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Abstract. The development of large scale multi-agent systems (MASs) requires 
the introduction and structuring of the learning in agents throughout the 
design and implementation stages. In open systems and complex environments, 
agents have to reason and adapt through machine learning techniques in 
order to achieve their goals. In this paper, we present the Agent Learning 
Design Pattern that guides the object-oriented design of machine learning 
algorithms in Software Agents. 

Intent 
The intent of the Agent Learning Pattern is to add machine learning algorithms to an 
object-oriented agent design. The design separates key aspects in machine learning: 
knowledge representation, algorithm, performance evaluation and training example 
generator. 

Context 
Multi Agent Systems [Garcia et al. 2004a] is a new technology that has been recently 
used in many simulators and intelligent systems to help humans perform several time-
consuming tasks. In complex and open environments with many cooperating agents, it 
is important to have a system that is able to adapt to unknown situations. Learning 
techniques are crucial to the development of Multi Agent Systems, since they provide 
well-known strategies to support the construction of adaptable agents.  

In the design of machine learning [Mitchell 1997] in software agents, we are 
normally faced with some key aspects, such as: (i) the knowledge representation of the 
agent; (ii) the learning algorithm; and (iii) a training example generator used by the 
learning algorithm; (iv) the performance monitor. 

Problem 
The design of machine learning in agent object-oriented architectures is not 
straightforward when reuse and maintenance is required. How do we design machine 
learning with several algorithms? How do we design different example generators for 
the same algorithm? How do we design a monitor to evaluate the performance of the 
agent when machine learning is used?  

Forces 
• The design should be general enough to encompass all machine learning 

strategies. 
• It should be easy to map the learning machine components to abstractions of 

object-oriented programming languages. 



• The design should support improved reuse and maintenance of the learning 
algorithm and training example generator. 

• Specific learning techniques might need more classes to implement the learning 
algorithm and training example generator. 

• Software agents must be able to learn automatically in complex and 
unpredictable environments.  

Solution 
Software agents are generally implemented in object oriented frameworks [Jade 2003] 
[Sardinha et al. 2003a] using inheritance. In general, a concrete class Agent extends a 
superclass of the OO framework as depicted in figure 1. This concrete class implements 
basic services of the software agent, such as: sensory of the environment, event 
handling, message handling, etc. The class called KnowledgeRepresentation implements 
the data structure of the agent’s knowledge (examples: linear weighted function, a 
collection of rules, a neural network, or a quadratic polynomial function). 
 

 
Figure 1. A typical object oriented agent design 

 
Figure 2 is used to include a learning algorithm, a performance monitor, and a training 
example generator. The monitor of the agent’s performance is coded in a separate class 
called PerformanceMeasure, and is used in the learning property to guarantee the agent 
is achieving the predefined goal. It also has code that implements standard rules of 
performance for the learning algorithm. The learning algorithm is a separate class called 
LearningAlgorithm, and this class is responsible for modifying the already designed 
KnowledgeRepresentation class. The example generator is modeled as a separate class 
called Training Experience. 



Structure 

 
Figure 2. The Learning Design Pattern 

 
The Learning pattern has four main participants and two client participants: 
 
Main Participants: 

Learning Property 
Defines the class of the agent’s learning property, and it is responsible for 
accessing all other components 

Performance Measure 
An algorithm that implements rules for performance measurement. 

Learning Algorithm 
The machine learning algorithm. 

Training Experience 
An algorithm that generates training examples for the learning algorithm. 

Client Participants: 
Agent 

Defines the class that implements the basic services of a software agent, 
for example: thread control; communication and interaction protocols; 
internal actions. 

Knowledge Representation 
The representation of the knowledge. 

Example 
The Trading Agent Competition (TAC) is designed to promote and encourage high 
quality research into the trading agent problem. There are two scenarios in the annual 
competition: TAC Classic [Wellman et al. 2001] - a "travel agent" scenario based on 



complex procurement on multiple simultaneous auctions; and, TAC SCM 
[Arunachalam et al. 2004] - a PC manufacturer scenario based on sourcing of 
components, manufacturing of PC's and sales to customers. 

 

Figure 3. The LearnAgents architecture 

 

We present in figure 3 the architecture of the LearnAgents [Sardinha et al. 
2004], a multi agent system with modular entities that are asynchronous, distributed, 
reusable, and easy to interoperate. We define agent roles that tackle sub problems of 
trading, such as price prediction, bid planning, goods allocation, bidding, among others. 
The system’s goal is to acquire travel packages for clients with as much profit as 
possible. This profit is defined as the sum of the utilities of the eight clients in the TAC 
game, minus the costs of acquiring the travel goods in the auctions. 

We introduced machine learning techniques in the Flight and Hotel Price 
Predictor Agent, the Allocator Master and Slave Agents, and the Hotel Negotiator 
Agent. The addition of machine learning in software agents permit the creation of a 
highly adaptable system that is extremely easy to evolve when performance 
improvement is needed.   

Dynamics 
Figure 4 presents the basic pattern dynamics of machine learning in agents. Several 
events can trigger the agent learning [Mitchell 1997], including the execution of internal 
agent actions, throwing of exceptions, messages exchanged between agents, and events 
sensed in the external environment. The concrete class Agent must access the 
LearningProperty, which is the main interface to the learning pattern.  

The main goal of the Flight and Hotel Price Predctor Agent is to predict auction 
prices based on past price sequences. The method buildTrainingExperience implements 
code that generates training examples (price sequences) for the machine learning 
algorithm. The machine learning algorithm is coded in the method train, but is called 
through the method execute. This method also calls the method calculatePerformance 
that will calculate the prediction error. If a small error is achieved then the method 
adaptKnowledge is responsible for changing knowledge attributes with the new 
prediction of auction prices. 
 



 
Figure 4. The Sequence Diagram of the Learning Design Pattern 

 

Implementation 
Figure 5 presents the class diagram used for the Flight and Hotel Price Predctor Agent. 
We used the MAS Framework [Sardinha et al. 2003a] and the classes 
PricePredictorAgent and PricePredictorAgentIP are specialized classes that code a 
software agent’s basic services. 
 

 
Figure 5. The Class Diagram of the Price Predictor Agent 

 



ExponentialSmoothing is the class that implements the 
KnowledgeRepresentation. The learning algorithm is coded in the class LMSLearning. 
To generate the training examples for the LMS algorithm [Mitchell 1997], we 
implemented the class BuildTrainingExamples that executes a query in a database with 
auctions prices fo games already played. The ErrorEvaluation class has the 
performance measure. 

We describe below pieces of code that are relevant to understand how to 
implement the learning pattern using the Java language [Sun 2004]. The 
LearningProperty class is the main interface to all components. The method 
startTrainingProcess (line 9) implements the process of collecting data (line 10) for the 
machine learning algorithm (line 11). This class also keeps a reference to all 
components.  
 
1. public class LearningProperty { 
2.  private String task; 
3. private TrainingExperience trainingExperience; 
4. private LearningAlgorithm learningAlgorithm; 
5. private KnowledgeRepresentation knowledgeRepresentation; 
6. private PerformanceMeasure performanceMeasure; 
7. // Getters and Setters 
8.     …  
9. public void startTrainingProcess(){ 
10.  trainingExperience.buildTrainingExperience(); 
11.  learningAlgorithm.execute(trainingExperience); 
12. } 
13. } 

 
The knowledge is modeled in the class ExponentialSmoothing and is a specialization of 
the class KnowledgeRepresentation. The method predictNextPrice (line 5) implements 
the algorithm called Exponential Smoothing [Bowerman et al. 2004] to predict the next 
price: 

PredictedAskPrice(n)= �*AskPrice(n-1) + (1 - �)*PredictedAskPrice(n-1) 
where � is a number between 0 and 1; and n is the n-th game instance. 

 
 
1. public class ExponentialSmoothing extends KnowledgeRepresentation { 
2. private double lastPrediction; 
3. private double alpha; 
4. private double price; 
5. public double predictNextPrice(){ 
6.   double nextPrice = price*alpha + (1-alpha)*lastPrediction; 
7.   lastPrediction = nextPrice; 
8.   return(nextPrice); 
9. } 
10. public void updateParameter(double alpha){ 
11.   this.alpha=alpha; 
12. } 
13. public void updatePrice(double price){ 
14.   this.price=price; 
16. } 
17. } 
 

The class BuildTrainingExamples is a specialization of TrainingExperience, and 
implements the process of building the training examples used by the learning 
algorithm. The method buildTrainingExperience (line 3) queries a database with the 
2003 competition auction prices, and store these price sequences in to the 
askPriceHstory (line 2) vector.  
 
1. public class BuildTrainingExamples extends TrainingExperience { 
2. public Vector askPriceHistory; 
3. public void buildTrainingExperience() { 
4.   // JDBC code 
5.       … 



6. } 
7. } 
 

The Price Predictor Agent uses a Least Mean Squares (LMS) learning algorithm to 
adapt the value of alpha in the knowledge. The class LMSLearningAlgorithm class is a 
specialization of the class LearningAlgorithm, and has a method called train (line 11) 
that implements the LMS algorithm. 
 
1. public class LMSLearning extends LearningAlgorithm { 
2. private BuildTrainingExamples bte; 
3. private ExponentialSmoothing es; 
4. private double alpha; 
5. private double lastAlpha; 
6. private double beta; 
7. private double predictedPrice; 
8. private double lastAskPrice; 
9. es.updateParameter(20); 
10. alpha=20; 
11. public void train() { 
12.   for(int i=0;i<bte.askPriceHistory.size();i++){ 
13.     lastAskPrice=  
14.        ((Double)bte. askPriceHistory.elementAt(i)).doubleValue(); 
15.      es.updatePrice(lastAskPrice); 
16.      predictedPrice = es.predictNextPrice(); 
17.      lastAlpha=alpha; 
18.      alpha=lastAplha+(beta*(lastAskPrice-predictedPrice)); 
19.  } 
20. } 
 

This class ErrorEvaluation is a specialization of the class PerformanceMeasure, and is 
used by the class LeaningProperty to calculate the error between the predicted price and 
actual ask price. The method calculateError (line 5) implements this calculation. 
 
1. public class ErrorEvaluation extends PerformanceMeasure { 
2. private double predictedPrice; 
3. private double askPrice; 
4. private double error; 
5. public void calculateError() { 
6.  error = Math.abs(predictedPrice-askPrice)/askPrice; 
7. } 
8. … 
9. } 

    

Consequences 
Uniformity and Generality. The Learning pattern provides a uniform solution that is 
general enough to support all the machine learning techniques. 
Reusability. The pattern modularizes a generic design for the learning property, which 
can be reused and refined to different contexts and applications. 
Improved Separation of Concerns. The learning property is entirely separated from 
other agency concerns such as interaction and autonomy. 
Straightforward implementation. The pattern presents an easy mapping of the Agent’s 
Goal Learning Problem and the Agent Learning Model to an object-oriented design and 
implementation. 

Known Uses 
A design for introducing machine learning algorithms is presented in chapter 1 (section 
1.2.5) of the book Machine Learning [Mitchell 1997]. Four modules are presented in the 
design: (i) the Performance System – module to solve the given performance task. It 
takes an instance of a new problem as input an produces a trace of its solution; (ii) the 
Critic – takes as input the history or trace of the solution and produces as output a set of 
training examples; (iii) the Generalizer – takes as input the training examples and 



produces an output hypothesis; (iv) the Experiment Generator – takes as input the 
current hypothesis and outputs a new problem for the Performance System to explore. 
In our design pattern, the critic module can be coded in the class Training Experience, 
and the Generalizer is coded in the class LearningAlgorithm. The module Experiment 
Generator has to be included in the class Agent, and is the module that starts the training 
process. The only module that does not have a direct mapping is the Performance 
System. Actually, the code of this module is coded in the class PerformanceMeasure 
and another part is coded in the class TrainingExperience. 

The Agent Learning Design Pattern has been used in four implementations: (a) a 
multi agent system [Milidiú et al. 2001] [Sardinha 2001] that uses evolutionary 
techniques to build offerings in a retail market (b) an agent system [Sardinha et al. 
2003b] that learns to play Tic-Tac-Toe with no prior knowledge; (c) a multi agent 
system for the Trading Agent Competition (TAC) [Sardinha et al. 2004], and (d) a multi 
agent system for managing the paper submission and selection process in workshops 
and conferences [Garcia 2004]. 

Related Patterns 
Learning Aspect. [Garcia et al 2004b] The Learning Property entity can be 
implemented as an aspect [Kiczales 1997] and improve the separation of concerns 
[Garcia et al. 2004a] [Garcia 2004] [Garcia et al. 2004c]. A LearningProperty aspect can 
be used to replace the LearningProperty class, and it can connect the executions points 
(events) on different agents classes, and identify when the learning process should be 
triggered. These are some of the additional advantages of using the aspect-oriented 
variant of the Learning pattern: (i) transparency – the use of aspects turns out to be an 
elegant and powerful approach  to introduce the learning behavior into agent classes in a 
transparent way [Garcia et al 2004b] [Milidiú et al 2001]; the description of which agent 
classes need to be affected is present in the aspect and the monitored classes are not 
modified; (ii) ease of evolution - as the MAS evolves, new agent classes may have to be 
monitored and trigger the learning process; MAS developers only need to add new 
pointcuts in the Learning Property aspect in order to implement the new required 
functionality. 
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