The Agent Learning Pattern
José A. R. P. Sardinha, Alessandro Garcia, Carlos J. P. Lucena, Ruy L. Milidia

TecComm Group (LES), Computer Science Department, PUC-Rio
Rua Marques de Sdo Vicente 225, Gavea, Rio de Janeiro, Brazil

{sardinha, afgarcia, lucena,milidiu}@inf.puc-rio.br

Abstract. The development of large scale multi-agent systems (MASs) requires
the introduction and structuring of the learning in agents throughout the
design and implementation stages. In open systems and complex environments,
agents have to reason and adapt through machine learning techniques in
order to achieve their goals. In this paper, we present the Agent Learning
Design Pattern that guides the object-oriented design of machine learning
algorithms in Software Agents.

Intent

The intent of the Agent Learning Pattern is to add machine learning algorithms to an
object-oriented agent design. The design separates key aspects in machine learning:
knowledge representation, algorithm, performance evaluation and training example
generator.

Context

Multi Agent Systems [Garcia et al. 2004a] is a new technology that has been recently
used in many simulators and intelligent systems to help humans perform several time-
consuming tasks. In complex and open environments with many cooperating agents, it
is important to have a system that is able to adapt to unknown situations. Learning
techniques are crucial to the development of Multi Agent Systems, since they provide
well-known strategies to support the construction of adaptable agents.

In the design of machine learning [Mitchell 1997] in software agents, we are
normally faced with some key aspects, such as: (i) the knowledge representation of the
agent; (ii) the learning algorithm; and (iii) a training example generator used by the
learning algorithm; (iv) the performance monitor.

Problem

The design of machine learning in agent object-oriented architectures is not
straightforward when reuse and maintenance is required. How do we design machine
learning with several algorithms? How do we design different example generators for
the same algorithm? How do we design a monitor to evaluate the performance of the
agent when machine learning is used?

Forces
e The design should be general enough to encompass all machine learning
strategies.
e |t should be easy to map the learning machine components to abstractions of
object-oriented programming languages.

e The design should support improved reuse and maintenance of the learning
algorithm and training example generator.

e Specific learning techniques might need more classes to implement the learning
algorithm and training example generator.

e Software agents must be able to learn automatically in complex and
unpredictable environments.

Solution

Software agents are generally implemented in object oriented frameworks [Jade 2003]
[Sardinha et al. 2003a] using inheritance. In general, a concrete class Agent extends a
superclass of the OO framework as depicted in figure 1. This concrete class implements
basic services of the software agent, such as: sensory of the environment, event
handling, message handling, etc. The class called KnowledgeRepresentation implements
the data structure of the agent’s knowledge (examples: linear weighted function, a
collection of rules, a neural network, or a quadratic polynomial function).

Agent

1
KnowledgeRepresentation

Figure 1. A typical object oriented agent design

Figure 2 is used to include a learning algorithm, a performance monitor, and a training
example generator. The monitor of the agent’s performance is coded in a separate class
called PerformanceMeasure, and is used in the learning property to guarantee the agent
is achieving the predefined goal. It also has code that implements standard rules of
performance for the learning algorithm. The learning algorithm is a separate class called
LearningAlgorithm, and this class is responsible for modifying the already designed
KnowledgeRepresentation class. The example generator is modeled as a separate class
called Training Experience.

Structure

Agent
1
1 Performanceifeasure
LearningProperty 1 1.
+egicListePerformancevold
+starTrainingProcessvaid
perfarmancehd ire:Performancehd Ire

knowledgeRepresentation:knowledgeRepresentation
learningAlgorithm:LearningAlgorithm
trainingExperience TrainingExperience

1 1 1

1 1.*

1.*
KnowledgeRepresentation I earningAdgorithm TrainingExperience
1 1.7
-trainingExperience:TralningExperience
) + BT raining Experiancevold
+executevoid
+trainovoidd

Figure 2. The Learning Design Pattern

The Learning pattern has four main participants and two client participants:

Main Participants:
Learning Property

Defines the class of the agent’s learning property, and it is responsible for
accessing all other components

Performance Measure

An algorithm that implements rules for performance measurement.
Learning Algorithm

The machine learning algorithm.
Training Experience

An algorithm that generates training examples for the learning algorithm.
Client Participants:

Agent

Defines the class that implements the basic services of a software agent,

for example: thread control; communication and interaction protocols;
internal actions.

Knowledge Representation
The representation of the knowledge.

Example

The Trading Agent Competition (TAC) is designed to promote and encourage high
quality research into the trading agent problem. There are two scenarios in the annual
competition: TAC Classic [Wellman et al. 2001] - a "travel agent" scenario based on

complex procurement on multiple simultaneous auctions; and, TAC SCM
[Arunachalam et al. 2004] - a PC manufacturer scenario based on sourcing of
components, manufacturing of PC's and sales to customers.

Flight, Hotel, /ﬁ:) Flight and Hotel
and Ticket Sensors (. Price Predictor
S —
Us
A Allocator Master
- +

Allocator Slaves

ég \ Corporat{ /

&
NN\,
I\
| Knowledge
i Base
e
i N
TR
. . Monitor
Flight, Hotel, Ordering Agents Agent
and Ticket Negotiators (Flight & Hotels, Tickets)

Figure 3. The LearnAgents architecture

We present in figure 3 the architecture of the LearnAgents [Sardinha et al.
2004], a multi agent system with modular entities that are asynchronous, distributed,
reusable, and easy to interoperate. We define agent roles that tackle sub problems of
trading, such as price prediction, bid planning, goods allocation, bidding, among others.
The system’s goal is to acquire travel packages for clients with as much profit as
possible. This profit is defined as the sum of the utilities of the eight clients in the TAC
game, minus the costs of acquiring the travel goods in the auctions.

We introduced machine learning techniques in the Flight and Hotel Price
Predictor Agent, the Allocator Master and Slave Agents, and the Hotel Negotiator
Agent. The addition of machine learning in software agents permit the creation of a
highly adaptable system that is extremely easy to evolve when performance
improvement is needed.

Dynamics

Figure 4 presents the basic pattern dynamics of machine learning in agents. Several
events can trigger the agent learning [Mitchell 1997], including the execution of internal
agent actions, throwing of exceptions, messages exchanged between agents, and events
sensed in the external environment. The concrete class Agent must access the
LearningProperty, which is the main interface to the learning pattern.

The main goal of the Flight and Hotel Price Predctor Agent is to predict auction
prices based on past price sequences. The method buildTraining Experience implements
code that generates training examples (price sequences) for the machine learning
algorithm. The machine learning algorithm is coded in the method train, but is called
through the method execute. This method also calls the method calculatePerformance
that will calculate the prediction error. If a small error is achieved then the method
adaptKnowledge is responsible for changing knowledge attributes with the new
prediction of auction prices.

: startTrainingProcess (void |

Figure 4. The Sequence Diagram of the Learning Design Pattern

Implementation

learningProperty trainingExperience learningAlgorithm performancebeasure knowledge
LearningProperty TrainingExperience LearningAlgorithim Petformanceieasure KnowledyeRepresentation
| | | |
o | | |
f=
i raining Expedencel) void : :
| |
| |
execute(TrainingExperignce)void | |
fo==
|
|
Faing void |

calculatePeriomancdy void

adaptknowlede

|
pn
:
|
|
|
|
|
|
|
|
|
|
|
|

L]
i
|
|

]
|
|
|
|
|
|
|
|
|
i
|
o
|
|
|
|

Figure 5 presents the class diagram used for the Flight and Hotel Price Predctor Agent.

We used

the MAS Framework [Sardinha et

al. 2003a]

and

the classes

PricePredictorAgent and PricePredictorAgentIP are specialized classes that code a
software agent’s basic services.

Agent interactionFrolocols
Agentintertace PricePredictor Agenti?
PricePredictorAgent
-pricePredictarAgent PricePredi
_pi
-log:Lagger +processhsgaid
+predicacPrimeirabinutoHotelBorr -calculateAskPriceF irsthiinutesn)
-calculateAskPriceThirdhinutes]
+PricePredictaragent +sendhisgCalculatesllacationsH]
+initializevoid [=— | +senamsgCalculateAlineationsT]
+erminateoid
+racenvaid agent PricePredictordgent
run:void agCommLayerAgentCommuni
Performanceleasure
50 LeamingProperty 1 1
VoIt
+startTrainingProessaid
perfarmantebeasure:P erfarma
task String ErrorEvaluation
knowledgeRepresentation:Kno
leamingAlgarithm:LeamingAlge
trainingExperience TrainingExny +ealculateErrorvaid
b - - +calculatePerformance void
1
KnowledgeRepresentation LearmingAlgorithm TrainingExperience
11
T
+ bulleTrainingExperience void
+exetutevoid e
beliefs:Vector Hrainivoid
goalsvector
plans:vector

+predicihlextPrice:double
+updateParametervoid
+updatePrice void

ExpanentialSmoathing LMSLearning
-lastPrediction:double

-alpha:double rainyoid
-pricedouble

BuildTrainingExamples

+buildTrainingExperiencevoid

Figure 5. The Class Diagram of the Price Predictor Agent

ExponentialSmoothing is the class that implements the
KnowledgeRepresentation. The learning algorithm is coded in the class LMSLearning.
To generate the training examples for the LMS algorithm [Mitchell 1997], we
implemented the class BuildTrainingExamples that executes a query in a database with
auctions prices fo games already played. The ErrorEvaluation class has the
performance measure.

We describe below pieces of code that are relevant to understand how to
implement the learning pattern using the Java language [Sun 2004]. The
LearningProperty class is the main interface to all components. The method
startTrainingProcess (line 9) implements the process of collecting data (line 10) for the
machine learning algorithm (line 11). This class also keeps a reference to all
components.

1. public class LearningProperty {

2 private String task;

3. private TrainingExperience trainingExperience;

4. private LearningAlgorithm learningAlgorithm;

5 private KnowledgeRepresentation knowledgeRepresentation;

6
7
8

private PerformanceMeasure performanceMeasure;
// Getters and Setters

9 public void startTrainingProcess () {

10. trainingExperience.buildTrainingExperience() ;
11. learningAlgorithm.execute (trainingExperience);
12. }

13. }

The knowledge is modeled in the class ExponentialSmoothing and is a specialization of
the class KnowledgeRepresentation. The method predictNextPrice (line 5) implements
the algorithm called Exponential Smoothing [Bowerman et al. 2004] to predict the next
price:

PredictedAskPrice(n)= a*AskPrice(n-1) + (1 - a)*PredictedAskPrice(n-1)

where a is a number between 0 and 1; and # is the n-th game instance.

1. public class ExponentialSmoothing extends KnowledgeRepresentation {
2 private double lastPrediction;

3. private double alpha;

4. private double price;

5 public double predictNextPrice () {

6 double nextPrice = price*alpha + (l-alpha)*lastPrediction;

7 lastPrediction = nextPrice;

8. return (nextPrice);

9. }

10. public void updateParameter (double alpha) {
11. this.alpha=alpha;

12. }

13. public void updatePrice (double price) {

14. this.price=price;

16. }

17.)}

The class BuildTrainingExamples is a specialization of TrainingExperience, and
implements the process of building the training examples used by the learning
algorithm. The method buildTrainingExperience (line 3) queries a database with the
2003 competition auction prices, and store these price sequences in to the
askPriceHstory (line 2) vector.
. public class BuildTrainingExamples extends TrainingExperience {
public Vector askPriceHistory;

1
2
3. public void buildTrainingExperience () {
4 // JDBC code

5

6. }
7.}

The Price Predictor Agent uses a Least Mean Squares (LMS) learning algorithm to
adapt the value of alpha in the knowledge. The class LMSLearningAlgorithm class is a
specialization of the class LearningAlgorithm, and has a method called train (line 11)
that implements the LMS algorithm.

1. public class LMSLearning extends LearningAlgorithm ({
2 private BuildTrainingExamples bte;

3 private ExponentialSmoothing es;

4. private double alpha;

5. private double lastAlpha;

6 private double beta;

7 private double predictedPrice;

8. private double lastAskPrice;

9 es.updateParameter (20) ;

10. alpha=20;

11. public void train() {

12. for (int i=0;i<bte.askPriceHistory.size();i++) {

13. lastAskPrice=

14. ((Double)bte. askPriceHistory.elementAt (i)) .doubleValue () ;
15. es.updatePrice (lastAskPrice);

16. predictedPrice = es.predictNextPrice();

17. lastAlpha=alpha;

18. alpha=lastAplha+ (beta* (lastAskPrice-predictedPrice));
19. }

20. }

This class ErrorEvaluation is a specialization of the class PerformanceMeasure, and is
used by the class LeaningProperty to calculate the error between the predicted price and
actual ask price. The method calculateError (line 5) implements this calculation.

1. public class ErrorEvaluation extends PerformanceMeasure {

2 private double predictedPrice;

3 private double askPrice;

4. private double error;

5. public void calculateError () {

6

7

8

9

error = Math.abs (predictedPrice-askPrice) /askPrice;
}

Consequences

Uniformity and Generality. The Learning pattern provides a uniform solution that is
general enough to support all the machine learning techniques.

Reusability. The pattern modularizes a generic design for the learning property, which
can be reused and refined to different contexts and applications.

Improved Separation of Concerns. The learning property is entirely separated from
other agency concerns such as interaction and autonomy.

Straightforward implementation. The pattern presents an easy mapping of the Agent’s
Goal Learning Problem and the Agent Learning Model to an object-oriented design and
implementation.

Known Uses

A design for introducing machine learning algorithms is presented in chapter 1 (section
1.2.5) of the book Machine Learning [Mitchell 1997]. Four modules are presented in the
design: (i) the Performance System — module to solve the given performance task. It
takes an instance of a new problem as input an produces a trace of its solution; (ii) the
Critic — takes as input the history or trace of the solution and produces as output a set of
training examples; (iii) the Generalizer — takes as input the training examples and

produces an output hypothesis; (iv) the Experiment Generator — takes as input the
current hypothesis and outputs a new problem for the Performance System to explore.
In our design pattern, the critic module can be coded in the class Training Experience,
and the Generalizer is coded in the class LearningAlgorithm. The module Experiment
Generator has to be included in the class Agent, and is the module that starts the training
process. The only module that does not have a direct mapping is the Performance
System. Actually, the code of this module is coded in the class PerformanceMeasure
and another part is coded in the class TrainingExperience.

The Agent Learning Design Pattern has been used in four implementations: (a) a
multi agent system [Milidid et al. 2001] [Sardinha 2001] that uses evolutionary
techniques to build offerings in a retail market (b) an agent system [Sardinha et al.
2003b] that learns to play Tic-Tac-Toe with no prior knowledge; (c) a multi agent
system for the Trading Agent Competition (TAC) [Sardinha et al. 2004], and (d) a multi
agent system for managing the paper submission and selection process in workshops
and conferences [Garcia 2004].

Related Patterns

Learning Aspect. [Garcia et al 2004b] The Learning Property entity can be
implemented as an aspect [Kiczales 1997] and improve the separation of concerns
[Garcia et al. 2004a] [Garcia 2004] [Garcia et al. 2004c]. A LearningProperty aspect can
be used to replace the LearningProperty class, and it can connect the executions points
(events) on different agents classes, and identify when the learning process should be
triggered. These are some of the additional advantages of using the aspect-oriented
variant of the Learning pattern: (i) transparency — the use of aspects turns out to be an
elegant and powerful approach to introduce the learning behavior into agent classes in a
transparent way [Garcia et al 2004b] [Milidid et al 2001]; the description of which agent
classes need to be affected is present in the aspect and the monitored classes are not
modified; (ii) ease of evolution - as the MAS evolves, new agent classes may have to be
monitored and trigger the learning process; MAS developers only need to add new
pointcuts in the Learning Property aspect in order to implement the new required
functionality.

References

Garcia, A., Lucena, C.J.P., and Cowan, D. (2004a) “Agents in Object-Oriented
Software Engineering”, In: Software: Practice & Experience, Elsevier, Volume 34,
Issue 5, May 2004, pp. 489 - 521.

Mitchell, T. M. (1997), Machine Learning, McGraw-Hill. ISBN 0070428077.

Telecom Italia Lab (2003), JADE Programmer's Guide, http://sharon.cselt.it/ projects/
jade/ doc/ programmersguide.pdf, Feb. 2003.

Sardinha, J.A.R.P., Ribeiro, P.C., Lucena, C.J.P., and Milidii, R.L. (2003a), “An
Object-Oriented Framework for Building Software Agents”, In: Journal of Object
Technology, vol. 2, no. 1, January-February 2003, pp. 85-97.

Wellman, M.P., Wurman, P.R., O'Malley, K., Bangera, R., Lin, S., Reeves, D., Walsh,
W.E. (2001), “Designing the Market Game for a Trading Agent Competition”, In:
IEEE Internet Computing, pp. 43-51, March/April 2001 (Vol. 5, No. 2).

Arunachalam, R., Sadeh, N. (2004), “The 2003 Supply Chain Management Trading
Agent Competition”, In: Trading Agent Design and Analysis workshop proceedings

at The Third International Joint Conference on Autonomous Agents & Multi Agent
Systems. July 2004, New York, USA.

Sardinha, J.A.R.P., Milidii, R.L, Lucena, C.J.P., Paranhos, P.M., Cunha, P.M. (2004),
“An Agent Based Architecture for Highly Competitive Electronic Markets”,
Submitted to FLAIRS-2005.

Sun Microsystems (2004), Java Programming Language, http://java.sun.com.

Bowerman, B.L., O'Connell, R., Koehler, A. (2004), Forecasting, Time Series, and
Regression. Duxbury Press, 4™ edition, ISBN: 0534409776.

Milidid, R.L., Lucena, C.J., Sardinha, J.A.R.P. (2001), “An object-oriented framework
for creating offerings”, In: Proceeding of the 2001 International Conference on
Internet Computing (IC'2001), June 2001.

Sardinha, J. A. R. P. (2001), VGroups — Um framework para grupos virtuais de
consumo, Master's dissertation, Departamento de Informéatica, PUC-Rio, March
2001.

Sardinha, J. A.R.P., Milidid, R. L., Lucena, C. J. P., Paranhos, P. M. (2003b), “An OO
Framework for building Intelligence and Learning properties in Software Agents”,
In: Proceedings of the 2nd International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems (SELMAS 2003) at ICSE 2003, Portland, USA,
May 2003.

Garcia, A. (2004), From Objects to Agents: An Aspect-Oriented Approach, Doctoral
Thesis, PUC-Rio, Computer Science Department, Rio de Janeiro, Brazil, April 2004.

Garcia, A., Kulesza, U., Sardinha, J.A.R.P., Milidiu, R.L., Lucena, C.J.P. (2004b), “The
Learning Aspect Pattern”, In: Proceedings of the 11th Conference on Pattern
Languages of Programs (PLoP2004), September 2004, Allterton Park, Monticello,
Illinios.

Kiczales, G. et al (1997), “Aspect-Oriented Programming”, In: Proceedings of the
European Conference on Object-Oriented Programming - ECOOP’97, LNCS (1241),
Springer-Verlag, Finland., June 1997.

Garcia, A., Sant'anna, C., Chavez, C., Silva, V., Lucena, C.J.P., Staa, A. (2004c¢),
“Separation of Concerns in Multi-Agent Systems: An Empirical Study”, In: C.
Lucena et al (Eds)., Software Engineering for Multi-Agent Systems II, Springer,
LNCS 2940, March 2004, pp. 49-72.

