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ABSTRACT
Existing approaches to object encapsulation and confine-
ment either rely on restrictions to programs or require the
use of specialised ownership type systems. Syntactic restric-
tions are difficult to scale and to prove correct, while spe-
cialised type systems require extensive changes to program-
ming languages. We demonstrate that confinement can be
enforced cheaply in Featherweight Generic Java, with no es-
sential change to the underlying language or type system.
This result delineates the differences between parametric
polymorphism and ownership type systems, demonstrates
that polymorphic type parameters can simultaneously act as
ownership parameters, and should facilitate the adoption of
ownership and confinement type systems in general-purpose
programming languages.

1. INTRODUCTION
Two main approaches to object instance encapsulation are

under investigation in the literature. On one hand, program-
ming conventions, such as Islands [13] and various kinds
of Confined Types [4, 10] use tailored restrictions on pro-
grams to provide containment guarantees for programs in
existing programming languages, but until recently had not
been proven sound [22]. On the other hand, ownership type
systems [9], originating from the formalisation of Flexible
Alias Protection [19], require quite significant modifications
to programming languages. In particular, languages like
Joe, Universes, AliasJava, and SafeConcurrentJava, depend
upon ownership parameterisation within the type system [8,
16, 1, 5]. All these type systems are distinct, but they only
support ownership parameterisation, not type parameters.

This paper continues the efforts to provide effective ob-
ject encapsulation within practical programming languages.
The key insight behind this paper is that ownership and
confinement type systems can readily be modelled within
existing parametric polymorphic type systems: in fact, we
demonstrate that ownership systems for object confinement
within static protection domains can be subsumed com-
pletely within a basic generic type system. This is achieved
by using a single parameter space to carry both generic type
and ownership type information. As a result, we can enforce
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confinement in Featherweight Generic Java [14] “almost for
free” — with no change to the underlying language or type
system — by additionally enforcing some simple visibility
rules and constraints on program structure.

We hope that this result will have several consequences.
First, we aim to delineate the differences between para-
metric polymorphism and ownership and confinement type
systems, isolating the small additions to generic type sys-
tems that are required to support confinement or owner-
ship. Second, we hope to obtain a simpler formalism, with
few new concepts. Third, we are developing an extension to
Generic Java that will merge ownership and generic types:
our Featherweight Generic Java [14] model will support sound-
ness proofs for our language. Finally, we hope this approach
will facilitate the adoption of ownership and confinement
type systems by general-purpose programming languages.

The next section of this paper briefly introduces the no-
tion of encapsulation or confinement, in particular the kind
of confinement used in Confined Types [4], the primary topic
of this paper. We then present FGJ+c, which leverages the
generic type rules of FGJ to support a simple confinement
invariant, ensuring that confined classes may not be accessed
outside a static protection domain (effectively a Java pack-
age). We then present the extra constraints required of pro-
grams in FGJ+c, prove a confinement invariant, and con-
clude with a discussion of our prototype implementation and
plans for future work.

2. CONFINEMENT
Islands, confinement, and ownership are all essentially

forms of object encapsulation [18]. All these schemes are
attempts to establish an encapsulation boundary that pro-
tects some objects inside the boundary from direct access by
other objects outside that boundary. Where these proposals
differ from earlier programming language encapsulation and
module systems is that they restrict access to objects at run-
time: that is, they constrain values of pointers or references
to objects in object-oriented systems, rather than merely
accesses to field and method names. These schemes enforce
a containment invariant which simply states that objects
outside a particular boundary may not access objects inside
that boundary. For example, in Confined Types [4], the unit
of confinement is a Java package: all the instances of public
classes within that package form the encapsulation bound-
ary; all the instances of private classes (known as confined
classes) are inside the boundary, and instances of classes



in any other package are outside the boundary. This means
that a class may access a public class belonging to any pack-
age, but may only access those confined classes belonging to
its own package.

What confinement means in practice is that any code writ-
ten in one protection domain (say one Java package) should,
when executed, never directly refer to an instance of a class
inside the boundary of another protection domain. Static
references, such as those stored in object fields, must be
restricted: a field of a class cannot hold an object that be-
longs inside a different package. The execution of a class’s
methods must also be restricted. Methods cannot access
confined classes of other packages. Note, however, that this
prohibition refers only to direct accesses: indirect access is
permitted — indeed, is encouraged. Public classes (or in-
stances of public classes) thus provide an interface to the
private instances in their package.

Zhao et. al. [22] have formulated a containment invariant
in terms of the expressions within methods. Basically, if
an expression (or any of its subexpressions) can possibly
evaluate to some object o, that object must be visible in
the context of the method. In some more detail: if d0 is a
subexpression of d, and d0 evaluates to e (denoted, d0 →∗ e),
then any object denoted by e must be visible in the class
containing d.

3. FEATHERWEIGHT GENERIC JAVA
+ CONFINEMENT

Featherweight Generic Confinement is a minimalist con-
finement scheme that leverages parametrically polymorphic
types to enforce static confinement. In this section we present
Featherweight Generic Java + Confinement (FGJ+c here-
after) which embodies this confinement scheme. After out-
lining the main principles behind FGJ+c, we give a formal
presentation and a proof of confinement in the following sec-
tion.

3.1 Program Structure
The key idea behind Generic Confinement is to use generic

type parameters to carry ownership information as well as
type information. Following the traditional approach of
Ownership Types [9] we require every FGJ+c class to have
at least one type parameter to carry this ownership informa-
tion. We use the last type parameter to record an object’s
owner, to promote upwards compatibility and because our
implementation will allow ownership parameters to be de-
faulted or elided. To avoid changing the FGJ class Object,
all FGJ+c classes descend from a new class CObject (for con-
finable object) that has just one parameter called Owner; all
its subclasses must invariantly preserve this parameter to
represent their owner.

The following declaration of a class called Main shows that
the class is declared with an owner parameter Owner that is
bound to CObject’s owner parameter.

class M.Main<Owner extends World>

extends CObject<Owner> {

M.Main() { super(); }

S.Stack<CObject<World>,World> publicStack()

{ return new S.Stack<CObject<World>, World>; }

S.Stack<M.Main<World>,M> confinedStack()

{ return new S.Stack<M.Main<World>, M>; } }

Note that all class names are prefixed by a package iden-
tifier, thus M.Main. This is just a convention to indicate
the package within which each class is defined. Note also
that classes which extend class World are used to indicate
ownership.

Within the Main class, two methods return two Stack ob-
jects; one of these is confined to the package. Each Stack has
two type parameters, the first being the type of items to be
stored into the stack, and the second being the ownership of
that stack instance. The public stack stores CObject<World>
instances that are accessible from anywhere (World is instan-
tiating CObject’s owner parameter); the private stack stores
Main instances that are also globally accessible. The stacks’
second ownership parameter describes their ownership. The
public stack has owner World, so it is universally accessible,
however the private stack has owner M, meaning that it is
only accessible within package M. These two stacks illustrate
that FGJ+c provides both type polymorphism (the stacks
hold different item types) and ownership polymorphism (the
stacks belong in different protection contexts).

3.2 Packages and Owner Classes
FGJ+c types such as M, S, and World represent packages

(or protection domains). In FGJ+c protection domains are
static, but we need to represent them within the FGJ type
system so that we can provide the owner parameters. For
this reason, we use parameter-less FGJ classes to represent
these domains. Because the classes that represent domains
(again like Java packages) are not actually part of the pro-
gram, they should not be instantiated during the execution
of an FGJ+c program so we call them owner classes.

Figure 1 shows the relationships between these owner classes
and program classes in FGJ+c. Owner classes inherit from
the FGJ class Object, and there is one owner class corre-
sponding each FGJ+c package.

Confinement in FGJ+c is enforced quite simply, by requir-
ing that any owner class (other than World) can only appear
within the body of classes within its own package. In other
words, the owner class M can appear within the definition of
classes such as M.Main but the owner class S cannot. (Note
that class names themselves are not restricted per se; this
is why a name like S.Stack can appear in package M).

This restriction facilitates the definition of fully confined
classes, that is, classes which can never be used outside their
defining package. Consider the definition of the Link class
in package L:

class L.Link<Item extends CObject<ItemOwner>,

Owner extends L>

extends CObject<Owner>

// ...

}

Link’s owner parameter in its declaration is defined as Owner
extends L. This means that a Link can only be instantiated
with the L owner class as its actual owner parameter. This
owner class is only visible within package L, however, thus
ensuring all instances of Link will be confined within that
package.

4. FGJ+c DEFINITION
FGJ+c is a strict subset of FGJ, that is, every FGJ+c

program is an FGJ program. FGJ+c, however, adds some
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:S:P:M

:World :CObject<O>

:S.List<Item,O>

:S.Link<Item,O>

FGJ+c classes

:P.D<O>

:P.C<O>

:M.Main<O>

Figure 1: FGJ Classes separated into FGJ+c classes and owner classes.

extra restrictions that leverage FGJ’s proven type soundness
to provide confinement. Every FGJ+c program must meet
the FGJ rules [14] along with additional rules presented in
figure 2. For reference, figure 3 shows the FGJ syntax from
Igarashi et al. [14].

4.1 FGJ+c Programs
Any FGJ+c program is an FGJ program that meets the

following requirement: any class declared as part of it is
FGJ+c-Class. A corresponding rule (FGJ+c-Type) en-
sures that the only types used in FGJ+c programs are sub-
types of CObject<Owner> for some Owner.

Because Object doesn’t have an owner parameter and
cannot be part of FGJ+c programs, we declare CObject<Owner>
as the root, World, and any of the owner classes correspond-
ing to packages separately as valid FGJ classes. For exam-
ple:

class CObject<Owner extends World> extends Object {

CObject() { super(); }

}

class World extends Object {

World() { super(); }

}

...

This ensures that every FGJ+c program is also an FGJ
program. To be able to find a owner class corresponding to
the package of a class C, we introduce a function πC returning
the owner class of the package to which C belongs.

4.2 FGJ+c Additional Rules
Figure 2 gives the following rules used to constrain FGJ

programs: FGJ+c Types that specifies which types can
be instantiated in FGJ+c programs — they are said to be
OK+c, Owner Visibility that show when a particular owner
(always a owner class) can be used within the context of
the current class’s package, Type Visibility that gives
the types (that have to be OK+c) that can be used within
the context of the current class’s package, Term Visibil-
ity that shows how expressions don’t break the visibility
within the context of the current class’ package, and finally
FGJ+c Methods and FGJ+c Classes rules that state
which method and class declarations are considered legal
within FGJ+c— they are said to be FGJ+c.

FGJ+c Types. This is used by the rules validating class
and method declarations. It states that the only types al-
lowed are the subtypes of CObject<Owner>, as shown on the
right in figure 1. These types in fact are exactly those that
have an owner parameter. Note that the type variables will
be classified as OK+c by the virtue of their bounds.

Owner Visibility. These rules state that within a con-
text of the domain that is a package of a class D, the only
owners allowed to be used are World, πD, or those bounded
by any of these two. Note that this only allows owner classes
as owner parameters.

Type Visibility. Rule V-Type checks to see if the type
T is legal within FGJ+c programs (by checking if it is OK+c,
as enforced by FGJ+c Types rule, and that its owner is
visible according to Owner Visibility rules). In case when
T is a type variable, its bound, which is a non-variable type,
is checked instead. A type from class C is only visible if its



FGJ+c Types:
∆ ` T <: CObject<O> ∆ ` O <: World

∆ ` T OK+c
(FGJ+c-Type)

Owner Visibility:

∆ ` visibleowner(πD, D) ∆ ` visibleowner(World, D)
(V-Owner)

∆ ` visibleowner(bound∆(Owner), D)
∆ ` visibleowner(Owner, D)

Type Visibility:
∆ ` T OK+c N =bound∆(T) N = C<T̄, O> ∆ ` visibleowner(O, D)

∆ ` visible(T, D)
(V-Type)

Term Visibility:
∆;Γ ` x : T ∆ ` visible(T, D)

∆; Γ ` visible(x, D)
(V-Var)

∆;Γ ` visible(e, D) ∆; Γ ` e.fi : T ∆ ` visible(T, D)
∆; Γ ` visible(e.fi, D)

(V-Field)

∆;Γ ` e.m(ē) : T ∆ ` visible(N, D)
∆; Γ ` visible(e, D) ∆; Γ ` visible(ē, D)

∆; Γ ` visible(e.m(ē), D)
(V-Invk)

∆;Γ ` visible(ē, D) ∆ ` visible(N, T)
∆; Γ ` visible(new N(ē), D)

(V-New)

∆;Γ ` visible(e, D) ∆ ` visible(N, D)
∆; Γ ` visible((N) e, D)

(V-Cast)

FGJ+c Methods:
∆ ` T̄, T OK+c ∆ ` visible(T̄, C)

∆ ` visible(T, C) ∆ ` visible(P̄, C)
∆; x̄ : T̄, this : C<X̄, Owner> ` visible(e0, C)

<Ȳ / P̄> T m(T̄ x̄){ return e0; } FGJ+c IN C<X̄ / N̄, Owner>

(FGJ+c-Method)

FGJ+c Classes:
∆= X̄ <: N̄, Owner <: Domain ∆ ` N, T̄ OK+c ∆ ` visible(N̄, C)

∆ ` visibleowner(Domain, C) M̄ FGJ+c IN C<X̄ / N̄, Owner / Domain>

∆ ` visible(T̄, C) N = C′<T̄′, Owner>

class C<X̄ / N̄, Owner / Domain> / N {T̄ f̄; K M̄} FGJ+c

(FGJ+c-Class)

Figure 2: FGJ+c Additional Rules
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Fig. 4. FJ: Syntax.

3.1 Syntax

The abstract syntax of FGJ is given in Figure 4. In what follows, for the sake of
conciseness we abbreviate the keyword extends to the symbol �. The metavari-
ables X, Y, and Z range over type variables; S, T, U, and V range over types; and
N, P, and Q range over nonvariable types (types other than type variables). We
write X̄ as shorthand for X1,. . . ,Xn (and similarly for T̄, N̄, etc.), and assume se-
quences of type variables contain no duplicate names. We allow C<> and m<> to
be abbreviated as C and m, respectively.

As before, we assume a fixed class table CT, a mapping from class names C to
class declarations L and the essentially same sanity conditions. (For condition
(4), we use the relation CE D between class names, defined in Figure 5, as the
reflexive and transitive closure induced by the clause C<X̄� N̄>� D<T̄>.)

As in FJ, for the typing and reduction rules, we need a few auxiliary def-
initions, given in Figure 5; these are fairly straightforward adaptations of
the lookup rules given previously. The fields of a nonvariable type N, written
fields(N), are a sequence of corresponding types and field names, T̄ f̄. The type
of the method invocation m at nonvariable type N, written mtype(m, N), is a type
of the form <X̄� N̄>Ū→ U. In this form, the variables X̄ are bound in N̄, Ū, and U,
and we regard α-convertible ones as equivalent; application of type substitution
[T̄/X̄] is defined in the customary manner. When X̄� N̄ is empty, we abbreviate
<>Ū→ U to Ū→ U. The body of the method invocation m at nonvariable type Nwith
type parameters V̄, written mbody(m<V̄>, N), is a pair, written x̄.e, of a sequence
of parameters x̄ and an expression e.

3.2 Typing

An environment0 is a finite mapping from variables to types, written x̄:T̄; a type
environment 1 is a finite mapping from type variables to nonvariable types,
written X̄ <: N̄, which takes each type variable to its bound. The main judgments
of the FGJ type system consist of one for subtyping1 ` S <: T, one for type well-
formedness 1 ` T ok, and one for typing 1;0 ` e : T. We abbreviate a sequence
of judgments in the obvious way: 1 ` S1 <: T1, . . . , 1 ` Sn <: Tn to 1 ` S̄ <: T̄;
1 ` T1 ok, . . . , 1 ` Tn ok to 1 ` T̄ ok; and 1;0 ` e1:T1, . . . , 1;0 ` en:Tn
to 1;0 ` ē : T̄.
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Figure 3: FGJ syntax, from Igarashi et al.

owner parameter is visible within the context of D.
Term Visibility. These structural rules take any expres-

sion and recursively check if it is legal within the context of
the domain that is a package of a class D. Five rules recurse
into five kinds of expression available in FGJ and check if
the types involved are visible (these can only be types that
are OK+c — not owner classes).

FGJ+c Methods. The method is considered to be FGJ+c
if and only if all the parameter types and the return type
are valid (OK+c) and visible, if all the generic method pa-
rameters are visible, and finally if the expression involved
in the definition of the method meets the Term Visibility
requirements.

FGJ+c Classes. Most importantly, a class is considered
to be FGJ+c if all the methods involved in its declaration are
FGJ+c, if all the field types are visible, if the owner parameter
is preserved as we extend another class, and if all the generic
parameters involved are visible or, in the case when their
bounds are owner classes, they are visibleowner .

These rules guarantee that FGJ+c programs don’t break
confinement, allowing us to prove a confinement invariant.

4.3 Confinement Invariant Proof
The confinement invariant for well-typed FGJ+c programs

shows that types that are not visible within the current pack-
age are not reachable. We assume that we only deal with
FGJ+c programs: that is FGJ programs where all the classes
are FGJ+c as given by (FGJ+c-Type) rule in figure 2. We
prove that during execution, we cannot get to an instance of
a class that is not visible within the current package. This
result relies on the fact that the owner parameter is pre-
served in the class hierarchy. Let owner∆(T) be O for types
C<T, O> and the owner of the bound in ∆ for type variables.
Then, the following two results that are trivial to prove can
be observed:

Lemma (Ownership Invariance over Subtyping). If
∆ ` S <: T and ∆ ` T <: CObject<O>, then owner∆(S) =
owner∆(T) = O.

Proof. By induction on subtypes below CObject. S and T

must eventually be bound to classes as these are the only
ground types in FGJ. Base case: they are bound to CObject

so this is trivially true. Inductive case: By FGJ subtyping
they must be bound to some transitive subclass of CObject.
By FGJ+c-Class a FGJ+c class has the same owner pa-

rameter as its superclass. 2

Theorem (Confinement Invariant). Given any subex-
pression e of an expression d in a method m of class C which
is FGJ+c.
If e→∗new D<T̄D, O>(ē), then visible(D<T̄D, O>, C).

Proof. By FGJ subject reduction: e : T→∗e′ : T′ ⇒ T′ <: T.
Since visible(d, C) by FGJ+c-Method, by visibility rules
we also get visible(e, C). By rule V-Type T is OK+c and thus
by FGJ+c-Type T = B<T̄B, O> where B <: CObject<O>.
By the ownership invariance over subtyping lemma: T′ =
D<T̄D, O> where O is the same in all three. But to get
visible(B<T̄B, O>, C) we must have visibleowner(O, C). By
FGJ+c-Type, D<T̄D, O> will be OK+c.
Then by V-Type: visible(D<T̄D, O>, C). 2

4.4 FGJ+c and FGJ
Every FGJ+c program is also an FGJ program. We expect

that every FGJ program can be translated into an FGJ+c
program as follows: (1) every class gets an extra parameter,
and every type instantiates it as World; (2) every extension
of Object is now replaced with an extension of CObject<O>;
and (3) in every class declaration, the owner parameter of
the class and the type it extends is matched. This will ensure
every FGJ type is now OK+c and every class FGJ+c-Class.

5. RELATED WORK
Object encapsulation has been recognised as a means for

addressing aliasing, security, concurrency, and memory man-
agement problems, with the merit of smoothly aligning with
the way many object-oriented programs are designed. Two
complementary threads of research have evolved. On one
hand are expressive but weighty type systems based on own-
ership types [9]. On the other hand are lightweight but lim-
ited systems based on confined types [4].

The systems based on ownership types differ essentially in
only one characteristic, which Clarke and Wrigstad distin-
guish as shallow vs. deep ownership [11]. A deep ownership
type permits only a single object as entry point to the col-
lection of objects it owns, whereas a shallow ownership type
permits multiple entry points into the confined collection.

Clarke and Drossopoulou [8] and Boyapati et al. [5] de-
scribe how to exploit the useful properties of deep ownership,
but there is also a general concern about whether it might
be too restrictive in practice. Ownership types require ad-



ditional annotations to use them, raising issues about their
role in programming. Some authors argue that, with appro-
priate defaults, this need not be a problem in practice [1,
5].

Confined type systems have achieved their more limited
goals while keeping the amount of annotations low. Vitek
and Bokowski’s original system [4], which had security as its
application, required certain classes to be annotated as con-
fined to indicate classes confined within the present package,
and certain methods to be annotated as anonymous, to in-
dicate that such methods do not reveal “this”. Grothoff,
Palsberg, and Vitek [12] show how type inference can be
used to avoid the need for annotation, making a system
that can provide per-package encapsulation in practical pro-
grams. Clarke, Richmond and Noble [10] apply these ideas
in the context of Enterprise Java Beans, and by exploiting
special architecture specific constraints, provide per-object
encapsulation without annotations or inference.

Recent work by Zhao, Palsberg and Vitek [22] has for-
malised Vitek and Bokowski’s approach to per-package con-
finement, with an operational semantics and a static type
system based on Featherweight Java, and augmented by a
number of specific rules that restrict programs. This work
also proposes a notion of generic confined types, allowing,
for example, a collection to be confined or not, depending
upon the specifications of the contained elements. This pro-
posal is then supported by further development of the static
type system.

Our approach is essentially the opposite. Rather than
starting from a language without generic types, and then
adding a special form of genericity to better support con-
finement, we start from a language with generic types (GJ,
or rather its formal core FGJ) and then ensure per-package
confinement. This approach has led to a simpler formal sys-
tem, requiring few new concepts. We do not need to distin-
guish anonymous methods, because “this” is parameterised
to record its ownership.

Banerjee and Naumann prove a per-object representation
independence result for Java [2, 3]. They adopt a con-
finement discipline resembling ownership types, except that
they apply the confinement only at the point they wish to
reason about. They require that confined classes extend a
special class called Rep, and that the boundary classes ex-
tend a special class called Own. Neither Rep nor Own can
be forgotten from a type.

A bit further afield, we find that the implementation of
the State Monad in Haskell [15] adopts similar mechanisms.
In the State Monad, a type variable is assigned to the en-
capsulated state, and an appropriate hiding of the type (via
rank-2 polymorphism) ensures that the state doesn’t escape
and thus behaves correctly. Interestingly, this design resem-
bles an encoding of existential types in terms of universal
types, while Clarke’s thesis formalises the confinement pro-
vided by ownership types as existential over owners [7].

6. IMPLEMENTATION AND
FUTURE WORK

6.1 Object Ownership
Object ownership is essentially the same as confinement,

but works at a finer granularity: ownership allows objects
to be encapsulated with a dynamic protection domain, typ-

ically another object, where confinement is limited to static
protection domains, such as as Java-like packages.

We plan to extend FGJ+c to provide object ownership
as well as per-package confinement. We will introduce an
additional owner class called “This” to model objects owned
by the current object (i.e., owned by “this”). Then, we
need to ensure that we can only access objects owned by
This from the instance to which they belong — that is, only
when derefencing this. Following [1], we sketch such an
ownership rule:

∆; Γ ` e : T
This ∈ owners(mtype(m, bound∆(T))) ⇒ e ≡ this

∆;Γ ` ownership(e.m(ē), D)

Where owners finds the set of all ownership parameters or
bounds in a type. To provide deep ownership, we will also
need to introduce an ordering on owner classes to ensure the
proper object containment relationships.

We can state this rule within FGJ, but FGJ’s functional
substrate is not strong enough to support a proof of an own-
ership invariant. For this, we plan to adopt an imperative
Java-like calculus, such as that underpinning Joe1 [8], al-
though that calculus will first have to be extended with
FGJ-like genericity.

6.2 Capabilities
We also plan to extend FGJ+c to model capability-like

systems [6, 20] where types control invocations of individual
methods, rather than access to whole objects. Again, we
have to alter the method invocation rule:

∆; Γ ` visible(e, D) ∆; Γ ` visible(ē, D)
∆; Γ ` e : N′ ∆;Γ ` visiblemethod(m, T, D)

∆; Γ ` visible(e.m(ē), D)

including a ternary visiblemethod check that tests whether a
particular method m may be invoked on an object bounded
by type T in domain D. This will allow capabilities to be
encoded via specialised owner classes in T’s ownership: note
that this check would need to be monotonic over subtyping.

6.3 OGJ: Ownership Generic Java
We have implemented an extension to the JSR14 proto-

type implementation of the Java Compiler [21] that we call
OGJ (for “Oh! Gee! Java!” [17]). OGJ is the first language
implementation that supports both confinement and gener-
icity. OGJ programs are essentially Generic Java programs
with the addition of owner parameters that can be: World,
Class, Package, or This. These are real Java interfaces de-
fined in a package ogj.ownership. Any OGJ program will
compile as long as the (blank) definitions of these interfaces
are present in the class path, making OGJ backwards com-
patible with GJ compilers.

On the other hand, if the program is compiled using our
extension to the JSR14 prototype, these four interfaces are
treated specially so that any class parameterised by World

and Package behaves in a similar way to FGJ+c classes pa-
rameterised by World and the package owner classes. Thus,
a class defined as follows:

import ogj.ownership.*;



package my.util;

public class Link<Item, Package> {

...

}

will be guaranteed to have all of its instances contained
within the my.util package as long as the code is compiled
using our OGJ compiler extension. While in FGJ+c we used
a separate owner class for each owner parameter correspond-
ing to a package, OGJ will make appropriate replacements
of every occurence of parameter Package with an appropri-
ate owner class. This reduces a programmer load and hides
the owner classes from view.

Furthermore, we have also implemented full support for
Class visibility (per-class confinement similar to Class Uni-
verses [16]: objects can only be used by the class within
which they are declared) and This visibility (per-object own-
ership). In this paper, we have formalised the part of OGJ
that supports confinement. We plan to finish the formalisa-
tion of the ownership support in the near future, as described
above.

OGJ compiler extension is the first implementation that
has support for both confinement and genericity.

7. CONCLUSION
In this paper we have demonstrated that generic type sys-

tems are capable of expressing class confinement. In par-
ticular, we have demonstrated that the FGJ type system,
combined with a series of visibilty rules, is strong enough
to provide a confinement invariant comparable to that of
Confined Types.

This result shows that ownership and generic type infor-
mation can be expressed within the same system, and car-
ried around the program as binding to the same parameters.
We have proved this is possible for static package and class
confinement, and hope to extend this to more discriminat-
ing systems such as ownership types. This may provide a
lightweight route for ownership types to become applicable
in practice, with genericity carrying ownership into popular
object-oriented programming languages.
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APPENDIX

Featherweight Generic Java
For the convenience of our readers, and by the grace of pdflatex, in this appendix we present additional figures describing
FGJ from Igarashi et al. [14].P1: IBD
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Fig. 5. FGJ: Auxiliary functions.

Bounds of types. We write bound1(T) for the upper bound of T in1, as defined
in Figure 6. Unlike calculi such as F≤ [Cardelli et al. 1994], this promotion
relation does not need to be defined recursively: the bound of a type variable is
always a nonvariable type.

Subtyping. The subtyping relation 1 ` S <: T, read as “S is subtype of T in
1,” is defined in Figure 6. As before, subtyping is the reflexive and transitive
closure of the extends relation. Type parameters are invariant with regard to
subtyping (for the usual reasons; a type parameter can be both argument and
result type of one method), so 1 ` T̄ <: Ū does not imply 1 ` C<T̄> <: C<Ū>.

Well-formed types. If the declaration of a class C begins class C<X̄� N̄>,
then a type like C<T̄> is well formed only if substituting T̄ for X̄ respects the
bounds N̄, i.e., if T̄ <: [T̄/X̄]N̄. We write 1 ` T ok if type T is well formed in
context 1. The rules for well-formed types appear in the middle of Figure 6.
Note that we perform a simultaneous substitution, so any variable in X̄ may
appear in N̄, permitting recursion and mutual recursion between variables
and bounds.

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 3, May 2001.

Figure 4: FGJ auxiliary functions, from Igarashi et al.
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Fig. 6. FGJ: Subtyping and type well-formedness rules.

A type environment 1 is well formed if 1 ` 1(X) ok for all X in dom(1).
We also say that an environment 0 is well formed with respect to 1, written
1 ` 0 ok, if 1 ` 0(x) ok for all x in dom(0).

Typing rules. Typing rules for expressions, methods, and classes appear in
Figure 7. The typing judgment for expressions is of the form 1;0 ` e:T, read
as “in the type environment 1 and the environment 0, the expression e has

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 3, May 2001.

Figure 5: FGJ subtyping and type well-formedness rules, from Igarashi et al.
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Fig. 7. FGJ: Typing rules.

type T.” Most of the subtleties are in the field and method lookup relations that
we have already seen; the typing rules themselves are straightforward.

In the rule GT-DCAST, the last premise dcast(C, D) ensures that the result
of the cast will be the same at runtime, no matter whether we use the high-
level (type-passing) reduction rules defined later in this section or the erasure
semantics considered in Section 4. Intuitively, when C<T̄> <: D<Ū> holds, all the
type arguments T̄ of C must “contribute” for the relation to hold. For example,
suppose we have defined the following two classes:

ACM Transactions on Programming Languages and Systems, Vol. 23, No. 3, May 2001.

Figure 6: FGJ typing rules, from Igarashi et al.
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