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Abstract.

The METEOR Automatic Metric for Machine Translation evaluation, originally
developed and released in 2004, was designed with the explicit goal of producing
sentence-level scores which correlate well with human judgments of translation
quality. Several key design decisions were incorporated into METEOR in support
of this goal. In contrast with IBM’s BLEU, which uses only precision-based features,
METEOR uses and emphasizes recall in addition to precision, a property that has
been confirmed by several metrics as being critical for high correlation with human
judgments. METEOR also addresses the problem of reference translation variability
by utilizing flexible word matching, allowing for morphological variants and syn-
onyms to be taken into account as legitimate correspondences. Furthermore, the
feature ingredients within METEOR are parameterized, allowing for the tuning of the
metric’s free parameters in search of values that result in optimal correlation with
human judgments. Optimal parameters can be separately tuned for different types
of human judgments and for different languages. We discuss the initial design of the
METEOR metric, subsequent improvements, and performance in several independent
evaluations in recent years.

1. Introduction

Evaluation of MT systems can be made faster, simpler, and less expen-
sive by using automatic metrics in place of trained human evaluators.
IBM’s BLEU metric (Papineni et al., 2002) has been the most widely
used automatic metric in recent years. BLEU is fast, easy to run,
and can be used as a target function in parameter optimization train-
ing methods commonly used in state-of-the-art statistical M'T systems
(Och, 2003). While popular, weaknesses have been noted in BLEU in
recent years, most notably the lack of reliable sentence-level scores.
METEOR, along with other metrics such as GTM (Melamed et al.,
2003), TER (Snover et al., 2006) and CDER (Leusch et al., 2006), were
developed specifically to address these weaknesses identified in BLEU.

First developed and released in 2004, METEOR was explicitly de-
signed with the goal of possessing high-levels of correlation with human
judgments of MT output quality at the sentence level. To a large ex-
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tent, METEOR is based on measures of lexical similarity between an
MT translation that is being evaluated (the hypothesis) and reference
translations for the same source sentence. To measure this similar-
ity, METEOR establishes an explicit word-to-word matching between
each MT hypothesis and one or more reference translations. One key
innovation of METEOR has been its addressing of translation variabil-
ity. Since the same meaning can be reflected using different lexical
choices, the word-to-word matcher used by METEOR can match not only
exact words, but also morphological variants and synonyms. Similar
approaches for flexible matching were later adopted by other automatic
metrics. These unigram matches, based on surface forms, word stems,
and word meanings (Banerjee and Lavie, 2005), form an alignment
between the hypothesis and the reference. All possible alignments are
scored based on a combination of features including unigram-precision,
unigram-recall, and fragmentation with respect to the reference. The
best scoring alignment among all possible alignments over all reference
translations is selected to derive the segment-level score. The component
statistics for this score are then used in the calculation of the aggregate
system-level score for the full test set.

One early observation that motivated the design of METEOR was the
importance of recall as a metric component (Lavie et al., 2004). Other
metrics have since confirmed this critical importance and incorporated
recall as a metric component. Another key innovation in METEOR is the
ability to tune free parameters within the metric in order to optimize
correlation with various forms of human judgments and for various
languages (Lavie and Agarwal, 2007).

This paper describes the motivation and development of the ME-
TEOR metric. We include results from several independent evaluations
from recent years that compare the performance of METEOR against
other automatic metrics. We end the paper with an overview of the cur-
rent and future work planned for the metric. All versions of METEOR are
available for download at: http://www.cs.cmu.edu/~alavie/METEOR/.

2. Weaknesses of the BLEU Metric Addressed by METEOR

The main principles that underline the development of METEOR arose
from a number of observations of potential weaknesses in the BLEU
metric (Papineni et al., 2002). BLEU is based on the concept of n-gram
precision over multiple reference translations. n-grams (consecutive sub-
strings) from each MT hypothesis are checked against a set of reference
translations, and precision is calculated as the fraction of n-grams which
can be matched in the reference translations out of the total number
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of n-grams in the hypothesis. This is performed for n-grams ranging
in length from one to n. Precision is calculated independently for each
n-gram order and combined into a single score through geometric aver-
aging. BLEU does not directly measure recall, the fraction of matched
n-grams in the hypothesis out of the total number of n-grams in the
reference translation. The notion of recall in BLEU is not well defined,
since  BLEU was designed to match against multiple reference trans-
lations simultaneously. BLEU compensates for lack of recall with a
Brewvity Penalty which lowers the scores of hypotheses that are signifi-
cantly shorter than the reference translations (thus artificially inflating
precision scores).

Although the BLEU metric is widely used and has greatly driven
progress in statistical MT, it suffers from several weaknesses which we
specifically aimed to address in the design of our METEOR metric:

— Lack of Recall: Our early experiments (Lavie et al., 2004) led us
to believe that the lack of recall within BLEU was a significant
weakness, and that the “Brevity Penalty” in the BLEU metric
does not adequately compensate for the lack of recall. It has since
been demonstrated by several evaluations of metrics that recall
strongly correlates with human judgments of translation quality,
and that recall is thus an extremely important feature component
in automatic metrics (Lavie et al., 2004).

— Use of Higher Order N-grams for Fluency and Gram-
maticality: BLEU uses higher order n-grams to encapsulate and
indirectly measure fluency and grammaticality in translation hy-
potheses. We conjectured that flexible matching of unigrams was
sufficient for assessing lexical similarity, and that a direct measure
of reordering between hypothesis and reference can better capture
the notions of fluency and grammaticality and can be incorporated
as a feature in automatic metrics.

— Use of Geometric Averaging of N-grams: Geometric aver-
aging of n-gram scores produces a zero result whenever any of
the individual n-gram scores are zero. As a result, sentence-level
BLEU scores are highly unreliable. Although the BLEU metric
was designed to be used on entire test sets, sentence-level scores
are extremely useful for making fine-grained distinctions between
systems. METEOR was thus designed to be a robust, sentence-level
metric.
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3. Design of the METEOR Metric

3.1. THE METEOR MATCHER

METEOR evaluates a translation hypothesis by computing a score based
on an explicit word-to-word matching between a hypothesis and a given
reference translation. If multiple references are provided, the hypothesis
is scored against each independently and the best scoring pair is used
(Banerjee and Lavie, 2005).

For each translation pair, the Matcher creates a word alignment be-
tween the hypothesis string and reference string incrementally through
a sequence of stages, each corresponding to one of METEOR's word-
mapping modules:

— Exact: Words are matched based only on surface forms; a match
is made if and only if the two words are identical.

— Stem: Words are stemmed using a Snowball Stemmer (Porter,
2001). Two words match if they have identical stems.

— Synonymy: Words are matched if they are synonyms of one an-
other. Words are considered synonymous if they share any synonym
sets according to an external database. For English, we use the
WordNet database (Miller and Fellbaum, 2007).

Each stage begins with the identification of all possible unigram
mappings between the two strings using the specified module. The
largest subset of these mappings is then selected such that every word
in each string maps to at most one word in the other string. If more
than one such alignment is found, the Matcher selects the alignment
which best preserves word order (fewest “crossing” unigram mappings).
This process is implemented via greedy search with a limit on maximum
number of computations.

At the conclusion of each stage, the aligned words are fixed so that
any subsequent module considers only words unaligned in previous
stages. By default the Exact, Stem, and Synonymy modules are called
in order.

3.2. THE METEOR SCORER

Once a final alignment exists between a hypothesis and a reference
translation, the METEOR score is produced as follows. Based on the
total number of mapped unigrams found between the two strings across
all module stages (m), the total number of unigrams in the hypothesis
(t) and the total number of unigrams in the reference (r), we calculate
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unigram precision P = m/t and unigram recall R = m/r. We then
compute a parametrized harmonic mean of P and R (van Rijsbergen,
1979):
I B P-R
meen T q P4+ (1—a)-R

Our precision, recall, and Fmean are all based on single-word matches.
To account for preservation of word order, a fragmentation penalty is
computed as follows. First, the sequence of matched unigrams between
the two strings is divided into the smallest number of “chunks” such that
matched unigrams in each chunk are adjacent (in both strings) and in
identical order. The counts of chunks (ch) and matches (m) are then
used to calculate a fragmentation fraction: frag = ch/m. The penalty
is then computed as:

Pen =~ - fragﬁ

The value of v determines the maximum penalty (0 < v < 1). The
value of 3 determines the functional relation between fragmentation
and the penalty. Finally, the METEOR score for the alignment between
the two translations is calculated as:

score = (1 — Pen) - Fyean

METEOR assigns a score between 0 and 1 to each individual seg-
ment. In addition, aggregate counts of matches (m), test unigrams (t),
reference unigrams (r), and chunks (ch) are collected for the entire test
set. The above formulas are then applied to these counts to calculate
the system level Fiean, Pen, and METEOR score.

3.3. FREE PARAMETERS

METEOR currently uses three free parameters when calculating final
scores: one for controlling the relative weights of precision and recall
in the Fmean score («), one for controlling the shape of the penalty as
function of fragmentation (3), and one for the relative weight assigned
to the fragmentation penalty (7).

The values of the above parameters were initially set to a = 0.9,
£ = 3.0 and v = 0.5 (Banerjee and Lavie, 2005). The following section
describes the adjustment of these parameters to improve correlation
with human judgment.
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Table I. Optimal Values of Tuned
Parameters for English

Adequacy Fluency Sum

o 0.82 0.78  0.81
3 1.0 0.75  0.83
v 0.21 0.38  0.28

4. Tuning and Extending METEOR

4.1. OPTIMIZING FOR ADEQUACY AND FLUENCY JUDGMENTS

In 2007, we investigated tuning the free parameters in METEOR based
on several available data sets to find an optimal set of parameters which
maximized correlation with human judgments. We first explored tuning
to “adequacy” and “fluency” quantitative scores, both separately and in
conjunction (Lavie and Agarwal, 2007).

For English, we used the NIST 2003 Arabic-to-English MT evalua-
tion data for tuning and the 2004 Arabic-to-English data for testing.
For optimization in Spanish, French, and German, described in the
following section, we used the WMT 2006 evaluation data.! Scores from
data sets with multiple human judgments per translation hypothesis
were combined by taking their average. All judgments were normalized
using the method described in (Blatz et al., 2003), so that judgment
scores would have similar distributions, thus minimizing human bias.

We conducted a “hill climbing” search to find parameter values which
achieve maximum correlation with human judgments on the training
data, using Pearson’s correlation coefficient as our measure of correla-
tion. We used a “leave one out” training procedure in order to avoid
over-fitting. When n systems were available for a particular language,
we trained the parameters n times, leaving one system out in each
training, and pooling the segments from all other systems. The final
parameter values were calculated as the mean of the n sets of trained
parameters that were obtained. When evaluating a set of parameters on
test data, we compute segment-level correlation with human judgments
for each of the systems in the test set and then report the mean over
all systems.

We tuned parameters to maximize correlation with adequacy and
fluency separately, as well as tuning to a sum of the two. The opti-

1 Corpus statistics omitted for lack of space, see (Lavie and Agarwal, 2007) for
additional information
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mal parameter values for English, shown in Table I, are all lower than
the original metric parameters. The alpha, beta, and gamma tuned to
adequacy-fluency sums are used in versions 0.6 and 0.7 of METEOR.
The result is a measurable improvement in correlation with human
judgment on both training and test data. Bootstrap sampling indi-
cates that the differences in correlation are all statistically significant
at the 95% level.? We observed that precision receives noticeably more
weight when tuning to fluency judgments than when tuning to adequacy
judgments, though recall is always weighted more than precision. The
value of gamma is higher for fluency optimization, which increases the
fragmentation penalty. This reflects the fact that correct word ordering
is more important for fluency.

4.2. METEOR FOR DIFFERENT LANGUAGES

As the stemmers used by METEOR already include support for other
European languages and MT evaluations such as NIST and WMT pro-
vide human judgment data in these languages, we were able to train
METEOR systems for additional languages with both the surface form
and stemming modules.

Using the WMT 2006 data, we conducted similar tuning experiments
on Spanish, French, and German. Again, we optimized parameters to
adequacy, fluency and a sum of the two, producing the values listed
in Table II. In each case, the final parameters were quite different from
those obtained for English, and using these new language-tuned param-
eters to score translations in their respective languages resulted in better
Pearson correlation levels compared to the original English parameters
(Lavie and Agarwal, 2007). The parameters tuned to adequacy-fluency
sums are used in versions 0.6 and 0.7 of METEOR for French, German,
and Spanish.

4.3. OPTIMIZING FOR RANKING JUDGMENTS

(Callison-Burch et al., 2007) reported that inter-coder agreement on
the task of assigning ranks to translation hypotheses was much higher
than agreement on the task of assigning a numeric score to a single
hypothesis. This led to the adoption of ranking judgments in WMT
2008 and the increased availability of these judgments for metric tun-
ing. We decided to retrain METEOR to optimize correlation with these
ranking judgments. This required computing full rankings according to
the metric and the human judges and computing a suitable correlation
measure. As METEOR assigns a score between zero and one to each

2 For details on correlation levels, see (Lavie and Agarwal, 2007)
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Table II. Optimal Values of Tuned Parame-
ters Across Languages

Adequacy Fluency Sum

French: « 0.86 0.74 0.76
8 0.5 0.5 0.5

~ 1.0 1.0 1.0

German: « 0.95 0.95 0.95
8 0.5 0.5 0.5

¥ 0.6 0.8 0.75

Spanish: a 0.95 0.62 0.95
B 1.0 1.0 1.0

5 0.9 1.0 0.98

hypothesis, we can obtain a ranking by ordering a list of hypotheses
by their METEOR scores. Human rankings are available as binary judg-
ments which create independent rankings for hypothesis pairs. In some
cases, both hypotheses are judged to be equal. To obtain full rankings,
we process the data in the following way:

1. Remove all equal judgments.

2. Construct a directed graph with nodes corresponding to translation
hypotheses and edges corresponding to binary judgments between
hypotheses.

3. Execute a topological sort on the directed graph, assigning ranks in
the sort order. Cycles are broken by assigning the same rank to all
nodes in the cycle.

To measure correlation, we compute the Spearman correlation be-
tween the human rankings and the METEOR rankings corresponding to
each single source sentence (Ye et al., 2007). A final score is obtained
by averaging the Spearman correlations for the individual sentences.

We used the human judgment data from the WM'T 2007 shared eval-
uation task to tune our metric.? In cases where multiple judgments were
available, we considered the judgment given by the majority of judges.
We performed an exhaustive grid search of the feasible parameter space
to maximize correlation over the training data (Agarwal and Lavie,

3 Judgment data statistics omitted for lack of space, see (Agarwal and Lavie,
2008) for additional information
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Table III. Optimal Values of Tuned Parame-
ters for Ranking

English  German French Spanish

o} 0.95 0.90 0.90 0.90
8 0.5 3.0 0.5 0.5
¥ 0.45 0.15 0.55 0.55

Table IV. Average Spearman Cor-
relation with Human Rankings for
METEOR on Development Data

Original ~Re-tuned

English 0.3813 0.4020
German 0.2166 0.2838
French 0.2992 0.3640
Spanish 0.2021 0.2186

2008). Using 3-fold cross-validation, we chose the best performing set
of parameters on the pooled data from all folds.

The optimal parameter values are shown in Table III while the aver-
age Spearman correlations using the original and re-tuned parameters
are compared in Table IV. There is significant improvement for all lan-
guages tested, with particularly significant increases in correlation for
German and French. While recall was already weighted significantly,
it seems that ranking judgments are driven almost entirely by recall
across all the languages. Further, the re-tuned parameters are quite
similar across the languages, with the exception of German.

5. Performance in Open Evaluations

Multiple versions of the METEOR metric have been submitted to recent
MT evaluations for independent analysis of correlation with various
types of human judgments. All versions of METEOR are as described
in Section 3, while versions “meteor-0.6” and “meteor-0.7” are tuned to
adequacy and fluency judgment sums as described in Sections 4.1 and
4.2, and “meteor-rank” is tuned to ranking judgments as in Section 4.3.
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Table V. WMT 2008 Evaluation Task: System-level Correlation
of Metrics with Human Judgments for Translations into English
(Top 5 of 13 Entries)

Rank Constituent Yes/No Overall

meteor-rank .81 .72 77 .76
ULCh .68 .79 .82 .76
meteor-0.7 .77 .75 .74 .75
posbleu 7 .80 .66 .74
pos4gramFmeasure .75 .62 .82 .73

5.1. WMT 2008 EvALUATION TASK

Raw human judgment scores for the WMT 2008 Translation Task sys-
tems were converted into three forms of ranks: the percent of time that
sentences produced were judged better than or equal to those of any
other system, the percent of time that constituent translations were
judged better than or equal to those of any other system, and the
percent of time that constituent translations were judged acceptable
(Callison-Burch et al., 2008). Table V reports the correlation of several
evaluated metrics with these rank judgments using Spearman’s rank
correlation coefficient p.

5.2. WMT 2009 EvaALuAaTION TASK

Similarly to WMT 2008, the raw human judgment scores for the WMT
2009 Translation Task systems were converted into ranking judgments
of adequacy. Table VI reports the correlation of several metrics with
these judgments, using Spearman’s rank correlation coefficient p (Callison-

Burch et al., 2009).

5.3. NIST METRICS MATR 2008

Introduced in 2008, the NIST MetricsMATR Challenge presents a se-
ries of challenge tracks aimed at promoting the development of more
accurate M'T evaluation metrics. For each submitted metric, scores were
computed using single and multiple reference sets separately, and corre-
lation with several types of human judgments was calculated. Table VII
reports the Pearson’s correlation coefficient for three types of human
judgments on the multiple reference track.

In the adequacy task, Evaluators judged how much meaning ex-
pressed in a reference translation was successfully captured by a hy-

meteor-mtj-2009.tex; 22/09/2009; 19:10; p.10



11

Table VI. WMT 2009 Evaluation Task: System-level Correlation of
Metrics with Human Judgments for Translations into English (Top
8 of 19 Entries)

de-en fr-en es-en cz-en hu-en Average

ulc .78 .92 .86 1.0 .60 .83
maxsim .76 91 .98 .70 .66 .80
rte (absolute) .64 91 .96 .60 .83 .79
meteor-rank .64 .93 .96 .70 .54 .75
rte (pairwise) .76 .59 .78 .80 .83 .75
terp -.72 -89  -94 -.70 -.37 -.72
meteor-0.6 .56 .93 .87 .70 .54 .72
meteor-0.7 .55 .93 .86 .70 .26 .66

Table VII. MATR 2008 Pearson’s Correlation for Top Performing Metrics Across
Categories in Multiple Reference Track (10 of 39 Entries)

Segment Level System Level

Adequacy Yes/No Pairwise Adequacy Yes/No Pairwise

meteor-0.7 0.737 0.559 0.373 0.874 0.849 0.681
meteor-0.6 0.733 0.582 0.368 0.848 0.845 0.676
Terp -0.722 -0.595 -0.371 -0.866 -0.861 -0.705
CDer -0.720 -0.555 -0.345 -0.904 -0.834 -0.68
BleuSP 0.687 0.582 0.360 0.849 0.857 0.703
meteor-rank 0.710 0.580 0.357 0.849 0.851 0.683
SVM-Rank 0.718 0.576 0.385 0.844 0.860 0.707
LET 0.678 0.495 0.381 0.920 0.792 0.684
ATEC3 0.647 0.493 0.358 0.923 0.782 0.660
SEPIA1 0.653 0.531 0.358 0.900 0.862 0.716

pothesis, assigning a score from 1 (none) to 7 (all). This was followed
by a binary judgment of whether or not a hypothesis meant essentially
the same as the reference. In a pair-wise ranking task, judges were
asked which of two hypotheses they preferred given a reference, with
an option for no preference. Detailed analyses and results of additional
evaluation tasks can be found in the official results for Metrics MATR
2008 (Przybocki et al., 2008).
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6. Discussion and Ongoing Work

6.1. FLEXIBLE MATCHING

As mentioned in previous sections, the METEOR matcher creates a
word-level alignment between two sentences, matching surface forms,
shared stems, or synonyms. This matcher can also be used as a “stand-
alone” component, and can be incorporated into other metrics, systems,
and applications. One concrete example of such an application is MT
system combination. MT system combination aims to combine the out-
put generated by multiple MT systems operating on the same input,
with the goal of producing translations that are superior to all of the
original MT systems. The system combination approach described by
(Heafield et al., 2009) does this by creating alignments between trans-
lation hypotheses from various systems and selecting phrases based
on the alignments. Using the METEOR flexible matcher, this system
can better align hypotheses from systems which are prone to different
vocabulary selection, and can use features based on these alignments
when constructing synthetic combined hypotheses.

6.2. CURRENT WORK

In May 2009, we released a reimplemented version of METEOR that is
much faster and specifically tailored to support Minimum Error Rate
Training (MERT) for MT systems in both traditional or distributed
environments. Other improvements beyond the versions discussed in
this paper include:

Length Penalty: METEOR now supports a length cost intended to
prevent exceedingly long hypotheses with high recall but low precision
from receiving excessively high scores. An acceptable length envelope
is implemented as a parametric function of the length of the refer-
ence translation, and if multiple references are available, is applied on
a per-reference basis. Current work includes fine tuning the function
parameters to yield the best cost function to guide system tuning.
Generic Synonymy: The synonymy module has been redesigned to
support a generic synonymy source consisting of a list of synonymy-
sets and a stemmer which produces word forms as they appear in
the synonym-sets. Though we currently use data extracted from the
WordNet database (Miller and Fellbaum, 2007), the module can now
use synonymy data from any source, and can support languages other
than English.
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