting
point could be the combination of mixin-based inheritance with constructs for manipulating incomplete
objects, instantiated from mixins seen as “incomplete” classes. Incomplete objects can be completed via
method addition and object composition, which either add one missing method to the incomplete object, or
compose it with another (complete) object.

We plan to add higher-order mixins to the calculus, along the line of [6]. Moreover, we want to study a
form of object-based methodoverridethat would work well in our hybrid setting, and a more general form
of method addition. Finally, incomplete objects seem to be a natural feature to be added to MOM I [7], a
coordination language where object-oriented mobile code is exchanged among the nodes of a network.

Generally speaking, all object-based calculi can be seen as calculi of incomplete objects, especially
when in presence of a method addition operation (one example is [26]). However, an explicit form of
incomplete objects was introduced in [9], where an extension of [26] is presented. In this work, “labelled”
types are used to collect information on the mutual dependencies among methods (labels list the names of
the methods that a given method might invoke), in order to have a safe subtyping in width. Labels are also
used to implement the notion ofcompletionwhich enables adding methods in an arbitrary order allowing the
typing of methods that refer to methods not yet present in the object, thus supporting a form of incomplete
objects.

However, to the best of our knowledge, there exist no attempts other than ours to instantiate mixins in
order to obtain prototypical incomplete objects within a hybrid class-based/object-based framework, even
though a similar approach might be explored by G. Boudol [14] in the setting presented in [13].

Acknowledgments.The authors would like to thank the anonymous referees for some useful suggestions
on how to improve the presentation of the calculus.

References

1. M. Abadi and L. Cardelli.A Theory of Objects. Springer-Verlag, 1996.
2. D. Ancona, G. Lagorio, and E. Zucca. Jam - a smooth extension of java with mixins. InProc. ECOOP 2000, pages

154–178. LNCS 1850, Springer-Verlag, 2000.
3. D. Ancona, G. Lagorio, and E. Zucca. True separate compilation of Java classes. InPPDP’99 - Principles and

Practice of Declarative Programming, pages 189–200. ACM, 2002.
4. C. Anderson, F. Barbanera, M. Dezani-Ciancaglini, and S. Drossopoulou. Can Addresses be Types? (a case study:

objects with delegation). InWOOD’03, ENTCS. Elsevier, 2003. To appear.
5. C. Anderson and S. Drossopoulou.δ - an imperative object based calculus. Presented at the workshop USE in

2002, Malaga,http://www.binarylord.com/work/delta.pdf, 2002.
6. L. Bettini, V. Bono, and S. Likavec. A Core Calculus of Higher-Order Mixins and Classes. InSAC, Special Track

on Programming Languages. ACM Press, 2004. Poster paper, to appear.
7. L. Bettini, V. Bono, and B. Venneri. Coordinating Mobile Object-Oriented Mobile Code. In F. Arbarb and C. Tal-

cott, editors,Proc. of Coordination Models and Languages, number 2315 in LNCS, pages 56–71. Springer, 2002.

12

8. L. Bettini, V. Bono, and B. Venneri. Subtyping Mobile Classes and Mixins. InProc. FOOL ’03, 2003.
9. V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. A Subtyping for extensible, incomplete objects.

Fundamenta Informaticae, 38(4):325–364, 1999.
10. V. Bono, F. Damiani, and P. Giannini. A calculus for “environment-aware” computation. InF-WAN’02, volume

66.3 ofENTCS. Elsevier, 2002.
11. V. Bono and K. Fisher. An imperative, first-order calculus with object extension. InProc. ECOOP ’98, volume

1445 ofLNCS, pages 462–497, 1998.
12. V. Bono, A. Patel, and V. Shmatikov. A core calculus of classes and mixins. InProc. ECOOP ’99, pages 43–66.

LNCS 1628, Springer-Verlag, 1999.
13. G. Boudol. The recursive record semantics of objects revised. InProc. ESOP ’01, pages 269–283. LNCS 2028,

Springer-Verlag, 2001.
14. G. Boudol. Private communication, 2002.
15. N. Boyen, C. Lucas, and P. Steyaert. Generalized mixin-based inheritance to support multiple inheritance. Techni-

cal Report vub-prog-tr-94-12, Vrije Universiteit Brussel, 1994.
16. G. Bracha.The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheritance. PhD thesis, Uni-

versity of Utah, 1992.
17. G. Bracha and W. Cook. Mixin-based inheritance. InProc. OOPSLA ’90, pages 303–311, 1990.
18. K. Bruce.Foundations of Object-Oriented Languages: Types and Semantics. MIT Press, 2002.
19. K. B. Bruce, L. Cardelli, G. Castagna, T. H. O. Group, G. Leavens, and B. C. Pierce. On binary methods.Theory

and Practice of Object Systems, 1(3):217–238, 1995.
20. W. R. Cook.A Denotational Semantics of Inheritance. PhD thesis, Brown University, 1989.
21. E. Crank and M. Felleisen. Parameter-passing and the lambda calculus. InProc. POPL ’91, pages 233–244, 1991.
22. F. Damiani and P. Giannini. Alias types for “environment-aware” computation. InWOOD’03, ENTCS. Elsevier,

2003. To appear.
23. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control and state.Theoretical

Computer Science, 103(2):235–271, 1992.
24. R. Findler and M. Flatt. Modular object-oriented programming with units and mixins. InProc. ICFP ’98, pages

94–104, 1998.
25. K. Fisher.Type Systems for Object-Oriented Programming Languages. PhD thesis, Stanford University, 1996.
26. K. Fisher, F. Honsell, and J. C. Mitchell. A lambda-calculus of objects and method specialization.Nordic J. of

Computing, 1(1):3–37, 1994. Preliminary version appeared in Proc.LICS ’93, pp. 26–38.
27. K. Fisher and J. Reppy. Inheritance-based subtyping.Information and Computation, 177(1):28–55, 2002.
28. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. InProc. POPL ’98, pages 171–183, 1998.
29. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable Object-Oriented Soft-

ware. Addison-Wesley, 1995.
30. T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting. InProc. ESOP ’00, volume 2305 ofLNCS,

pages 6–20. Springer-Verlag, 2002.
31. M. V. Limberghen and T. Mens. Encapsulation and composition as orthogonal operators on mixins: a solution to

multiple iinheritance problems.Object Oriented Systems, 3(1):1–30, 1996.
32. I. Mason and C. Talcott. Programming, transforming, and proving with function abstractions and memories. In

Proc. ICALP ’89, pages 574–588. LNCS 372, Springer-Verlag, 1989.
33. A. Patel.Obstacl: a language with objects, subtyping, and classes. PhD thesis, Stanford University, 2001.
34. J. G. Riecke and C. A. Stone. Privacy via subsumption.Information and Computation, 172(1):2–28, 2002. A

preliminary version appeared in FOOL5.
35. J. Vouillon. Combining subsumption and binary methods: An object calculus with views. InProc. POPL ’01,

pages 290–303, 2001.
36. A. Wright and M. Felleisen. A syntactic approach to type soundness.Information and Computation, 115(1):38–94,

1994.

13

