
Active Ordering of Interactive Prediction Tasks

Abhimanyu Lad
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

alad@cs.cmu.edu

Yiming Yang
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

yiming@cs.cmu.edu

Abstract
Many applications involve a set of prediction tasks that
must be accomplished sequentially through user interaction.
If the tasks are interdependent, the order in which they
are posed may have a significant impact on the effective
utilization of user feedback by the prediction systems,
affecting their overall performance. This paper presents
a novel approach for dynamically ordering a series of pre-
diction tasks by taking into account the effect of user
feedback on the performance of multiple prediction systems.
The proposed approach represents a general strategy for
learning incrementally during test phase when the system
interacts with the end-user, who expects good performance
instead of merely providing correct labels to the system.
Therefore, the system must balance system benefit against
user benefit when selecting items for user’s attention. We
apply the proposed approach to two practical applica-
tions that involve interactive trouble report generation
and document annotation, respectively. Our experiments
show significant improvements in prediction performance (in
terms of Mean Average Precision) using the proposed active
ordering approach, as compared to baseline approaches that
either determine a task order offline and hold it fixed during
test phase, or do not optimize the order at all.

1 Introduction

Much research in statistical learning has focused on the
optimization of classification, regression, recommenda-
tion, and retrieval systems in isolation. However, in
many practical applications, the user needs to interact
with multiple prediction systems to accomplish a higher
level goal, e.g., interacting with multiple decision sup-
port systems to resolve each trouble report in a trou-
bleshooting system, or annotating each text document
with respect to multiple classification taxonomies, and
so on. For each input instance, the user must accomplish
a series of tasks, assisted by a set of prediction systems
that provide useful suggestions for each task and receive
corresponding feedback from the user. If the tasks are
interrelated, as is often the case in such scenarios, the
user feedback received for each task at run-time (or test
phase) can potentially help in improving performance
on subsequent prediction tasks. Therefore, the order
in which the tasks are posed may have a significant
impact on the effective propagation of user feedback
through the prediction tasks, affecting their overall

performance. How to find such an order for multiple
prediction tasks to maximize their overall performance
is an open challenge that has not received attention in
the research community.

As an illustrative example, consider the problem of
assigning multiple interrelated categories or labels to
documents, which correspond to multiple interrelated
prediction tasks. In a batch setting, the system would
make all category assignments to each document with-
out any user intervention, allowing the user to check
and modify the assignments only after all predictions
have been made. However, the interrelated nature of
the prediction tasks suggests a more efficient approach
for minimizing user effort: The system proceeds in a
stepwise manner by predicting one label at a time,
which the user can immediately validate and modify
if required. This user feedback provides additional
information that can be used by the system before it
predicts the next label for the same document. Depend-
ing on the nature of dependencies among categories,
the system has the opportunity to choose the order of
these predictions so that the overall prediction accuracy
is maximized and the total user annotation effort is
minimized. The effect of prediction order on overall
performance was also observed by Read et al. [19], who
proposed a “classifier chaining” approach for multi-label
classification. However, they did not solve the problem
of finding the best chain (i.e., the order of predicting
class labels), and instead, circumvented the problem by
using an ensemble of randomly chosen permutations.

Another example that involves heterogeneous (clas-
sification, regression, and retrieval) predictions is inter-
active trouble report management. Each trouble report
from the customer triggers a sequence of interdependent
decisions, e.g., determining the priority, category, sub-
categories, hardware type, and software type, assigning
an expert, and finally formulating a resolution. For
making each of these decisions, the user would be
assisted by the system, which makes helpful predictions
for each task and receives corresponding user feedback.

It might be possible to come up with an ordering of
these decisions that improves the overall accuracy of
the predictions through more efficient use of the user’s
feedback. For example, it might be beneficial to finalize
the hardware and software type of the problem before
assigning an expert, because historical data suggests
that the latter decision depends heavily on the former.
By doing so, the system would be able to make more
accurate predictions for the expert assignment. How to
optimize the task order by simultaneously taking into
account all such relationships and dependencies is an
open challenge.

To the best of our knowledge, the problem of how to
order a set of interrelated prediction tasks to optimize
their overall performance has not been studied in the
literature, except for our previous work in a recent
report [12], where we formulated the problem as that
of static task ordering, i.e., using past data in an offline
phase to find a task order that has the best performance
on average, and then holding this order fixed for all data
instances at run-time. This approach has the advantage
that a good task order is induced from a large corpus
of past data, thus allowing effective discovery of task
order preferences that are inherent in the domain at
hand. However, the search for the best order requires
the solution to an NP-hard problem, which makes
this approach unscalable to domains with numerous
prediction tasks. Moreover, the use of a fixed order
makes this approach insensitive to the peculiarities of
individual input instances where a different task order
would be more appropriate.

The focus of this paper is to go beyond offline
approaches, which find task orders that are optimized
for the average case, and instead, dynamically choose
the task order for good performance on each input
instance. Such an approach must be able to evaluate
the effect of various task orders on the predictive
performance, within the context of the current input
instance. Our approach for estimating the benefit of
user feedback with respect to different task orders is
inspired by uncertainty sampling based active learning
methods that use the learning algorithm’s confidence
on data points as the criterion for choosing the next
query for the user [7, 15]. However, our problem setup
is significantly different in important ways. Traditional
active learning optimizes the order in which instances
are labeled to improve the learning curve of a single
prediction system during training phase. However, our
focus is on the test phase, i.e., when the system interacts
with the end-user, who is not concerned with training
the system, but is only interested in accomplishing a
series of tasks with minimal effort. Therefore, the
system is expected to make useful predictions, whose

accuracy is assessed before the correct label is made
available in the form of user feedback. Hence, the task
ordering strategy must strike a balance between the
current predictability and the future utility of candidate
queries, since the most informative labels are usually the
ones that the current model is most uncertain about.
Unfortunately, choosing queries that are expected to
provide maximum system benefit are least likely to
provide immediate user benefit. This observation leads
to another view of our problem setup – active learning
during test phase. Consider a collaborative filtering
system that uses active learning strategies to improve
its model of the user’s preferences. When the system
is in the training phase (e.g., interview phase for a new
user), it is reasonable to probe the user with items that
the system is most uncertain about. However, such a
separate interview phase might not be practical in a
deployed system that is perpetually in the test phase,
when users expect good performance from the beginning
of their interaction with the system. This leads to
an exploration-exploitation trade-off similar to that in
reinforcement learning: The goal of maximizing overall
user benefit requires the system to strike a balance, at
each step, between (i) immediate user benefit obtained
by exploiting the current model and making the best
available prediction, and (ii) system benefit obtained
by probing the user with queries whose outcomes are
uncertain, in a hope to improve future user benefit.
However, such a setup would still focus on a single
prediction model. In this paper, we consider multiple
interrelated prediction models, where the user feedback
received on one model’s output can potentially benefit
other prediction models.

Our step-wise prediction process is similar to a
model of inductive learning known as online learning
[17], where the training phase is not separate from
the prediction phase. Instead, the system learns one
instance at a time: It makes a prediction on a single
instance, receives feedback, which it uses to update
its hypothesis before moving onto the next instance.
However, online learning focuses on a single prediction
problem, while we focus on multiple interrelated predic-
tion problems; The feedback received on the outcome of
one prediction task is used to improve the performance
of the other prediction tasks. Moreover, online learning
does not deal with the problem of proactively choosing
the order of predictions.

Multi-task learning [2, 29] deals with simultaneously
learning multiple prediction tasks by leveraging their
structural similarities in the functional space. However,
the focus is clearly on the training phase. During
test phase or prediction phase, the tasks are assumed
to be performed in isolation, independently from each

other and without any user interaction, which makes
the order of prediction irrelevant, and therefore, fails
to leverage tasks dependencies to improve performance
at run-time. Similarly, transfer learning [23] focuses
on transferring knowledge gained during learning one
prediction task to help in learning another task in the
same or related domain. However, the transfer occurs
in the training phase, ignoring the information that can
be transferred at run-time, when the end-user interacts
with the system. Moreover, the direction and sequence
of the transfer is not considered, assuming such a choice
is indeed available for a given set of learning tasks.

We seek to address the task ordering problem in
the context of a multi-step interactive process with
the following properties: (i) the multiple predictions
are interdependent and the feedback (user correction)
received for a prediction task can be incorporated by
subsequent tasks at run-time, (ii) the order of the
prediction tasks is flexible, free from user interface
constraints, and (iii) the optimal order of the tasks is
not obvious to the user due to a large number of subtle
dependencies that exist among the prediction tasks.

In the next section, we formalize the task ordering
problem and distinguish between static and active task
ordering strategies. In Section 3, we develop a active
task ordering strategy and show how it can be combined
with static ordering. We describe our experimental
setup including datasets and evaluation metrics in
Section 4. In Section 5, we describe the results of
our comparative evaluation of various task ordering
strategies, and also the results of additional experiments
performed to analyze the effectiveness of the proposed
approach. We discuss the assumptions and limitations
of the proposed approach in Section 6 and conclude the
paper in Section 8.

2 The Task Ordering Problem

Consider a set of N input instances or “documents”,
and for each document di, we have K prediction tasks
{t(i)1 , t

(i)
2 , ..., t

(i)
K }. Such data can be represented using

a N × K matrix, where rows denote documents and
columns denote the outcomes or target values of the
prediction tasks, e.g., multiple categories, numerical or
ordinal values for each document. This is a natural
representation for many multi-prediction setups, for
instance, the problem of assigning multiple categories to
each document (e.g., polycategorization [26]). Another
example is collaborative filtering, where rows denote
users and columns denote items, and each cell in the
matrix denotes a user’s rating of an item. In these
examples, the goal is to fill the empty cells based on
observed cells in a partially-filled matrix or a separate
completely-filled matrix of training data.

In this paper, we consider an interactive or online
version of the above-mentioned prediction problems:
For a given row, the system makes prediction for a single
column at each step. The user validates or corrects
the prediction, and the system takes this user feedback
into account before moving to the next column. We
allow the system to re-order the columns for each row
independently, i.e., the system decides the order of the
predictions, and hence, the order in which user feedback
is received.

We are now ready to formalize the task ordering
problem. Let π denote a bijection of {1, 2, ...,K}
onto itself, such that t

(i)
π(k) denotes the kth task in

the permutation induced by π for the ith document.
In the kth step of the prediction process, the system
performs prediction task t

(i)
π(k), based on the (system-

predicted or user-corrected) outcomes of the tasks al-
ready visited by the system in the previous steps,
{t(i)π(1), t

(i)
π(2), ..., t

(i)
π(k−1)}.

Let the prediction performance in the kth step be
denoted by ∆(t̂(i)π(k), t

(i)
π(k)), where the function ∆(ŷ, y)

scores the prediction ŷ with respect to the truth y. It
can be one of the common measures like classification
error or squared error, or some other metric that is
appropriate for the given domain.

The task ordering problem can then be formulated
as follows: For each document di, find the permutation
π∗i that maximizes the overall performance on all pre-
diction tasks (columns) for di:

(2.1) π∗i = arg max
π

K∑
k=1

∆(t̂(i)π(k), t
(i)
π(k))

where t(i)π(k) denotes the kth prediction task for the ith

document according to the permutation π.
The number of possible permutations is factorial

in the number of tasks, and the overall performance of
any given permutation depends heavily on the behavior
of the various prediction systems as well as the perfor-
mance metric employed. Hence, the true value of the
objective function can only be calculated empirically
rather than analytically. Therefore, evaluating or
searching through all permutations is computationally
prohibitive, leading to a hard optimization problem. In
order to proceed, we must explore methods that approx-
imate or indirectly optimize the objective function. We
divide the approaches into two broad categories: static
ordering and active ordering approaches.

2.1 Static Task Ordering In our previous work
[12], we explored a solution that circumvents the com-
putational issue in two ways: (i) instead of finding the

best task order for each new input instance, we used
the behavior of the prediction systems on past data to
derive a single order in an offline phase that has the best
performance on average, and then held it fixed for all
data instances at run-time, and (ii) we approximated
the objective function in terms of pairwise dependen-
cies among tasks. However, combining the pairwise
preferences to deduce an optimal total ordering of the
tasks still required the solution to the well-known Linear
Ordering Problem (LOP) [20], which is known to be NP-
hard [5]. (See [12] for technical details of the approach).

The static task ordering approach optimizes an
approximation of the following objective function:

π∗ = arg max
π

1
n

n∑
i=1

K∑
k=1

∆(t̂(i)π(k), t
(i)
π(k))

Thus, it learns a single task permutation π∗, instead
of one for each input instance. In other words, all
π∗i correspond to the same permutation, denoted by
π∗. This approach is not sensitive to the current data
instance and hence π∗ is not guaranteed to perform well
for each instance at run-time.

2.2 Active Task Ordering The focus of this paper
is to devise strategies for finding task permutations that
are instance specific, i.e., task orders that are optimized
for performance on each given document. The task
ordering is induced greedily: At each step, the system
only has to choose the next prediction task, based on
outcomes of the tasks already solved. We call this
approach active task ordering.

Algorithm 1 shows how user interaction proceeds.
We start with trained classifiers1 C1, ..., Ck, ..., CK for
each of the K tasks, and the ordering strategy Φ. Each
such classifier has an input feature space comprising the
outcomes of the rest of the tasks, with missing values for
tasks that have not been visited yet. (See Section 4.3
for classifier implementation details.)

Let symbols with upper case T denote task (or
column) identities, e.g., Tk denotes the kth task, and
symbols with lower case t denote the corresponding
outcome of the task. At each step, the ordering strategy
chooses the next task to be accomplished. Then the
corresponding classifier generates a prediction for that
task. If this prediction is correct, no action is required
on the part of the user. Otherwise, the user provides the
correct value; the system updates the value for that task
accordingly and also receives a penalty for the incorrect
response.

1We use the term classifier to refer to any kind of prediction
system, including classification, regression or retrieval systems.

Algorithm 1 Steps involved in the interactive process
with active task ordering. Tk denotes the kth prediction
task; tk denotes the outcome of the kth task.
Require: Trained classifiers C1, C2, ..., Ck
Require: Ordering strategy Φ

1: for each document do
2: for k in 1 to K do
3: Tk ← Φ(t1...(k−1))
4: t̂k ← Ck(t1...(k−1))
5: Make prediction t̂k for task Tk
6: Solicit correct value t∗k from user
7: Update performance ∆(t̂k, t∗k)
8: tk ← t∗k { Assign correct value }
9: end for

10: end for

3 Proposed Approach

We desire an ordering strategy Φ that, at step k, takes
into account the outcomes of tasks already solved, and
outputs the next task that should be brought to the
user’s attention:

Φ(t1...(t−1)) → Tk

As shown in Algorithm 1, when the system chooses
a task for the user’s attention (Step 4), it must also
be able to make a prediction for that task (Step 5),
since the system’s performance will be evaluated on this
prediction (Step 7) before the correct value is added to
the feature set (Step 8) of the subsequent prediction
tasks.

Therefore, the ordering strategy must choose the
next task such that the corresponding classifier can
make an accurate prediction for that task (thus, ben-
efitting the user), and whose correct label, once veri-
fied/entered by the user, would be useful for subsequent
predictions (thus, benefitting the system). In other
words, the ordering strategy must choose the next task
at each step based on two criteria:

1. The predictability of the task, i.e., how well
the system, in its current state, can perform on the
chosen task.

2. The future utility of the task, i.e., how helpful
the knowledge of the task’s outcome will be for
improving the predictions on subsequent tasks.

Let the predictability and utility of task Tk at step
k be denoted by P(Tk) and U(Tk), respectively. Then,
we define our active task ordering strategy as choosing
the next task to be the one that maximizes a linear

combination of predictability and utility:
(3.2)

Φ(t1...(k−1)) = arg max
Tk

{λP(Tk) + (1− λ)U(Tk)}

where λ controls the relative influence of the two
criteria.

Note that both criteria depend on assessing how
the system will perform on a prediction task. However,
this is impossible to measure before the true label is
received from the user, which can only happen after
the system chooses a task for the user’s attention. In
order to break this deadlock, a common approach in
active learning is to use the confidence of the prediction
system as a surrogate for the expected performance
of the classifier on a data point. In the context of
classifiers, various definitions of confidence exist. For
probabilistic classifiers, probability values away from 0.5
denote more confident predictions [14]. “Entropy” ex-
tends the same idea to multi-class prediction problems.
For non-probabilistic classifiers like SVMs, distance of
data point from decision boundary has been known to
be an effective measure of confidence (or conversely,
uncertainty) with desirable properties in the context
of active learning [25]. For now, we avoid the exact
definition of confidence (see Section 4.4 for details), and
denote it by κ(C, X), i.e., the confidence of the classifier
C with respect to the data point X.

The predictability P(Tk) is straightforward to de-
fine in terms of the confidence of task Tk’s classifier:

P(Tk) = κ(Ck, {t1...(k−1)})

since the input data available to the classifier at step k
is simply the outcomes of the tasks already solved till
step k − 1.

The utility U(Tk) is defined as the increase in
confidence on the remaining tasks if the true label of
task Tk, denoted by tk, were known and added as input
to the rest of the prediction tasks:

U(Tk) =
∑
j∈T ′

κ(Cj , {t1...k})− κ(Cj , {t1...(k−1)})

where T ′ denotes the indices of tasks that would still
remain to be accomplished, if task Tk were to be selected
at step k. That is, T ′ = {T1...k} \ {T1..(k−1), Tk}.

However, the true outcome tk is unknown before
we actually make the decision to select Tk as the next
prediction task. For probabilistic classifiers, a common
approach in active learning is to sum over all possible
labels weighted by their respective probabilities, as
given by the current classifier, to obtain an expectation
over the quantity of interest. However, this might not
be practical for classification tasks admitting multiple

labels simultaneously, leading to a sum over an expo-
nential number (2|T |) of possible labelings. In such a
case, one can simply use the most probable labeling as
generated by the current classifier. We make this choice
due to the presence of highly multi-valued prediction
tasks in our datasets (Section 4.1).

3.1 Combining Active and Static Ordering The
static ordering approach (Section 2.1) has the advantage
of being induced from a large corpus of past data,
whereas the active approach only uses the current
document to deduce the order and therefore might
suffer from data sparsity problems. Moreover, the static
approach has the ability to directly optimize for the
evaluation metric [12], whereas the active approach is
dependent on a notion of classifier confidence that is
only indirectly related to the evaluation metric. On
the other hand, the active approach is sensitive to the
current input instance (i.e., the outcomes of the tasks
already visited) whereas the static approach uses the
same task order for all documents at run-time.

Therefore, a promising middle ground would be to
combine the two approaches; specifically, use the static
ordering as a prior in the active ordering strategy. The
static order would serve to reduce the variance of the
active strategy in light of sparse data, and also allow the
overall ordering to be sensitive to the target evaluation
metric.

Let π denote the static order induced using the
methods described in [12]. We modify equation 3.2 as
follows:
(3.3)
Φ(t1...(k−1)) = arg max

Tk

S(Tk)·{λP(Tk) + (1− λ)U(Tk)}

where the static order prior S(Tk) is defined as:

S(Tk) = exp(−σ · π−1(Tk))

π−1(Tk) is the position of task Tk if the remaining tasks
(i.e., tasks not yet visited by the active order) were
ordered according to the static permutation π. Thus,
at any given point in the active order, the static order
prior favors candidate tasks that occurred earlier in the
static order, but have not been included in the active
order yet. σ is a tunable parameter that controls the
strength of the prior.

4 Experimental Setup

Our experimental goals are two-fold: (i) To compare
the performance of various task ordering approaches
against each other, and also against unoptimized task
orders, and (ii) to study the behavior of task ordering
in general and understand how and why it affects the
overall performance of the prediction systems.

Table 1: The Accenture Dataset

Attribute Name Distinct Values

Abstract Free text
Title Free text
TopicTags 81
BusinessFunctionKeywords 21
PertinentToOrgUnit 20
Keywords 20
IndustryKeywords 20
ItemType 17
Offerings 17
TechnologyKeywords 14
Client 11
PertinentToServiceLine 11
VendorProductKeywords 9

To this end, we use two datasets, both in the
form of documents with multiple attributes. Predicting
each of these attributes based on past information
as well as user feedback corresponds to the multiple
prediction tasks. The goal is to re-order these tasks so
as to maximize the overall accuracy of the predictions
produced by the system. In this paper, we restrict our
attention to classification tasks only (see Section 6 for
further discussion).

4.1 Datasets The first dataset was collected from
Accenture, a large consulting corporation. It consists
of 60,000 documents related to client projects. Each
document has associated meta-data in the form of 13
attributes, and predicting the values of these attributes
corresponds to the prediction tasks. Abstract and Title
are treated as the initial text input. Table 1 describes
the structure of this dataset.

The second dataset was collected from Inmedius,
which provides logistics support and publication tools to
technicians who maintain U.S. Navy’s F/A-18 aircraft.
The data consists of 6,000 aircraft trouble reports, and
each report contains 13 attributes that correspond to
the various decisions made by operators in the process of
resolving a trouble report. Problem summary is treated
as the initial text input, and the rest of the 12 attributes
are predicted in a stepwise manner. Table 2 describes
the structure of this dataset.

We divide both datasets into three equal parts:

1. Classifier training set: This portion was used to
train and tune the classifiers.

Table 2: The F/A-18 Dataset

Attribute Name Distinct Values

Problem Summary Free text
PointOfContact 34
Base 31
Application 24
ScheduleTo 20
Category1 17
Priority 8
HardwareType 7
Category2 7
AssetStatus 6
OperatingSystem 4
Source 4
ReportStatus 4

2. Order training set: This portion was used
to estimate a static task order [12]. Note that
this subset is not required by the active ordering
approach described in this paper, since there is
no learning phase as far as the ordering strategy
is concerned. Instead, we use this subset to tune
parameters like λ and σ (Section 3) in the active
ordering approach. The exact values of the tuned
parameters depend on the dataset as well as the
target performance metric, but the optimal values
were found to be in the following ranges: λ: 0.5 to
0.75, and σ: 0.1 to 0.2.

3. Test set: This portion was used to evaluate
the performance of the different task ordering
strategies.

We switch the roles of the three parts and calculate
the average scores on the 6 combinations, to get a more
reliable picture of the algorithms’ performance.

4.2 Evaluation Metrics The goal of the system
is to minimize human effort by producing accurate
predictions for all the tasks, which would directly
translate to less user intervention for replacing incorrect
responses. We use two evaluation metrics that capture
slightly different aspects of the accuracy of the system’s
predictions: Mean Average Precision (MAP), and F1.

MAP [1] is a rank-based metric that measures the
quality of the ranked list produced by a system. It is the
average precision at all recall points in the ranked list.
We use MAP to measure the ability of the system to
present its predictions in the form of a ranked list such
that the correct answers appear near the top of the list
for easy selection by the user.

F1 is a set-based metric, equal to the harmonic

mean of Recall (fraction of relevant items retrieved) and
Precision (fraction of retrieved items that are relevant)
[27]. We report both macro-averaged (averaged over
categories) as well as micro-averaged (averaged over
total documents) F1 scores. The macro-average is
dominated by performance on rare labels, while micro-
average is dominated by performance on labels that
appear in many data instances [13]. We use F1

to measure the ability of the system to present its
predictions in the form of binary (yes/no) decisions (e.g,
whether a document belongs to a particular category, as
opposed to simply ranking all the categories).

4.3 Classifiers We choose Linear Support Vector
Machines (SVMs) for all our experiments because of
their superior performance on many classification prob-
lems [3] and the ability to handle a large number of
potentially redundant features, which is common in the
domain of text classification [11]. One SVM classifier
is trained per attribute to be predicted, treating it as
the target variable, while the rest of the attributes
are treated as the predictors. At each step in the
prediction process, only a subset of the predictors would
be available, which correspond to the tasks that have
already been visited, and hence, whose outcomes are
known. The rest of the predictors would have missing
values, which we impute using the nearest-neighbor
approach [6]. A score-based thresholding strategy with
a five-fold cross-validation was used to convert the scores
produced by the classifiers into decisions [28]. Since each
attribute can take multiple values, the prediction task
is a multi-label classification problem, which we address
using a one-vs-all scheme [21].

4.4 Estimating Prediction Confidence For the
definition of classifier confidence, as required in Sec-
tion 3, we use distance of the data point from SVM’s
decision boundary. In the context of active learning,
choosing the next query as the data point closest to the
decision boundary has been shown to be an effective
approximation for the strategy of choosing successive
queries that reduce the size of the version space of
SVM classifiers the most [25]. In the standard active
learning setup for SVM, there would be a single classifier
and multiple candidate data points. Hence, calibration
of the classifier’s scores would be unnecessary since
the calibrated scores would still be proportional to the
original outputs of the classifier for each data point.
However, in our case, the confidence scores for different
tasks, i.e., different SVM classifiers in our case, must
be comparable to each other. Therefore, we convert
all SVM scores to probability estimates using LIBSVM
[4], which employs an improved implementation [16] of

Platt’s calibration algorithm [18].
Since we are using a one-vs-all scheme for multi-

valued predictions, an attribute that takes V values will
require V corresponding binary classifiers. We must
combine the confidence scores of each of these classifiers
to derive a single confidence score for the prediction
task. How to do this for classification problems with
multiple overlapping labels is not entirely clear, there-
fore we resort to heuristics. Let the calibrated scores of
the V classifiers for an attribute be denoted by pv where
v = 1, ..., V . We examined the following combination
methods for computing confidence:

Mean: average deviation from 0.5:

κ =
1
V

V∑
v=1

|pv − 0.5|

GeoMean: geometric mean of the deviations from
0.5:

κ = (
V∏
v=1

|pv − 0.5|) 1
V

Min: minimum deviation from 0.5:

κ = min
v=1..V

|pv − 0.5|

Max: maximum deviation from 0.5:

κ = max
v=1..V

|pv − 0.5|

Variance: variance of the scores:

κ =
1
V

V∑
v=1

(pv − p̄v)2

Mean and GeoMean take into account all the confi-
dence scores of the classifiers for an attribute, whereas
Min and Max look at the extreme (lowest or highest) con-
fidence scores of the classifiers. Variance looks at the
spread of the scores, which might be a good indicator
of how confident the set of classifiers are in ranking the
labels: Larger spreads signify more confident rankings,
while smaller spreads signify uncertainty in ordering the
labels. (See Section 5.2 for an empirical comparison).

5 Results

We conducted a comparative evaluation of various or-
dering approaches and report the results in Section 5.1.
We also conducted additional experiments to compare
the various alternatives for estimating classifier confi-
dence (Section 5.2), and also to understand the effect of
task order on predictive performance (Section 5.3).

Table 3: Performance of various task ordering
approaches on the Accenture dataset

Evaluation Metric
Approach MicroF1 MacroF1 MAP

COMBINED 0.6447 0.4326 0.7967
ACTIVE 0.6402 0.4311 0.7926
STATIC 0.6355 0.4391 0.7691

Random 0.5343 0.3066 0.7194

Table 4: Performance of various task ordering
approaches on the F/A-18 dataset

Evaluation Metric
Approach MicroF1 MacroF1 MAP

COMBINED 0.8625 0.5714 0.9289
ACTIVE 0.8611 0.5715 0.9265
STATIC 0.8550 0.5701 0.9032

Random 0.7983 0.5352 0.8990

5.1 Comparison of Ordering Approaches Table
3 and 4 show the results obtained using various task
ordering approaches on the Accenture and F/A-18
datasets, respectively. The task ordering approaches
include: STATIC: static task ordering [12], ACTIVE: ac-
tive task ordering without using the static order as prior
(i.e., equation 3.2), and COMBINED: active task ordering
with the static order as prior (i.e., equation 3.3). As a
baseline approach, we use Random task orderings, i.e.,
arbitrary task permutations for each document.

On both datasets, the task ordering approaches
beat the baseline approach by a significant margin with
respect to all three performance metrics. The active
ordering approaches proposed in this paper (ACTIVE
and COMBINED) beat our previous approach (STATIC)
by a significant margin in terms of MAP. However, the
performance gain in terms of MicroF1 is relatively
small, while the differences in terms of MacroF1 are
mostly insignificant. Although the improvement of
ACTIVE over STATIC is not drastic, it should be noted
that the STATIC ordering approach requires a large
training corpus as well as the solution to an NP-
hard problem, whereas the ACTIVE ordering approach
is an online algorithm that only looks at the current
input instance, and provides a much more efficient and
scalable solution for task ordering when the number

of tasks is large, or training data (as required by the
STATIC approach) is at a premium.

Significance Tests: To evaluate the differences
between classifier performances with respect to different
task orderings, we conducted a sign test for each pair of
methods listed in Table 3, and similarly for Table 4,
with respect to the MAP scores of all predictions
(i.e., number of documents × number of attributes per
document). On the Accenture dataset, differences in
MAP scores greater than 0.005 were found to be highly
statistically significant (p-value � 0.01). On the F/A-
18 dataset, differences in scores greater than 0.003 were
found to be highly statistically significant (p-value �
0.01).

5.2 Correlation between Prediction
Confidence and Actual Performance In our active
ordering approach, we have used prediction confidence
as a surrogate for estimating the system’s performance
on a prediction task (see Section 3). We would like
to assess how well our estimated prediction confidence
correlates with the true performance, measured when
the correct label is obtained from the user. We use
a held-out subset of the Accenture dataset and make
the system generate a confidence score in addition to
its prediction, and then measure the correlation of its
confidence score against the performance score.

Table 5 shows the correlation between various for-
mulations of prediction confidence (as described in
Section 4.4) and two performance metrics: MAP and
Accuracy2. When using MAP, which is a rank-based
evaluation metric, the best choice for confidence estima-
tion is the Variance method. This makes intuitive sense
since Variance measures the spread of the classifiers’
scores: Higher the spread, more unambiguous (and
hence, more confident) the ranking of the predicted
labels is. On the other hand, when using Accuracy as
the evaluation metric, the best choice seems to be the
Min method, which puts a lower bound on the confidence
of all classifiers involved, hence ensuring a minimum
level of performance on the given task. Thus, we choose
Variance and Min when optimizing the task orders with
respect to MAP and F1, respectively.

Interestingly, the correlation values vary signifi-
cantly with the choice of the performance metric, which
shows that MAP and Accuracy have sufficiently different
behavior. In fact, MAP and Accuracy were found to be
only moderately correlated (ρ = 0.4582) with each other
on this dataset.

2Accuracy can be computed individually for each prediction
task on each document. Therefore we use it in this experiment as

a substitute for F1, which is an aggregate metric computed over
the entire dataset instead of per-document

Table 5: Correlation between various confidence
estimation methods and two evaluation metrics

Correlation with
Method MAP Accuracy

Mean 0.1696 0.1850
GeoMean 0.1784 0.2420
Min 0.1981 0.2740
Max 0.0988 0.1679
Variance 0.2440 −0.0087

5.3 Effect of Task Order on Prediction
Performance It is important to understand why and
how the order of the prediction tasks affects their overall
performance, as this may not be obvious at first. In
our setup, any task ordering is deemed to put certain
tasks at an advantage by placing them later in the task
order, which will give them more data for prediction, at
the expense of other tasks that are placed early on and
therefore would have less data for prediction. Since all
tasks of each document must be predicted by the system
eventually, it may not be immediately clear why the
prediction order should affect the overall performance,
because these advantages and disadvantages incurred by
prediction tasks should balance each other out.

In more formal terms, information gain is symmet-
ric, i.e., given two random variables xi and xj , the
reduction in entropy (uncertainty) of xj when xi is
known is exactly equal to the reduction in entropy of
xi when xj is known. Therefore, in our setup, the
task orders TiTj and TjTi should – in theory – perform
equally well because any gain in performance on task
Tj obtained by placing it after Ti should be balanced
by the gain in performance on Ti in the latter task
order. However, we show that this does not hold true in
practice. The relationship between entropy and classi-
fier performance is not constant for all target variables:
A certain reduction in entropy of two variables does
not necessarily lead to the same improvement in their
corresponding predictive performance, due to the nature
of the decision surface for each prediction task as well
as the inductive bias of the prediction models used.

We conducted a controlled experiment where we
only flip two adjacent tasks while holding the order of
the other tasks constant (i.e., disabling Φ in Algorithm
1). Note that only the performance on this pair of tasks
will be affected by the flip: In a given task order, all
tasks that appear before this pair cannot be affected
since this pair is simply absent during their prediction.
For all subsequent tasks, this pair is present in a bag

of features; the order in which they were obtained is
irrelevant at later prediction steps.

We use the Accenture dataset for its larger size
and choose the prediction PertinentToOrgUnit (T3)
and Keywords (T4) as the two tasks, each admitting 20
distinct values (see Table 1)3. An experiment comprises
two runs: (i) processing the documents with the order
...T3T4..., and (ii) with the order ...T4T3...

4. For
each experiment, we can also choose different adjacent
positions for these two tasks; we try three alternatives
– positions 1–2, 5–6 and 10–11, i.e. at the beginning,
middle and end of the total ordering of the tasks. In
each experiment, we measure the average performance
(in terms of MAP) on T3 and T4 for the two orders, as
shown here:

Order MAP(T3) MAP(T4)
...T3T4... a b
...T4T3... c d

Not surprisingly, b ≥ d and c ≥ a in all experiments,
since in each ordering the latter prediction task has
more data to work with. However, we are interested in
knowing whether a+ b = c+ d, in which case the order
of these two tasks will not affect the overall performance
of the system. Equivalently, we want to know if b− d =
a − c, i.e., whether the performance gained on T4 by
placing it after T3 is balanced by a corresponding loss
in T3’s performance. Interestingly, this is not the case.
We plot the corresponding performance gain and loss
on these tasks when they are placed at various adjacent
positions in the ranked list (Table 6). Thus, even
though the decrease in entropy of one prediction task
is offset by the same amount of increase in the other
for the two orders, this does not translate into equal
performance gain and loss on the two prediction tasks –
i.e., one of the orders (T3T4 in this case) is more favored
than the other and leads to higher overall performance.
These observations provide an empirical justification for
directly taking into account the classifier’s behavior as
well as the performance metric, instead of measuring
quantities like entropy or information gain that are only
indirectly related to the classifier’s performance on a
given task.

Moreover, when we place the pair at latter positions
(e.g., “10–11”) in the total task order, both the gain
as well as corresponding loss diminish. This is to be
expected, since more task outcomes are available at
latter positions for making the predictions for both
the tasks, introducing redundancy of information, and

3We tried other task pairs, with similar results.
4The ordering of the rest of the tasks is irrelevant for this

experiment.

Table 6: Effect on performance (MAP) due to flipping
two adjacent tasks, T3 and T4. The performance gain
(b − d) on T4 is not exactly canceled by loss (a − c)
on T3 at any of the pairs of adjacent positions in the
task order, leading to a non-zero change in overall
performance (∆ = (b− d) + (a− c)).

Positions (b− d) (a− c) ∆

1–2 +0.2339 -0.0360 +0.1979
5–6 +0.0628 -0.0124 +0.0504

10–11 +0.0218 -0.0046 +0.0172

therefore, making the particular orientation of the pair
less crucial. In other words, when available data
is sparse, the order of predictions has a much more
dramatic effect on the overall performance.

6 Discussion

In this paper, we have considered a specific sequential
prediction setting consisting of multi-attribute doc-
uments. However, our proposed approach is more
generally applicable to any setting where the system
must determine the order in which user feedback should
be solicited, but at the same time, the system must
also exhibit good predictive performance on the items
selected for user feedback, thus requiring a trade-off
between system benefit and user benefit. Such scenarios
arise naturally when active learning must be performed
during test phase or prediction phase, when the system
interacts with the end-user, who expects good system
performance, instead of interacting with an oracle,
who merely provides correct labels as demanded by
the system. A notable example is the exploration-
exploitation problem in the context of adaptive filtering,
where the information filtering system must decide
whether to present a document to the user based on two
potentially conflicting criteria: The expected utility of
the document to the user, and the expected utility of the
user’s feedback to the system [30]. An important part
of our future work in this direction is the application
of these ideas to other mainstream machine learning
problems like collaborative filtering.

In our experiments, we have only considered classi-
fication problems (Section 4.3) as the prediction tasks.
However, our approach provides a template that can
accommodate any combination of classification, re-
gression, retrieval, or ranking systems, as long as
the systems can provide a measure of the degree of
confidence (or uncertainty) of their predictions. A lot
of research has focused on estimating and calibrating

the confidence scores of various learning algorithms
[9, 14, 15, 24], including the ones that involve structured
outputs [8, 10, 22], since confidence estimation forms
the basis for uncertainty sampling based approaches to
active learning [7, 15].

7 Acknowledgements

This work is supported in parts by the National Sci-
ence Foundation (NSF) under grant IIS 0704689, and
fellowships from Yahoo! Inc. and Accenture Inc.
Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and
do not necessarily reflect the views of the sponsors.

8 Conclusions

We have proposed an active task ordering strategy for
dynamically ordering a series of prediction tasks to op-
timize their overall performance. We take into account
the effect of user feedback on the prediction confidence
of the systems in the context of the current input
instance to determine the best prediction order. Our
experiments on two datasets show that the proposed
approach is effective and also a computationally efficient
and online alternative to our previously proposed static
ordering strategy, which requires additional data for
offline computation of the task order and relies on the
solution to an NP-hard problem. Moreover, we evaluate
the correlation between various formulations of classifier
confidence for multi-label classification problems and
the true prediction performance, highlighting the differ-
ent behavior of two evaluation metrics. The proposed
approach represents a general strategy that is applicable
to any setting where a trade-off between system benefit
and user benefit is required, and can accommodate any
combination of classification, regression, retrieval, and
ranking systems as long as their prediction confidence
can be estimated on a common scale.

References

[1] C. Buckley and E. Voorhees. Retrieval system
evaluation. TREC: Experiment and Evaluation in
Information Retrieval, pages 53–75, 2005.

[2] R. Caruana. Multitask Learning. Machine Learning,
28(1):41–75, 1997.

[3] R. Caruana and A. Niculescu-Mizil. An empirical
comparison of supervised learning algorithms. In
Proceedings of the 23rd international conference on
Machine learning, pages 161–168. ACM New York, NY,
USA, 2006.

[4] C. Chang and C. Lin. LIBSVM: A library for
support vector machines. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm, 80:604–611,
2001.

[5] I. Charon and O. Hudry. A survey on the
linear ordering problem for weighted or unweighted
tournaments. 4OR: A Quarterly Journal of Operations
Research, 5(1):5–60, 2007.

[6] J. Chen and J. Shao. Nearest neighbor imputation for
survey data. Journal of Official Statistics, Stockholm,
16(2):113–132, 2000.

[7] D. Cohn, L. Atlas, and R. Ladner. Improving
generalization with active learning. Machine Learning,
15(2):201–221, 1994.

[8] A. Culotta and A. McCallum. Reducing Labeling
Effort for Structured Prediction Tasks, 2005.

[9] S. Gandrabur and G. Foster. Confidence estimation
for text prediction. In Proceedings of the Conference
on Natural Language Learning (CoNLL 2003), 2003.

[10] R. Hwa. Sample Selection for Statistical Parsing.
Computational Linguistics, 30(3):253–276, 2004.

[11] T. Joachims. Text Categorization with Support Vector
Machines: Learning with Many Relevant Features.
Springer, 1997.

[12] A. Lad, Y. Yang, R. Ghani, and B. Kisiel. Toward
optimal ordering of prediction tasks. In SDM, pages
884–893. SIAM, 2009.

[13] D. Lewis. Evaluating text categorization. In
Proceedings of Speech and Natural Language Workshop,
pages 312–318. Morgan Kaufmann, 1991.

[14] D. Lewis and J. Catlett. Heterogeneous uncertainty
sampling for supervised learning. In Proceedings of
the Eleventh International Conference on Machine
Learning, pages 148–156, 1994.

[15] D. Lewis and W. Gale. A sequential algorithm
for training text classifiers. In Proceedings of the
17th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 3–12. Springer-Verlag New York, Inc. New York,
NY, USA, 1994.

[16] H. Lin, C. Lin, and R. Weng. A note on Platt’s proba-
bilistic outputs for support vector machines:[Technical
report]. Department of Computer Science and
Information Engineering, National Taiwan University,
2003.

[17] N. Littlestone and M. Warmuth. The weighted
majority algorithm. Information and computation,
108:212–212, 1994.

[18] J. Platt. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. Advances in Large Margin Classifiers, 1999.

[19] J. Read, B. Pfahringer, G. Holmes, and E. Frank.
Classifier chains for multi-label classification. Proc. of
20th European Conference on Machine Learning, 2009.

[20] G. Reinelt. The linear ordering problem: algorithms
and applications, Research and Exposition in Mathe-
matics 8. Berlin: Heldermann, 1985.

[21] R. Rifkin and A. Klautau. In Defense of One-Vs-
All Classification. The Journal of Machine Learning
Research, 5:101–141, 2004.

[22] C. Thompson, M. Califf, and R. Mooney. Active
Learning for Natural Language Parsing and Informa-

tion Extraction. In Machine Learning-International
Workshop then Conference, pages 406–414. Morgan
Kaufmann Publishers, Inc., 1999.

[23] S. Thrun. Is Learning the n-th Thing Any Easier Than
Learning the First? Advances in Neural Information
Processing Systems, pages 640–646, 1996.

[24] S. Tong. Active Learning: Theory and Applications.
PhD thesis, Stanford University, 2001.

[25] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. The
Journal of Machine Learning Research, 2:45–66, 2002.

[26] I. Tsochantaridis and T. Hofmann. Support vector
machines for polycategorical classification. Lecture
notes in computer science, pages 456–467, 2002.

[27] C. Van Rijsbergen. Information Retrieval.
Butterworth-Heinemann Newton, MA, USA, 1979.

[28] Y. Yang. A study of thresholding strategies for text
categorization. In Proceedings of the 24th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 137–145.
ACM New York, NY, USA, 2001.

[29] J. Zhang, Z. Ghahramani, and Y. Yang. Learning
Multiple Related Tasks using Latent Independent
Component Analysis. Advances in Neural Information
Processing Systems, 18:1585, 2006.

[30] Y. Zhang, W. Xu, and J. Callan. Exploration and
Exploitation in Adaptive Filtering Based on Bayesian
Active Learning. In Machine Learning-International
Workshop then Conference, volume 20, page 896, 2003.

