
Experiments with a Hindi-to-English Transfer-based
MT System under a Miserly Data Scenario

Alon Lavie, Stephan Vogel, Lori Levin, Erik Peterson, Katharina Probst, Ariadna Font

Llitjós, Rachel Reynolds, Jaime Carbonell

Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, 15213

and

Richard Cohen

University Center for International Studies, University of Pittsburgh, Pittsburgh, PA,

15260

We describe an experiment designed to evaluate the capabilities of our trainable transfer-based
(Xfer ) machine translation approach, as applied to the task of Hindi-to-English translation,
and trained under an extremely limited data scenario. We compare the performance of the Xfer
approach with two corpus-based approaches – Statistical MT (SMT) and Example-based MT

(EBMT) – under the limited data scenario. The results indicate that the Xfer system significantly
outperforms both EBMT and SMT in this scenario. Results also indicate that automatically

learned transfer rules are effective in improving translation performance, compared with a baseline
word-to-word translation version of the system. Xfer system performance with a limited number
of manually written transfer rules is, however, still better than the current automatically inferred
rules. Furthermore, a “multi-engine” version of our system that combined the output of the Xfer
and SMT systems and optimizes translation selection outperformed both individual systems.
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1. INTRODUCTION

Corpus-based Machine Translation (MT) approaches such as Statistical Machine
Translation (SMT) [Brown et al. 1990; Brown et al. 1993; Vogel and Tribble 2002;
Yamada and Knight 2001; Papineni et al. 1998; Och and Ney ] and Example-based
Machine Translation (EBMT) [Brown 1997; Sato and Nagao 1990] have received
much attention in recent years, and have significantly improved the state-of-the-art
of Machine Translation for a number of different language pairs. These approaches
are attractive because they are fully automated, and require orders of magnitude

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 1529-3785/2004/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, January 2004, Pages 1–0??.



2 · Alon Lavie et al.

less human labor than traditional rule-based MT approaches. However, to achieve
reasonable levels of translation performance, the corpus-based methods require very
large volumes of sentence-aligned parallel text for the two languages – on the order
of magnitude of a million words or more. Such resources are only currently available
for only a small number of language pairs. While the amount of online resources
for many languages will undoubtedly grow over time, many of the languages spoken
by smaller ethnic groups and populations in the world will not have such resources
within the forseeable future. Corpus-based MT approaches will therefore not be
effective for such languages for some time to come.

Our MT research group at Carnegie Mellon, under DARPA and NSF funding,
has been working on a new MT approach that is specifically designed to enable
rapid development of MT for languages with limited amounts of online resources.
Our approach assumes the availability of a small number of bi-lingual speakers of
the two languages, but these need not be linguistic experts. The bi-lingual speakers
create a comparatively small corpus of word aligned phrases and sentences (on the
order of magnitude of a few thousand sentence pairs) using a specially designed
elicitation tool. From this data, the learning module of our system automatically
infers hierarchical syntactic transfer rules, which encode how constituent structures
in the source language transfer to the target language. The collection of transfer
rules is then used in our run-time system to translate previously unseen source
language text into the target language. We refer to this system as the “Trainable
Transfer-based MT System”, or in short the Xfer system.

The DARPA-sponsored “Surprise Language Exercise” (SLE) of June 2003 pro-
vided us with a golden opportunity to test out the capabilities of our approach.
The Hindi-to-English system that we developed in the course of this exercise was
the first large-scale open-domain test for our system. Our goal was to compare
the performance of our Xfer system with the corpus-based SMT and EBMT ap-
proaches developed both within our group at Carnegie Mellon, and by our col-
leagues elsewhere. Common training and testing data were used for the purpose
of this cross-system comparison. The data was collected throughout the SLE dur-
ing the month of June 2003. As data resources became available, it became clear
that the Hindi-to-English was in fact not a “limited-data” situation. By the end of
the SLE, over 1.5 million words of parallel Hindi-English text had been collected,
which was sufficient for development of basic-quality SMT and EBMT systems.
In a common evaluation conducted at the end of the SLE, the SMT systems that
participated in the evaluation outperformed our Xfer system, as measured by the
NIST automatic MT evaluation metric [Doddington 2003]. Our system received a
NIST score of 5.47, as compared with the best SMT system, which received a score
of 7.61.

Our intention, however, was to test our Xfer system under a far more limited
data scenario than the one that had developed by the end of the SLE ([Nirenburg
1998; Sherematyeva and Nirenburg 2000; Jones and Havrilla 1998]). We there-
fore designed an “artificial” extremely limited data scenario, where we limited the
amount of available training data to about 50 thousand words of word-aligned par-
allel text that we had collected during the SLE. We then designed a controlled
experiment in order to compare our Xfer system with our in-house SMT and
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Fig. 1. Architecture of the Xfer MT System and its Major Components

EBMT systems under this limited data scenario. The design, execution and results
of this experiment are the focus of this paper. The results of the experiment indi-
cate that under these extremely limited training data conditions, when tested on
unseen data, the Xfer system significantly outperforms both EBMT and SMT.
Several different versions of the Xfer system were tested. Results indicated that
automatically learned transfer rules are effective in improving translation perfor-
mance, compared with a baseline word-to-word translation version of our system.
System performance with a limited number of manually written transfer rules was,
however, still better than the current automatically inferred rules. Furthermore, a
“multi-engine” version of our system that combined the output of the Xfer and
SMT systems and optimizes translation selection outperformed both individual sys-
tems.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the Xfer system and its components. Section 3 describes the elicited
data collection for Hindi-English that we conducted during the SLE, which provided
the bulk of training data for our limited data experiment. Section 4 describes the
specific resources and components that were incorporated into our Hindi-to-English
Xfer system. Section 5 then describes the controlled experiment for comparing the
Xfer , EBMT and SMT systems under the limited data scenario, and the results
of this experiment. Finally, Section 6 describes our conclusions and future research
directions.

2. TRAINABLE TRANSFER-BASED MT OVERVIEW

The fundamental principles behind the design of our Xfer approach for MT are
that it is possible to automatically learn syntactic transfer rules from limited
amounts of word-aligned data, that such data can be elicited from non-expert
bilingual speakers of the pair of languages, and that the rules learned are use-
ful for machine translation between the two languages. We assume that one of
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the two languages involved is a “major” language (such as English or Spanish) for
which significant amounts of linguistic resources and knowledge are available.

The Xfer system consists of four main sub-systems: elicitation of a word aligned
parallel corpus; automatic learning of transfer rules; the run time transfer system;
and a statistical decoder for selection of a final translation output from a large lattice
of alternative translation fragments produced by the transfer system. Figure 1
shows how the four sub-systems are used in a configuration in which the translation
is from a limited-resource source language into a major target language, such as
English.

2.1 Elicitation of Word-Aligned Parallel Data

The purpose of the elicitation sub-system is to collect a high quality, word aligned
parallel corpus. A specially designed user interface was developed to allow bilingual
speakers to easily translate sentences from a corpus of the major language (i.e.
English) into their native language (i.e. Hindi), and to graphically annotate the
word alignments between the two sentences. Figure 2 contains a snap-shot of the
elicitation tool, as used in the translation and alignment of an English sentence into
Hindi. The informant must be bilingual and literate in the language of elicitation
and the language being elicited, but does not need to have knowledge of linguistics
or computational linguistics.

The word-aligned elicited corpus is the primary source of data from which trans-
fer rules are inferred by our system. In order to support effective rule learning,
we designed a “controlled” English elicitation corpus. The design of this corpus
was based on elicitation principles from field linguistics, and the variety of phrases
and sentences attempts to cover a wide variety of linguistic phenomena that the
minor language may or may not possess. The elicitation process is organized along
“minimal pairs”, which allows us to identify whether the minor languages possesses
specific linguistic phenomena (such as gender, number, agreement, etc.). The sen-
tences in the corpus are ordered in groups corresponding to constituent types of
increasing levels of complexity. The ordering supports the goal of learning com-
positional syntactic transfer rules. For example, simple noun phrases are elicited
before prepositional phrases and simple sentences, so that during rule learning,
the system can detect cases where transfer rules for NPs can serve as components
within higher-level transfer rules for PPs and sentence structures. The current con-
trolled elicitation corpus contains about 2000 sentences. It is by design very limited
in vocabulary. A more detailed description of the controlled elicitation corpus, the
elicitation process and the interface tool used for elicitation can be found in [Probst
et al. 2001], [Probst and Levin 2002].

2.2 Automatic Transfer Rule Learning

The rule learning system takes the elicited, word-aligned data as input. Based on
this information, it then infers syntactic transfer rules. The learning system also
learns the composition of transfer rules. In the compositionality learning stage, the
learning system identifies cases where transfer rules for “lower-level” constituents
(such as NPs) can serve as components within “higher-level” transfer rules (such
as PPs and sentence structures). This process generalizes the applicability of the
learned transfer rules and captures the compositional makeup of syntactic corre-
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Fig. 2. The Elicitation Interface as Used to Translate and Align an English Sentence into Hindi

spondences between the two languages. The output of the rule learning system is a
set of transfer rules that then serve as a transfer grammar in the run-time system.
The transfer rules are comprehensive in the sense that they include all information
that is necessary for parsing, transfer, and generation. In this regard, they differ
from ‘traditional’ transfer rules that exclude parsing and generation information.
Despite this difference, we will refer to them as transfer rules.

The design of the transfer rule formalism itself was guided by the consideration
that the rules must be simple enough to be learned by an automatic process, but also
powerful enough to allow manually-crafted rule additions and changes to improve
the automatically learned rules.

The following list summarizes the components of a transfer rule. In general, the
x-side of a transfer rules refers to the source language (SL), whereas the y-side
refers to the target language (TL).

—Type information: This identifies the type of the transfer rule and in most
cases corresponds to a syntactic constituent type. Sentence rules are of type S,
noun phrase rules of type NP, etc. The formalism also allows for SL and TL type
information to be different.

—Part-of speech/constituent information: For both SL and TL, we list a
linear sequence of components that constitute an instance of the rule type. These
can be viewed as the ‘right-hand sides’ of context-free grammar rules for both
source and target language grammars. The elements of the list can be lexical
categories, lexical items, and/or phrasal categories.

—Alignments: Explicit annotations in the rule describe how the set of source
language components in the rule align and transfer to the set of target language
components. Zero alignments and many-to-many alignments are allowed.

—X-side constraints: The x-side constraints provide information about features
and their values in the source language sentence. These constraints are used at
run-time to determine whether a transfer rule applies to a given input sentence.
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;; PASSIVE SIMPLE PRESENT

VP::VP : [V V Aux] -> [Aux being V]

(

(X1::Y3)

((x1 form) = part)

((x1 aspect) = perf)

((x2 form) = part)

((x2 aspect) = imperf)

((x2 lexwx) = ’jAnA’)

((x3 lexwx) = ’honA’)

((x3 tense) = pres)

((x0 tense) = (x3 tense))

(x0 = x1)

((y1 lex) = be)

((y1 tense) = pres)

((y3 form) = part)

)

Fig. 3. A transfer rule for present tense verb sequences in the passive voice

—Y-side constraints: The y-side constraints are similar in concept to the x-
side constraints, but they pertain to the target language. At run-time, y-side
constraints serve to guide and constrain the generation of the target language
sentence.

—XY-constraints: The xy-constraints provide information about which feature
values transfer from the source into the target language. Specific TL words can
obtain feature values from the source language sentence.

For illustration purposes, Figure 3 shows an example of a transfer rule for trans-
lating the verbal elements of a present tense sentence in the passive voice. This
rule would be used in translating the verb sequence bheje jAte hãi (“are being
sent,” literally, sent going present-tense-auxiliary) in a sentence such as Ab-tak patr
.dAk se bheje jAte hãi. (“Letters still are being sent by mail”, literally up-to-now
letters mail by sent going present-tense-auxiliary). The x-side constraints in Fig-
ure 3 show that the Hindi verb sequence consists of a perfective participle (x1),
the passive auxiliary (jAnA, “go”) inflected as an imperfective participle (x2), and
an auxiliary verb in the present tense (x3). The y-side constraints show that the
English verb sequence starts with the auxiliary verb be in the present tense (y1).
The second element in the English verb sequence is being , whose form is invariant
in this context. The English verb sequence ends with a verb in past participial
form (y3). The alignment (X1::Y3) shows that the first element of the Hindi verb
sequence corresponds to the last verb of the English verb sequence.

Rules such as the one shown in Figure 3 can be written by hand or learned
automatically from elicited data. Learning from elicited data proceeds in three
stages: the first phase, Seed Generation, produces initial ‘guesses’ at transfer rules.
The rules that result from Seed Generation are ‘flat’ in that they specify a sequence
of parts of speech, and do not contain any non-terminal or phrasal nodes. The
second phase, Compositionality Learning, adds structure using previously learned
rules. For instance, it learns that sequences such as Det N P and Det Adj N P

can be re-written more generally as NP P as an expansion of PP in Hindi. This
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generalization process can be done automatically based on the flat version of the
rule, and a set of previously learned transfer rules for NPs.

The first two stages of rule learning result in a collection of structural transfer
rules that are context-free – they do not contain any unification constraints that
limit their applicability. Each of the rules is associated with a collection of elicited
examples from which the rule was created. The rules can thus be augmented with
a collection of unification constraints, based on specific features that are extracted
from the elicited examples. The constraints can then limit the applicability of the
rules, so that a rule may “succeed” only for inputs that satisfy the same unification
constraints as the phrases from which the rule was learned. A constraint relaxation
technique known as “Seeded Version Space Learning” attempts to increase the
generality of the rules by identifying unification constraints that can be relaxed
without introducing translation errors. Detailed descriptions of the rule learning
process can be found in [Probst et al. 2003].

2.3 The Runtime Transfer System

At run time, the translation module translates a source language sentence into
a target language sentence. The output of the run-time system is a lattice of
translation alternatives. The alternatives arise from syntactic ambiguity, lexical
ambiguity, multiple synonymous choices for lexical items in the dictionary, and
multiple competing hypotheses from the rule learner.

The runtime translation system incorporates the three main processes involved
in transfer-based MT: parsing of the SL input, transfer of the parsed constituents of
the SL to their corresponding structured constituents on the TL side, and generation
of the TL output. All three of these processes are performed based on the transfer
grammar – the comprehensive set of transfer rules that are loaded into the runtime
system. In the first stage, parsing is performed based solely on the “x” side of the
transfer rules. The implemented parsing algorithm is for the most part a standard
bottom-up Chart Parser, such as described in [Allen 1995]. A chart is populated
with all constituent structures that were created in the course of parsing the SL
input with the source-side portion of the transfer grammar. Transfer and generation
are performed in an integrated second stage. A dual TL chart is constructed by
applying transfer and generation operations on each and every constituent entry
in the SL parse chart. The transfer rules associated with each entry in the SL
chart are used in order to determine the corresponding constituent structure on the
TL side. At the word level, lexical transfer rules are accessed in order to seed the
individual lexical choices for the TL word-level entries in the TL chart. Finally,
the set of generated TL output strings that corresponds to the collection of all TL
chart entries is collected into a TL lattice, which is then passed on for decoding. A
more detailed description of the runtime transfer-based translation sub-system can
be found in [Peterson 2002].

2.4 Target Language Decoding

In the final stage, a statistical decoder is used in order to select a single target lan-
guage translation output from a lattice that represents the complete set of transla-
tion units that were created for all substrings of the input sentence. The translation
units in the lattice are organized according the positional start and end indices of
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the input fragment to which they correspond. The lattice typically contains trans-
lation units of various sizes for different contiguous fragments of input. These
translation units often overlap. The lattice also includes multiple word-to-word
(or word-to-phrase) translations, reflecting the ambiguity in selection of individual
word translations.

The task of the statistical decoder is to select a linear sequence of adjoining but
non-overlapping translation units that maximizes the probability of p(e|f), where
f = f1...fJ is the source sentence and e = e1...eI is the sequence of target language
words. According to Bayes decision rule we have to search for

ê = argmax
e

p(e|f) = argmax
e

p(f |e)p(e) . (1)

The language model p(e) describes how well-formed a target language sentence e
is. We use a standard trigram model:

p(e) =

I∏

1

p(ei|ei−2ei−1) . (2)

The translation probability p(f |e) for the entire target sentence is the product of
the translation probabilities of the individual translation units. We use the so-
called “IBM-1” alignment model [Brown et al. 1993] to train a statistical lexicon.
Phrase-to-phrase translation probabilities are then calculated using this lexicon:

p(f̃ |ẽ) =
∏

j

∑

i

p(fj |ei) , (3)

where the product runs over all words in the source phrase and sum over all words
in the target phrase. For any possible sequence s of non-overlapping translation
units which fully cover the source sentence, the total translation model probability
is then:

p(f |e) =
∏

s

p(f̃ |ẽ) =
∏

s

∏

j

∑

i

p(fsj |esi ) . (4)

The search algorithm considers all possible sequences s in the lattice and cal-
culates the product of the language model probability and the translation model
probability for the resulting sequence of target words. It then selects the sequence
which has the highest overall probability.

As part of the decoding search, the decoder can also perform a limited amount
of re-ordering of translation units in the lattice, when such reordering results in a
better fit to the target language model. Reordering is performed by skipping over
several words in the source sentence, i.e. leaving a gap, translating the word or
phrase further towards the end of the sentence, and filling in the gap afterwards.
The word re-orderings are scored using a Gaussian probability distribution, i.e.
longer movements are less likely than shorter ones, with mean zero and a variance
optimized on a development test set. To keep decoding time limited, we use a beam
search, i.e. partial translation hypotheses which are low scoring compared to the
best scoring hypothesis up to that point are pruned from further consideration.
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3. ELICITED DATA COLLECTION

The data for the limited data scenario consisted entirely of phrases and sentences
that were translated and aligned by Hindi speakers using our elicitation tool. Two
very different corpora were used for elicitation: our typological elicitation corpus
and a set of phrases from the Brown Corpus ([Fra ]) that we extracted from the
Penn Treebank ([Tre ]).

The typological elicitation corpus covers basic sentence and noun phrase types,
moving from simpler to more complex sentences as a linguistic field worker would
do. We use it to insure that at least one example of each basic phenomenon (tense,
agreement, case marking, pronouns, possessive noun phrases with various types of
possessors, etc.) is encountered. However, the elicitation corpus has the shortcom-
ings that we would encounter with any artificial corpus. The vocabulary is limited;
the distribution and frequency of phrases does not reflect what would occur in nat-
urally occurring text; and it does not cover everything that occurs in a natural
corpus.

We would like to have the advantages of a natural corpus, but natural corpora also
have shortcomings. In order to contain enough examples to fill paradigms of basic
phenomena the corpus must be large and in order to contain sufficient examples of
sparse phenomena, it must be very large. Furthermore, we would like to maintain
the convenience of a compositionally ordered corpus, with smaller phrases building
up into larger ones.

As a compromise, we used the Penn TreeBank to extract phrases from the Brown
Corpus. The phrases were extracted from the parsed trees so that they could be
sorted according to their daughter nodes (noun phrases containing only nouns,
noun phrases containing determiners and nouns, etc.) In this way, we obtained a
naturally occurring corpus that was also ordered compositionally.

The 864 phrases and sentences from the typological elicitation corpus were trans-
lated into Hindi by three Hindi speakers working together. After the first 150
sentences we checked the vocabulary, spelling, and word alignments. The Hindi
speakers were then instructed on how to align case markers and auxiliary verbs in
the way that is best for our rule learning system, and completed the translation
and alignment of the corpus in less than 20 hours (resulting in a total of about 60
hours of human labor).

The extraction of phrases from the Brown Corpus resulted in tens of thousands
of noun phrases and prepositional phrases, some containing embedded sentences.
The phrases were first sorted by their complexity, determined by the depth of the
parse-tree of the extracted phrase. They were then divided into files of about 200
phrases per file. The files were distributed to fifteen Hindi speakers for translation
and alignment. After each Hindi speaker had translated about two hundred phrases
(one file), the spelling and grammar were checked. Some non-native speakers were
then eliminated from the pool of translators. Because the Brown Corpus contains
some obscure vocabulary (e.g., names of chemical compounds) and because some
noun phrases and prepositional phrases were not understandable out of context,
the Hindi speakers were instructed to skip any phrases that they couldn’t translate
instantly. Only a portion of the files of extracted data were translated by reliable
informants. The final resulting collection consisted of 85 files, adding up to a total
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Description Morpher Xfer

past participle (tam = *yA*) (aspect = perf) (form = part)

present participle (tam = *wA*) (aspect = imperf) (form = part)

infinitive (tam = *nA*) (form = inf)

future (tam = *future*) (tense = fut)

subjunctive (tam = *subj*) (tense = subj)

root (tam = *0*) (form = root)

Table I. Tense, Aspect, and Mood Features for Morpher and Xfer

of 17,589 translated and word-aligned phrases.
We estimated the total amount of human effort required in collecting, translating

and aligning the elicited phrases based on a sample. The estimated time spent on
translating and aligning a file (of 200 phrases) was about 8 hours. Translation took
about 75% of the time, and alignment about 25%. We estimate the total time spent
on all 85 files to be about 700 hours of human labor.

Our approach requires elicited data to be translated from English into the “mi-
nor” language (Hindi in this case), even though our trained Xfer system performs
translation in the opposite direction. This has both advantages and disadvantages.
The main advantage was our ability to rely on a extensive resources available for
English, such as tree-banks. The main disadvantage was that typing in Hindi was
not very natural even for the native speakers of the language, resulting in some
level of typing errors. This, however, did not pose a major problem because the ex-
tracted rules are mostly generalized to the part-of-speech level. Furthermore, since
the runtime translation direction is from Hindi to English, rules that include incor-
rect Hindi spelling will not match during translation, but will not cause incorrect
translation.

4. HINDI-TO-ENGLISH TRANSFER MT SYSTEM

4.1 Morphology and Grammars

4.1.1 Morphology. The morphology module used by the runtime Xfer system
was the IIIT Morpher [Mor ]. Given a fully inflected word in Hindi, Morpher outputs
the root and other features such as gender, number, and tense. To integrate the
IIIT Morpher with our system, we installed it as a server. The IIIT Morpher uses a
romanized character encoding for Hindi known as Roman-WX. Since the rest of our
system was designed to process Hindi in UTF-8 Unicode encoding, we implemented
an input-output “wrapper” interface with the IIIT Morpher, that converted the
input and output Hindi encoding as needed.

Figure 4 shows a sample of the morphology output, for the word raha (continue,
stay, keep). The lefthand side of the figure shows the raw output of the morphology
system. The righthand side shows our transformation of the Morpher output into
our grammar formalism and feature system. Table I shows the set of features that
Morpher uses for tense, aspect, and mood and the corresponding features that we
mapped them into.

4.1.2 Manually written grammar. A complete transfer grammar cannot be writ-
ten in one month (as in the Surprise Language Exercise), but partial manually
developed grammars can be developed and then used in conjunction with automat-
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Fig. 4. Sample morphology output

ically learned rules, lexicon entries and even other MT engines in a multi-engine
system. During the SLE, we experimented with both hand written grammars and
automatically learned grammars. While the main focus of our research is on de-
veloping automatic learning of transfer rules, the manually developed transfer rule
grammar can serve as an excellent point of comparison in translation evaluations.
Furthermore, as pointed out above, the manual and automatically learned gram-
mars can in fact be complimentary and combined together.

Our grammar of manually written rules has 70 transfer rules. The grammar
includes a rather large verb paradigm, with 58 verb sequence rules, ten recursive
noun phrase rules and two prepositional phrase rules.

The verb sequences that are covered by the rules cover the following tense, as-
pect, and mood categories: simple present, simple past, subjunctive, future, present
perfect, past perfect, future perfect, progressive, past progressive, and future pro-
gressive. Each tense/aspect/mood can be combined with one of the “light” verbs
jAnA (go, to indicate completion), lenA (take, to indicate an action done for one’s
own benefit) or denA, (give to indicate an action done for another’s benefit). Active
and passive voice are also covered for all tense/aspect/moods.

The noun phrase rules include pronouns, nouns, compound nouns, adjectives and
determiners. For the prepositions, the PP rules invert the order of the postposition
and the governed NP and move it at after the next NP. The rules shown in Figure 5
can flip arbitrarily long left branching Hindi NPs into right branching English NPs
as shown in Figure 6.

4.1.3 Automatically learned grammar. In addition to the manually written gram-
mar, we applied our rule-learning module to the corpus of collected NP and PP
phrases, and acquired a grammar of automatically inferred transfer rules. The rules
were learned as described briefly in Section 2 and in greater detail in [Probst et al.
2003].

The learned grammar consists of a total of 327 rules, which are exclusively NP
and PP rules, as inferred from the Penn Treebank elicited data. In a second round
of experiments, we assigned probabilities to the rules based on the frequency of the
rule (i.e. how many training examples produce a certain rule). We then pruned
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{NP,12}

NP::NP : [PP NP1] -> [NP1 PP]

((X1::Y2)

(X2::Y1))

{NP,13}

NP::NP : [NP1] -> [NP1]

((X1::Y1))

{PP,12}

PP::PP : [NP Postp] -> [Prep NP]

((X1::Y2)

(X2::Y1))

Fig. 5. Recursive NP Rules

Hindi NP with left recursion

(jIvana (life) ke (of) eka (one) aXyAya (chapter)):

[np [pp [np [nbar [n jIvana]]] [p ke]] [nbar [adj eka] [n aXyAya]]]

English NP with right recursion

(one chapter of life):

[np [nbar [adj one] [n chapter]] [pp [p of] [np [nbar [n life]]]]]

Fig. 6. Transfer of a Hindi recursive NP into English

NP::NP [ADJ N] -> [ADJ N]

((X1::Y1) (X2::Y2)

((X1 NUM) = (Y2 NUM))

((X2 CASE) = (X1 CASE))

((X2 GEN) = (X1 GEN))

((X2 NUM) = (X1 NUM)))

PP::PP [NP POSTP] -> [PREP NP]

((X2::Y1)

(X1::Y2))

PP::PP [N CONJ NUM N N N POSTP] -> [PREP N CONJ NUM N N N]

((X7::Y1) (X1::Y2) (X2::Y3) (X3::Y4) (X4::Y5) (X5::Y6) (X6::Y7))

Fig. 7. Some Automatically Learned Rules

rules with low probability, resulting in a grammar of a mere 16 rules. The rationale
behind pruning rules is that low-probability rules will produce spurious translations
most of the time, as they fire in contexts where they should not actually apply. In
our experience, rule pruning has very little effect on the translation performance,
but great impact on the efficiency of the system.

Figure 7 shows some rules that were automatically inferred from the training
data. Note that the second rule contains a non-terminal symbol (NP) that was
learned by the compositionality module.
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4.2 Lexical Resources

The transfer engine uses a grammar and a lexicon for translation. The lexicon
contains entries from a variety of sources. The most obvious source for lexical
translation pairs is the elicited corpus itself. The translations pairs can simply
be read off from the alignments that were manually provided by Hindi speakers.
Because the alignments did not need to be 1-to-1, the resulting lexical translation
pairs can have strings of more than one word one either the Hindi or English side
or both.

Another source for lexical entries is the is English-Hindi dictionary provided by
the Linguistic Data Consortium (LDC). The LDC dictionary contains many (as
many as 25) English translations for each Hindi word. Since some of the English
translations are not frequent or are not frequent translations of the Hindi word,
two local Hindi experts “cleaned up” a portion of this lexicon, by editing the list
of English translations provided for the Hindi words, and leaving only those that
were “best bets” for being reliable, all-purpose translations of the Hindi word. The
full LDC lexicon was first sorted by Hindi word frequency (estimated from Hindi
monolingual text) and the cleanup was performed on the most frequent 12% of
the Hindi words in the lexicon. The “clean” portion of the LDC lexicon was then
used for the limited-data experiment. This consisted of 2725 Hindi words, which
corresponded to about 10,000 translation pairs. This effort took about 3 days of
manual labor.

The entries in the LDC dictionary are in root forms (both in English and Hindi).
In order to be able to produce inflected English forms, such as plural nouns, we
‘enhanced’ the dictionary with such forms. The enhancement works as follows: for
each noun in the dictionary (where the part-of-speech tags are indicated in the
original dictionary and cross-checked in the British National Corpus [Leech 1992]),
we create an additional entry with the Hindi word unchanged, and the English
word in the plural form. In addition to the changed English word, we also add
a constraint to the lexical rule indicating that the number is plural. A similar
strategy was applied to verbs: we added entries (with constraints) for past tense,
past participle, gerund (and continuous), as well as future tense entry. The result
is a set of lexical entries associating Hindi root forms to English inflected forms.

How and why do these additional entries work? The transfer engine first runs
each Hindi input word through the morphological analyzer. The Morpher returns
the root form of the word, along with a set of morphological features. The root
form is then matched against the lexicon, and the set of lexical transfer rules that
match the Hindi root are extracted. The morphological features of the input word
are then unified with the feature constraints that appear in each of the candidate
lexical transfer rules, pruning out the rules that have inconsistent features. For
example, assume we are processing a plural noun in Hindi. The root form of the
noun will be used to extract candidate lexical transfer rules from the lexicon, but
only the entry that contains a plural form in English will pass unification and
succeed.

Since we did not have immediate access to an English morphology module, the
word inflections were primarily based on spelling rules. Those rules indicate, for
instance, when to reduplicate a consonant, when to add ‘es’ instead of a simple ‘s’
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for plural, etc. For irregular verb inflections, we consulted a list of English irregular
verbs. With these enhancements, the part of our dictionary derived from the LDC
Hindi-English dictionary contains a total of 23,612 translation pairs.

To create an additional resource for high-quality translation pairs, we used mono-
lingual Hindi text to extract the 500 most frequent bigrams. These bigrams were
then translated into English by an expert in about 2 days. Some judement was
applied in selecting bigrams that could be translated reliably out of context.

Finally, our lexicon contains a number of manually written rules.

—72 manually written phrase transfer rules: a bilingual speaker manually entered
English translation equivalents for 72 common Hindi phrases that were observed
as frequently occurring in development-test data early on during the SLE.

—105 manually written postposition rules: Hindi uses a collection of post-position
words, that generally correspond with English prepositions. A bilingual speaker
manually entered the English translation equivalents of 105 common postposition
phrases (combinations of nouns and the following postpositions), as observed in
development-test data.

—48 manually written time expression rules: a bilingual speaker manually entered
the English translation equivalents of 48 common time expressions, as observed
in development-test data.

4.3 Runtime Configuration

The transfer engine is run in a mode where it outputs all possible (partial) transla-
tions. The result of a transfer instance on a given input sentence is a lattice where
each entry indicates which Hindi words the partial translation spans, and what the
potential English translation is. The decoder then rescores these entries and finds
the best path through the lattice (for more details, see Section 2.4).

Production of the lattice takes place in three passes. Although all possible (par-
tial) translations are output, we have to treat with care the interaction between
the morphology, the grammar rules, and the lexicon. The first pass matches the
Hindi sentence against the lexicon in their full form, before applying morphology.
This is designed especially to allow phrasal lexical entries to fire, where any lexical
entry with more than one Hindi word is considered a phrasal entry. In this phase,
no grammar rules are applied.

Another pass runs each Hindi input word through the morphology module to
obtain the root forms along with any inflectional features of the word. These root
forms are then fed into the grammar rules. Note that this phase takes advantage
of the enhancements in the lexicon, as described in Section 4.2.

Finally, the original Hindi words (in their inflected forms) are matched against
the dictionary, producing word-to-word translations, without applying grammar
rules.

These three passes exhaust the possibilities of matching lexical entries and apply-
ing grammar rules in order to maximize the size of the resulting lattice. A bigger
lattice is generally preferable, as its entries are rescored and low-probability entries
are not chosen by the language model for the final translation.
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5. THE LIMITED DATA SCENARIO EXPERIMENT

5.1 Training and Testing Data

In order to compare the effectiveness of the Xfer system with data-driven MT
approaches (SMT and EBMT) under a scenario of truly limited data resources,
we artificially crafted a collection of training data for Hindi-to-English translation,
that intentionally contained extremely limited amounts of parallel text. The train-
ing data was extracted from the larger pool of resources that had been collected
throughout the SLE by our own group as well as the other participating groups in
the SLE. The limited data consisted of the following resources:

—Elicited Data Corpus: 17,589 word-aligned phrases and sentences from the
elicited data collection described in section 3. This includes both our translated
and aligned controlled elicitation corpus, and also the translated and aligned
uncontrolled corpus of noun phrases and prepositional phrases extracted from
the Penn Treebank.

—Small Hindi-to-English Lexicon: 23,612 “clean” translation pairs from the
LDC dictionary (as described in Section 4.2).

—Small Amount of Manually Acquired Resources: (As described in Sec-
tion 4.2) — 500 most common Hindi bigrams, 72 manually written phrase trans-
fer rules, 105 manually written postposition rules, and 48 manually written time
expression rules.

The limited data setup includes no additional parallel Hindi-English text. The
total amount of bilingual training data was estimated to amount to about 50,000
words.

A small, previously unseen, Hindi text was selected as a test-set for this exper-
iment. The test-set chosen was a section of the data collected at Johns Hopkins
University during the later stages of the SLE, using a web-based interface [JHU
]. The section chosen consists of 258 sentences, for which four English reference
translations are available. An example test sentence can be seen in Figure 8.

5.2 Experimental Testing Configuration

The experiment was designed to evaluate and compare several different configura-
tions of the Xfer system, and the two corpus-based systems (SMT and EBMT),
all trained on the same limited-data resources, and tested on the same test set.

The transfer engine was run in a setting that finds all possible translations that
are consistent with the transfer rules. The transfer engine produces a complete
lattice of all possible partial translations. The lattice is then input into a statistical
decoder. Decoding is performed as described in Section 2.4. We used an English
language model that was trained on 70 million English words. As an additional
functionality, the decoder can perform a limited reordering of arcs during decoding.
At any point in the decoding, arcs that have a start position index of up to four
words ahead are considered, and allowed to be “moved” to the current position in
the output if this improves the overall score of the resulting output string according
to the English language model.

The following systems were evaluated in the experiment:

(1) The following versions of the Xfer system:
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Fig. 8. Example of a Test Sentence and Reference Translations

(a) Xfer with No Grammar: Xfer with no syntactic transfer rules (i.e.
only phrase-to-phrase matches and word-to-word lexical transfer rules, with
and without morphology).

(b) Xfer with Learned Grammar: Xfer with automatically learned syn-
tactic transfer rules, as described in section 4.1.3.

(c) Xfer with Manual Grammar: Xfer with the manually developed syn-
tactic transfer rules, as described in section 4.1.2.

(2) SMT: The CMU Statistical MT (SMT) system [Vogel et al. 2003], trained on
the limited-data parallel text resources.

(3) EBMT: The CMU Example-based MT (EBMT) system [Brown 1997], trained
on the limited-data parallel text resources.

(4) MEMT: A “multi-engine” version that combines the lattices produced by the
SMT system and the Xfer system with manual grammar. The decoder then
selects an output from the joint lattice.

5.3 Experimental Results

Performance of the systems was measured using the NIST scoring metric [Dodding-
ton 2003], as well as the Bleu score [Papineni et al. 2002]. In order to validate
the statistical significance of the differences in NIST and Bleu scores, we applied
a commonly used sampling technique over the test set: we randomly draw 258 sen-
tences independently from the set of 258 test sentences (thus sentences can appear
zero, once, or more in the newly drawn set). We then calculate scores for all sys-
tems on the randomly drawn set (rather than the original set). This process was
repeated 10,000 times. Median scores and 95% confidence intervals were calculated
based on the set of scores.

Table II compares the results of the different systems (with the decoder’s best
reordering window), along with the 95% confidence intervals. Figures 9 and 10 show
the effect of different systems with different reordering windows in the decoder. For
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System BLEU NIST

EBMT 0.058 4.22

SMT 0.102 (+/- 0.016) 4.70 (+/- 0.20)

Xfer no grammar 0.109 (+/- 0.015) 5.29 (+/- 0.19)

Xfer learned grammar 0.112 (+/- 0.016) 5.32 (+/- 0.19)

Xfer manual grammar 0.135 (+/- 0.018) 5.59 (+/- 0.20)

MEMT (Xfer +SMT) 0.136 (+/- 0.018) 5.65 (+/- 0.21)

Table II. System Performance Results for the Various Translation Approaches
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Fig. 9. Results by NIST score

clarity, confidence intervals are graphically shown only for the NIST scores (not for
Bleu), and only for SMT, Xfer with no grammar, and MEMT.

5.4 Discussion of Results

The results of the experiment clearly show that under the specific miserly data
training scenario that we constructed, the Xfer system, with all its variants, sig-
nificantly outperformed the SMT system. While the scenario of this experiment
was clearly and intentionally more favorable towards our Xfer approach, we see
these results as a clear validation of the utility and effectiveness of our transfer
approach in other scenarios where only very limited amounts of parallel text and
other online resources are available. In earlier experiments during the SLE, we
observed that SMT outperformed the Xfer system when much larger amounts of
parallel text data were used for system training. This indicates that there exists a
data “cross-over point” between the performance of the two systems: given more
and more data, SMT will outperform the current Xfer system. Part of future work
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Fig. 10. Results by BLEU score

will be to first determine this cross-over point and then to attempt to push this
point further toward scenarios where more data is given, thus making the Xfer
system applicable to a wider variety of conditions.

The use of morphology within the Xfer system was also a significant factor
in the gap in performance between the Xfer system and the SMT system in the
experiment. Token word coverage of the test-set without morphology is about 70%,
whereas with morphology, token coverage increases to around 79%. We acknowledge
that the availablility of a high-coverage morphological analyzer for Hindi worked
to our favor, and a morphological analyzer of such quality may not be available
for many other languages. Our Xfer approach, however, can function even with
partial morphological information, with some consequences on the effectiveness and
generality of the rules learned.

The results of the comparison between the various versions of the Xfer sys-
tem also show interesting trends, although the statistical significance of some of
the differences is not very high. Xfer with the manually developed transfer rule
grammar clearly outperformed (with high statistical significance) Xfer with no
grammar and Xfer with automatically learned grammar. Xfer with automat-
ically learned grammar is slightly better than Xfer with no grammar, but the
difference is statistically not very significant. We take these results to be highly
encouraging, since both the manually written and automatically learned grammars
were very limited in this experiment. The automatically learned rules only covered
NPs and PPs, whereas the manually developed grammar mostly covers verb con-
structions. While our main objective is to infer rules that perform comparably to
hand-written rules, it is encouraging that the hand-written grammar rules result in
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a big performance boost over the no-grammar system, indicating that there is much
room for improvement. If the learning algorithms are improved, the performance
of the overall system can also be improved significantly.

The significant effects of decoder reordering are also quite interesting. On one
hand, we believe this indicates that various more sophisticated rules could be
learned, and that such rules could better order the English output, thus reduc-
ing the need for re-ordering by the decoder. On the other hand, the results indicate
that some of the “burden” of reordering can remain within the decoder, thus pos-
sibly compensating for weaknesses in rule learning.

Finally, we were pleased to see that the consistently best performing system
was our multi-engine configuration, where we combined the translation hypotheses
of the SMT and Xfer systems together into a common lattice and applied the
decoder to select a final translation. The MEMT configuration outperformed the
best purely Xfer system with reasonable statistical confidence. Obtaining a multi-
engine combination scheme that consistently outperforms all the individual MT
engines has been notoriously difficult in past research. While the results we obtained
here are for a unique data scenario, we hope that the framework applied here for
multi-engine integration will prove to be effective for a variety of other scenarios
as well. The inherent differences between the Xfer and SMT approaches should
hopefully make them complementary in a broad range of data scenarios.

6. CONCLUSIONS AND FUTURE WORK

The DARPA-sponsored SLE allowed us to develop and test an open-domain large-
scale Hindi-to-English version of our Xfer system. This experience was extremely
helpful for enhancing the basic capabilities of our system. The lattice-based decod-
ing was added to our system at the very end of the month-long SLE, and proved
to be very effective in boosting the overall performance of our Xfer system.

The experiments we conducted under the extremely limited Hindi data resources
scenario were very insightful. The results of our experiments indicate that our
Xfer system in its current state outperforms SMT and EBMT when the amount of
available parallel training text is extremely small. The Xfer system with manually
developed transfer-rules outperformed the version of the system with automatically
learned rules. This is partly due to the fact that we only attempted to learn rules for
NPs and VPs in this experiment. We see the current results as an indication that
there is significant room for improving automatic rule learning. In particular, the
learning of unification constraints in our current system requires significant further
research.

In summary, we feel that we have made significant steps towards the development
of a statistically grounded transfer-based MT system with: (1) rules that are scored
based on a well-founded probability model; and (2) strong and effective decoding
that incorporates the most advanced techniques used in SMT decoding. Our work
complements recent work by other groups on improving translation performance by
incorporating models of syntax into traditional corpus-driven MT methods. The
focus of our approach, however, is from the “opposite end of the spectrum”: we
enhance the performance of a syntactically motivated rule-based approach to MT,
using strong statistical methods. We find our approach particularly suitable for
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languages with very limited data resources.
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