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Abstract

Many applications involve a set of prediction tasks that must
be accomplished sequentially through user interaction. If
the tasks are interdependent, the order in which they are
performed may have a significant impact on the overall per-
formance of the prediction systems. However, manual speci-
fication of an optimal order may be difficult when the inter-
dependencies are complex, especially if the number of tasks
is large, making exhaustive search intractable. This paper
presents the first attempt at solving the optimal task order-
ing problem using an approximate formulation in terms of
pairwise task order preferences, reducing the problem to the
well-known Linear Ordering Problem. We propose two ap-
proaches for inducing the pairwise task order preferences — 1)
a classifier-agnostic approach based on conditional entropy
that determines the prediction tasks whose correct labels
lead to the least uncertainty for the remaining predictions,
and 2) a classifier-dependent approach that empirically de-
termines which tasks are favored before others for better
predictive performance. We apply the proposed solutions
to two practical applications that involve computer-assisted
trouble report generation and document annotation, respec-
tively. In both applications, the user fills up a series of fields
and at each step, the system is expected to provide useful
suggestions, which comprise the prediction (i.e. classifica-
tion and ranking) tasks. Our experiments show encouraging
improvements in predictive performance, as compared to ap-
proaches that do not take task dependencies into account.

1 Introduction

Many information-centric applications involve a series of
user interactions to collect data, usually in the form of
records, where each record contains a set of fields. Such

Yiming Yang
Language Technologies Institute
School of Computer Science
Carnegie Mellon University
yiming@cs.cmu.edu

Bryan Kisiel
Language Technologies Institute
School of Computer Science
Carnegie Mellon University
bkisiel@cs.cmu.edu

scenarios are ubiquitous — many Web pages on the Inter-
net ask the user to fill up forms or questionnaires, which
are per-user records with a fixed set of fields. Similarly,
large organizations spend considerable efforts in collect-
ing and managing knowledge, which generally involves
systematically maintaining records of past business en-
deavors, and each such record takes the form of a set of
fields like problem statement, goals, deliverables, project
category, people assigned, products used, outcome, and so
on. An information system that can successfully assist
users in filling up such forms and reduce their burden
in terms of time and effort has a tremendous potential
to increase the volume as well as the quality of the col-
lected data, while keeping the costs down.

One way in which an information system can assist
users is by predicting the most appropriate values for
the next field and suggest them to the user at each step
in the sequential form-filling process. The prediction
process is generally accomplished by using classification
or retrieval systems that take the values of fields that
have already been entered as input, and produce a
list of candidates for the next field — i.e., the target
field. We call each such classification or retrieval step
as a prediction task. These prediction tasks can be
accomplished using any of the state of the art classifiers
like Support Vector Machines (SVM) [28], Logistic
Regression [1], K Nearest Neighbors (KNN) [12], etc.,
or more recent approaches like Probabilistic Relational
Models [15, 25] that jointly model the relationships
between the fields.

In this paper, we investigate the problem from a
slightly different angle — Is there an order in which the
prediction tasks should be posed, so as to maximize the
overall accuracy of the predictions? In other words, in-



stead of passively producing a response when presented
with a target field, can the system itself choose the order
in which the user interaction should proceed, so that it
can maximize its predictive performance?

Consider a very simple example of form filling —
Yahoo! Answers', a community-driven website that
allows users to submit questions as well as answers to
questions posted by others. To submit a new question,
a user must first type in the question text, and then
choose an appropriate category. Omne can think of
question text and category as two fields that the user
is required to fill in. Since question text is submitted
first, the system assists the user in filling up the category
field by presenting its top five suggestions. It is obvious
that this order of presenting the two fields to the user
allows the system to utilize a text classifier that takes
the question text as input and produces a ranked list
of categories. On the other hand, asking the user to
input the category of the question before he or she
enters the question text is unreasonable — the system
would not be able to assist the user by presenting a
small list of categories since it has no input to begin
with, nor assist him or her in framing the question text
because of the large space of possible questions even
when the category is known. In this example with two
fields, the asymmetric relationship between the fields
is immediately obvious, making it easy to manually
determine the optimal ordering of fields for better user
experience.

However, there are many applications that involve
a large number of fields with complex relationships and
interdependencies, in which case the optimal order in
which they should be presented to the user might not be
obvious. One such example is trouble report generation
for complicated problems, where each trouble report
from the customer triggers a sequence of interdependent
decisions, which correspond to filling up various fields
in a report, like problem summary, priority, category,
sub-category, expert assigned, hardware type, software
type, and resolution. The order of some of the fields
is fixed — e.g., a new report is created based on a
problem summary, while resolution marks the end of
the report. The order of other fields is usually arbitrary;
for such fields, the system can provide a better ordering
based on trouble-shooting behavior of users as well the
performance of the prediction systems with respect to
various orderings in the past data. For example, the
system might suggest putting the priority field before
the engineer field because historical data suggests that
the latter decision depends heavily on the former. How
to optimize the task order by simultaneously taking into
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account all such dependencies is an open challenge.

Another example is document annotation for knowl-
edge management. Consulting companies meticulously
index documents from past projects and annotate them
with many fields e.g. abstract, topic, author, teams
inwvolved, offerings, alliances, client, domain specialty,
and with numerous controlled vocabularies like indus-
try keywords, technology keywords, vendor product key-
words, pertinent to organizational unit, pertinent to ser-
vice line, pertinent to country, and so on. An effective
information system can not only assist the user in an-
notating documents, but also in leveraging past data
to select the most appropriate teams, experts, vendor
products, and to determine which clients and countries
to target when embarking on a new project. However,
what statistical dependencies exists among these fields
with respect to the given data may not be obvious even
to experts who designed these taxonomies.

Our goal in this paper is to explore automated solu-
tions to the problem of optimal task ordering that can
be easily applied to any domain involving a set of pre-
diction tasks that must be performed in a sequential
manner through user interaction. Our main contribu-
tions are:

1. A formulation of optimal task ordering as an opti-
mization problem with an explicit objective func-
tion that allows different performance criteria to
be easily plugged in and compared. Specifically,
we compare two main alternatives of modeling the
pairwise interactions among tasks.

2. Reduction of an intractable optimization problem
to the well known Linear Ordering Problem (LOP)
[9], by relaxing the optimization criterion to partial
order preferences over task pairs. This reduction
allows us to leverage state of the art algorithmic
solutions to the LOP problem for efficiently solving
the task ordering problem.

3. Thorough evaluation of the proposed approaches on
two datasets from important application domains.
This is the first comparative evaluation of opti-
mal task ordering approaches in the information
retrieval and data mining domain to our knowledge.

In the next section, we formalize the optimal task
ordering problem and state the associated challenges.
In Section 3, we propose an approximate solution that
breaks the problem into two manageable steps that
are both amenable to practical solutions. We provide
details of our experiments in Section 4, and present the
results in Section 5.



2 The Optimal Task Ordering Problem

Consider a set of n records or forms, and for each
record, the user needs to fill in k fields, {F, Fy, ..., Fi}.2
Additionally, let Fy denote any data that are always
available a-priori as input and should be treated as the
starting point for filling up rest of the fields for each
record, e.g., the problem summary in the case of trouble
reports, and abstract and title in the case of document
annotation. The system is expected to assist the user in
filling up each of the k fields in a stepwise fashion, which
corresponds to the k prediction tasks, {t1,to,...,tx},
respectively.

Let 7 denote a bijection of {1,2,...,k} onto itself,
such that t,(;) denotes the jt" task in the permutation
induced by 7. In the j** step of the prediction process,
the system provides a prediction for the field Fr (),
based on the values of the fields already visited by
the user in the previous steps, { Fr(1), Fr(2); s Fr(j—1)}-
This corresponds to the prediction task t.(;). If the
predicted value for F ;) is wrong, the user provides the
correct value, otherwise he or she simply moves on to
the next step.

Let the prediction performance in the j** step be
denoted by A(tf:()j),Ff()j)), where the function A(g,y)
scores the prediction g with respect to the truth y. It
can be one of the common measures like recall, preci-
sion, Fjg, MAP, MRR, etc., or some other appropriate
metric that measures the utility of the system for the
given domain.

The optimal task ordering problem can then be
written as finding the permutation 7* that maximizes
the average performance of tasks on the n records:

n k
. 1 i i
(2.1) ™ :argTIrnaX - E E A(t;()j),Fﬁ()j))

i=1 j=1
where ().
m(4)

it" record.
No efficient solutions are known for the formula-
tion in equation 2.1. The difficulties in solving this for-
mulation arise from the large size of the sample space,
and also the large number of dependencies that needs

denotes the j** prediction task in the

to be considered — The j** prediction task tf:()j) de-
pends on all the preceding fields in the permutation,
{Fr(1), Fr(2y, - Fri—p) }-

A simple but inefficient approach is to try all per-
mutations of the fields in the past data, run the clas-
sifier on all such permutations and select the permu-
tation that gives the best average performance on the

2For simplicity, we avoid indexing the record number in the

notation.

dataset. However, such an exhaustive search for the best
permutation is intractable since the number of possible
permutations rises factorially with the number of fields,
leading to O(nk!) evaluations to find the optimal order.
This is impractical for large datasets, and even small
number of fields.

3 Proposed Approach

The above-mentioned formulation does not suggest any
efficient way of exploring the large search space. In order
to proceed, we propose an approximate solution that
breaks the problem into two steps:

1. Instead of directly attempting to find the total or-
der that will maximize the performance on the pre-
diction tasks, we find pairwise preferences among
the task orders.

2. Use the pairwise preferences to derive an optimal
total ordering of the tasks.

We show that both these are steps can be accom-
plished practically for moderately sized problems, and
are amenable to multiple alternative approaches.

3.1 Pairwise Preferences of Task Orders Given
k tasks, consider a k x k matrix 2, such that €;; denotes
the preference score or expected benefit of placing task
t; before t; in the total ordering, but not necessarily
adjacent to each other. Once we have such preference
scores for each pair of tasks, our objective is reduced
to finding the total order that maximally satisfies the
pairwise preferences.

Irrespective of how €2 is estimated, such an approach
leads to an approximation of the problem since it only
models the pairwise dependencies among tasks, while
ignoring higher order interactions. For instance, 2;;
simply represents the estimated benefit of placing task
t; before t;, independent of what other tasks are placed
before t;, or between ¢; and t;. In other words, we
estimate the pairwise preferences of tasks independent
of their absolute ranks and the ranks of other tasks
in the total ordering. On the other hand, this means
we only need to estimate O(n?) entries instead of the
modeling O(2™) potential interactions between tasks.

We now consider two main alternatives to estimat-
ing Q — (i) a classifier-agnostic approach that captures
the uncertainties of the fields in terms of their condi-
tional entropies, and (ii) a classifier-dependent approach
that empirically observes the performance of the clas-
sifier with respect to different pairwise task order con-
straints, and hence leads to task orders that take the
behavior of the classifier into account. We explore these
approaches in the following sections.



3.1.1 Classifier-Agnostic Approach One way to
populate the 2 matrix is to use the conditional entropies
of the fields as indicators of the pairwise preferences
among prediction tasks. Treating each field as a discrete
random variable, the conditional entropy of field Fj
given F; is defined as:

H(F;|Fy) =Y p(fi)H(F|F, = f;)

fi
= =3 plfi, ;) logp(f;l f:)

fi fi

The expected benefit of performing ¢; before t; is
represented by the negative entropy of F); conditioned
on Fj:

(3:2) Qi; = —H(F}|F;)
Thus, a low entropy of F}; conditioned on Fj; leads to a
high preference for placing F; before Fj.

A related metric is Information Gain (IG), which is
defined as IG(F;, F;) = H(F;) — H(F}|F;). Note that
IG is a symmetric measure with respect to F; and Fj,
and therefore does not enforce a directional preference
between any pair of tasks. It represents the reduction
in the entropy of any one of the fields given the other.
However, we are not interested in the reduction of the
entropy, but in the conditional entropy of the target
field when the other field is observed, since that will
have a more direct bearing on how well a classifier can
perform on the target field.

Note that conditional entropies are independent of
the choice of the classifier or the evaluation metric.
Our ultimate objective to maximize the performance
of the given classifier in terms of a given evaluation
metric, not in terms of entropy. To understand whether
an approach that takes the behavior of the classifier
as well the evaluation metric into account can lead to
better task orders, we present an alternative classifier-
dependent approach, as described next.

3.1.2 Classifier-Dependent Approach Instead of
using entropy as a surrogate for the true performance
metric, another way of populating the {2 matrix is to use
held-out data to directly observe the performance of the
classifier under different pairwise task order constraints.
Algorithm 1 describes the steps involved. We use a set
of documents, D, with field orders randomly permuted
per-document, and then set each €2;; as the average per-
formance on those documents where t; appeared before
t;, denoted by the set S;;. Note that steps 1-4 represent
a sampling of the random permutations, which is only
limited by the computational resources. In particular,
step 2 of the algorithm can be performed multiple times

Algorithm 1 Classifier-Dependent Approach for calcu-
lating Pairwise Preferences

Require: Data set D, trained classifier, performance
metric A.
. for each document d,, in D do

—

2: Choose a random permutation m,
3: Run classifier on d,, using task sequence 7, and
record the performance A,,.
4: end for
5: for each pair (i,7) in k? do
6: Sij —{n:m(i) < mp(j)}
7 Qij — ﬁ Z JANS
nesS;;
8: end for

9: return €2

per document, and multiple corresponding values of m,
and A, can be recorded and used accordingly in steps
5-8.

This approach is dependent on the classifier as
well as the performance metric that we ultimately
care about. Therefore it can naturally accommodate
performance metrics that give different weights to each
field, or different costs to various classification errors.

3.2 From Pairwise Preferences to Optimal Or-
der Our goal is to use the preference matrix Q (com-
puted using one of the above-mentioned ways) to derive
an optimal total order of the tasks 7*. A reasonable
way to frame the problem is to find the total order that
maximizes the sum of pairwise preferences:

D

(4,9):m (1) <m(5)

(3.3) m* = argmax

Compare this with our earlier formulation (equa-
tion 2.1), which involved arbitrary dependencies among
fields. In contrast, equation 3.3 only involves pairwise
interactions of the elements of the permutation.

The solution to this formulation is already known —
it is equivalent to the Linear Ordering Problem (LOP)
[23]. However, LOP is known to be NP-Hard, but state
of the art solvers can handle moderately sized data.
We give an outline of the Linear Ordering Problem,
with a brief survey of recent developments in algorithms
and the sizes of the problems that they can handle
practically.

3.2.1 Linear Ordering Problem The Linear Or-
dering Problem appears in literature under various
names — Maximum Acyclic Subdigraph Problem, The
Maximum Consistent Arc Set, or Median Ordering
Problem and arises is various fields including social sci-



Table 1: Run-times of a state of the art LOP solver on
graphs with equi-probable directions of edges

Matrix Size CPU Time (secs)

15 x 15 2
24 x 24 8
30 x 30 50
33 x 33 800

ences, electrical engineering and mathematics [9, 3]. It
is generally defined in terms of a special kind of directed
graph called Tournament.

A weighted Tournament T'= (V, E,w) is a digraph
such that for any pair of vertices v; and vy in V, there
is one and only one edge (v1,v2) or (ve,v1) in E. Let
the weight of an edge (v1,v3) be denoted by a positive
weight function wqg. If w12 < 0, replace the edge (v1,v2)
with the edge (v2,v1) of weight we; = —wi2. A linear
order 7 defined on V is an ordering of the vertices
Ur(1) > Ur(2) > - > Ug(n)- The Linear Ordering
Problem finds an order 7 that has minimum remoteness
with respect to T" — i.e., the sum of weights of the edges
in T that must be reversed to get the linear order =:

>

(4,5):m(8) > (4)

The problem is known to be NP-hard [14, 9].
However, considerable progress has been made in the
last decade, steadily increasing the size of the problems
that can be solved in reasonable amounts of time [8, 22].
For instance, Table 1 shows the runtimes obtained by a
state of the art algorithm that uses a branch and bound
search with various heuristics to improve the bounding
function [9]. The running time of the algorithm greatly
depends on the nature of the graph; we have only shown
the runtimes on problems with equal probability of an
edge (i,7) or (j,4), since this corresponds to the LOP
problem that arises in our case.

To fit the standard LOP formulation, we must
tweak our {2 matrix to have one and only one edge be-
tween each pair of vertices. We calculate the difference
between each pair €;; and €;:

7 = arg min wji

Q' =q-0f

and keep only the positive edge among €2}, and €2,.
Various polynomial time approximate algorithms
have also been proposed for LOP [4, 17, 18]. However,
since our problem settings (cf. Section 4.1) only involve
matrices smaller than 15 x 15, we restrict attention to

Table 2: The Accenture Dataset

Field Name Distinct Values
Abstract Free text
Title Free text
TopicTags 81
BusinessFunctionKeywords 21
Pertinent ToOrgUnit 20
Keywords 20
IndustryKeywords 20
ItemType 17
Offerings 17
TechnologyKeywords 14
Client 11
Pertinent ToServiceLine 11
VendorProductKeywords 9

the exact algorithm due to [9], who have also made their
implementation publicly available.?

4 Experiments

Our experimental goals are two-fold — 1) To compare
the proposed approaches against baseline approaches
that do not take task interdependencies into account,
and 2) to compare and understand the behavior of the
proposed approaches against each other with respect to
various performance criteria.

To this end, we use two datasets, both in the
form of records comprising multiple fields. Predicting
the correct values for each field corresponds to the
prediction tasks. The goal is to re-order these tasks
S0 as to maximize the overall quality of the predictions
produced by the system.

4.1 Datasets The first dataset was collected from
Accenture, a large consulting corporation. It consists
of 60,000 documents related to client projects. Each
document has associated meta-data in the form of 13
fields. Abstract and Title are treated as the initial fields
(i.e., Fp, see section 2). We must make predictions for
the rest of the 11 fields. Table 2 gives the details of the
fields in this dataset.

The second dataset was collected from Inmedius,
which provides logistics support and publication tools to
technicians who maintain U.S. Navy’s F/A-18 aircraft.
The data consists of 6,000 aircraft trouble reports, and
each report contains 13 fields. Problem summary is
treated as the initial field, and the rest of the 12 fields

Shttp://www.enst.fr/~charon /tournament/median.html



Table 3: The F/A-18 Dataset

Field Name Distinct Values
Problem Summary Free text
PointOfContact 34
Base 31
Application 24
ScheduleTo 20
Category 17
Priority 8
HardwareType 7
Category 7
AssetStatus 6
OperatingSystem 4
Source 4
ReportStatus 4

are predicted in a stepwise manner. Table 3 gives the
details of the fields in this dataset.
We divide both datasets into three equal parts:

1. Classifier training set — This portion was used
to train and tune the classifiers.

2. Order training set — This portion was used
to estimate the pairwise preferences matrix €2, as
described in section 3.1.

3. Test set — This portion was used to evaluate the
performance of the classifiers using the optimal task
orders as learned using the Order training set.

We switch the roles of the three parts and present
the mean and standard deviation of the respective
performance on the 6 combinations, to get a better sense
of the robustness of the algorithms.

4.2 Evaluation Metrics We evaluate and compare
the proposed approaches in terms of the predictive
performance of the classifiers under different task orders
generated by the proposed approaches. We use three
evaluation metrics that capture slightly different aspects
of the system’s performance — Mean Average Precision
(MAP), Fy, and a custom-defined Utility metric.

MAP [5] is a rank-based metric that measures the
quality of ranked list produced by a system. Given a
set of n items to be ranked and a corresponding set of
binary judgments y = {y1,y2, ....yn }, the Average Preci-
sion of a system-produced ranked list § = {41, Y2, ..-Yn }
is given by:

1
MAP(3,y) = > Prec@j

J:g;=1

where R is the number of relevant items in the true
judgments y, and Prec@j is the fraction of items in
the top j ranks of the system-produced list ¥ that are
relevant. MAP is computed as the mean of the Average
Precision scores for each query — i.e., each field in our
case.

F; is a set-based metric, equal to the harmonic
mean of Recall R (fraction of relevant items retrieved)
and Precision P (fraction of retrieved items that are
relevant) [27]:

_ 2RP

~ R+P

In the case of form filling, relevant items correspond
to the correct item(s) for a field, as determined from
past data with completely filled records; retrieved items
correspond to all the items that were suggested by the
system. We report both macro-averaged (averaged over
categories) as well as micro-averaged (averaged over to-
tal documents) Fy scores. The macro-average is domi-
nated by performance on rare categories, while micro-
average is dominated by performance on categories with
many documents [20].

Utility-based metrics The above-mentioned met-
rics do not necessarily reflect the end-user experience in
a form-filling interface. Instead, one might want to es-
timate the amount of effort expended by the user, with
and without the aid of a prediction system. The effort
can be estimated in terms of the number of additions
and deletions that the user needs to make in each field,
similar in spirit to string edit distance. Specifically, we
define the user effort as:

Fy

E = 2 x |additions| + |deletions|

assuming that additions are twice as costly as deletions
when correcting the system’s suggestions.

It is usually harder to choose the correct value for
a field that has many possible fillers, e.g. Point Of
Contact in the F/A-18 dataset, which can take one of 34
values, as opposed to fields like Operating System, which
only takes 4 different values. To reflect this intuition,
we define a weighted version of user effort that penalizes
additions more for fields that have a bigger vocabulary:

E, = 2 x |additions| x log(V) + |deletions|

where V is the size of the vocabulary for the given field.

Using these two definitions of user effort, we de-
fine the corresponding unweighted and weighted Utility
metrics as:

UTILITY =1 — £

4.4

(1) =

(4.5) UTILITY-W = 1 — L.
E’wO



Table 4: Accenture dataset — Performance (columns) of various task ordering approaches (rows). In four of
the five applicable cases, the best performance (bold entry in each column) is obtained when the performance
and task order optimization criterion are matched.

Evaluation Metric

Task ordering method MicroF1 MacroF1 MAP UTILITY UTILITY-W
(Proposed approaches)
LOP-MicroF1 0.6355+0.01 0.4459+0.00 0.7684 + 0.01 0.4324 +0.01 0.3783 + 0.00
LOP-MacroF1  0.6229 4+ 0.01 0.4391 + 0.01 0.7647 + 0.01 0.4372 +0.01 0.3840 + 0.01
LOP-MAP  0.6022 £ 0.01 0.3666 +=0.01 0.7691 +0.00 0.4358 £0.01 0.4418 +0.03
LOP-UTILITY 0.5693 + 0.01 0.3216 £ 0.01 0.7466 £ 0.01 0.4784 +0.01 0.5230 + 0.01
LOP-UTILITY-W  0.5767 £ 0.01 0.3197 +0.01 0.7458 + 0.00 0.4760 +0.01 0.5334 +0.01
LOP-CondEntropy  0.5971 £+ 0.01 0.4282 + 0.00 0.7628 + 0.01 0.4493 £+ 0.01 0.4021 + 0.01
(Baselines)
DecEntropy  0.6208 £+ 0.01 0.4165 %+ 0.00 0.7623 + 0.01 0.4381 £+ 0.01 0.3826 + 0.01
Expert  0.5765 + 0.01 0.3159 +0.01 0.7465 + 0.00 0.4585 £+ 0.01 0.5095 + 0.01
Random  0.5343 4+ 0.04 0.3066 + 0.03 0.7194 + 0.01 0.3985 + 0.03 0.3695 + 0.04

where Fy and E,,¢ denote the unweighted and weighted
effort, respectively, expended by a user when the system
makes no predictions and the user must insert all correct
values manually. Thus, a Utility score of 0.6 means that
the proposed ordering leads to a 60% reduction in user
effort as compared to an unaided user.

4.3 Classifiers We choose Linear Support Vector
Machines (SVMs) for all our experiments, which have
been reported to produce state of the art performance
on many classification problems [7] and can handle a
large number of potentially redundant features, which
is common in the domain of text classification [19].

One SVM classifier is trained per field, treating it
as the target variable, while the rest of the fields are
treated as the predictors. A score-based thresholding
strategy with a five-fold cross-validation was used to
convert the scores produced by the classifiers into deci-
sions [29]. Since each field can take multiple values, the
prediction task is a multi-label classification problem,
which we address using a one-vs-all scheme [24].

5 Results

Table 4 and 5 show the results obtained using various
task ordering approaches on the Accenture and F/A-18
datasets, respectively. The proposed approaches include
two main alternatives — the conditional entropy based
method (LOP-CondEntropy in the tables), and the
classifier-dependent methods that can be trained using
various optimization criteria (the rest of the LOP-* rows
in the tables).

We include three baselines:
1. Random — Arbitrary task orderings,

2. Expert — A task order suggested by a domain
expert in the case of the Accenture dataset, and

3. DecEntropy — A greedy approach that orders the
tasks by decreasing entropies. The intuition is that
the fields with the most uncertainty (as measured
by the entropy of their label distribution in the
training set) should be placed first so that they
provide maximum information to the classifier to
make predictions for the rest of the fields. The
inverse relationship between entropy and classifica-
tion performance on a target variable is the basis
of many active learning strategies based on uncer-
tainty sampling [11, 33] as well as feature selection
strategies based on mutual information [13, 30].

On both datasets, the proposed approaches achieve
the best performance with respect to all evaluation
metrics. The average performance of the random task
orderings is the worst, and also has the highest variance.
The Expert task ordering in Table 4 does not perform
well in terms of MicroF1, MacroF1, and MAP, but has
competitive performance in terms of unweighted and
weighted Utility.

The classifier-dependent approach performs better
than the conditional entropy based approach, since the
former directly uses the evaluation metric as part of the
optimization criterion. Moreover, in almost all cases,
the best performance is obtained when the same metric



Table 5: F/A-18 dataset — Performance (columns) of various task ordering approaches (rows). In all of the five
applicable cases, the best performance (bold entry in each column) is obtained when the performance and task

order optimization criterion are matched.

Evaluation Metric

Task ordering method MicroF1 MacroF1 MAP UTILITY UTILITY-W
(Proposed approaches)
LOP-MicroF1 0.8550+0.00 0.5572+ 0.01 0.9013 + 0.00 0.7783 + 0.00 0.8024 £ 0.00
LOP-MacroF1  0.8449 £0.00 0.5701 +£0.01  0.9009 + 0.00 0.7775 £ 0.00 0.7997 £ 0.00
LOP-MAP  0.8460 + 0.00 0.5583 +0.01 0.90324+0.00 0.7796 £+ 0.00 0.8031 4+ 0.00
LOP-UTILITY  0.8469 + 0.00 0.5602 % 0.00 0.9030 +£0.00 0.7823 +£0.00 0.8052 4+ 0.00
LOP-UTILITY-W  0.8377 £ 0.00 0.5516 4+ 0.01 0.8994 + 0.00 0.7737+£0.01 0.8057 +0.00
LOP-CondEntropy  0.8397 + 0.00 0.5604 £ 0.00 0.9002 + 0.00 0.7786 £ 0.00 0.8007 £ 0.00
(Baselines)
DecEntropy  0.8468 + 0.00 0.5634 + 0.00 0.8994 + 0.00 0.7767 £ 0.00 0.7979 £ 0.00
Random  0.7983 £+ 0.01 0.5352 + 0.03 0.8990 + 0.01 0.7473 £ 0.02 0.7399 + 0.02

is used for task order optimization as well as evaluation.
This suggests that different performance metrics indeed
lead to different optimal task orders. The differences in
the behavior of the metrics are more striking in the case
of the Accenture dataset (Table 4) — high performance
on MicroF1 and MacroF1 usually corresponds to lower
UTILITY and UTILITY-W scores, and vice versa. The
classifier-dependent approach provides an effective way
to optimize the task order with respect to different
utility functions that are most appropriate for a given
domain. By directly observing the behavior of the
classifier and the evaluation metric, this approach can
derive an optimal order in the absence of any domain
knowledge as well as understanding of the prediction
systems.

5.1 Significance Tests To evaluate the differences
between classifier performances with respect to different
task orderings, we conducted a sign test for each pair of
methods listed in Table 4, and similarly for Table 5.

For each pair of ordering methods, we compare their
performance on each field of each document in terms
of binary decisions made by the classifier. The total
number of such decisions is equal to n x Zszl ||,
where n is the number of documents and |Fy| denotes
the number of possible categories for field F}, since the
classifier must make a binary decision for each such
category for each field in each document.

The two sample paired sign test counts the number
of times one method produces a better classification
decision than the other method on the same document-
field-category triplet, and calculates the p-value as the

probability of observing this (or a more extreme) count
under the null hypothesis — i.e. the two methods have
the same performance. Therefore, a small p-value
indicates a strong evidence against the null hypothesis.

On the Accenture dataset (Table 4), differences in
UTILITY scores greater than 0.006 were found to be
highly statistically significant (p-value << 0.01). On
the F/A-18 dataset (Table 5), differences in UTILITY
scores greater than 0.003 were found to be highly
statistically significant (p-value << 0.01).

6 Related Work

The problem of learning to order items arises in many
domains. In the context of Information Retrieval (IR),
the task of learning to rank documents or Web pages
with respect to queries has received much attention in
recent literature [26, 6, 31, 21]. The objective is to
learn a function that maps query-document features
to document scores, which induce a ranking of the
documents. In our case, instead of mapping features
to scores of items to be ranked, the items (i.e. the
prediction tasks) themselves interact with each other,
thus affecting the overall predictive performance of
different task orders. Thus, do not learn to rank tasks;
we only induce a one-time ranking based on the task
interactions as observed from past data.

Cohen et al. [10] used a formulation similar to
ours for the problem of ranking Web pages when user
feedback is available in the form of pairwise preferences.
However, their main focus was on finding a good linear
combination of preference functions. The task of finding
the optimal order was addressed by using a simple



greedy algorithm.

In the context of machine learning, Active Learn-
ing [11] focusses on the problem of designing learning
algorithms that can choose the instances to be labeled
by the user (or oracle) instead of passively using la-
beled data given to them. However, the objective is to
improve the performance of the learning algorithm by
querying for the least number of labels from the user.
The system is not expected to provide an initial guess
when querying for a label. This allows the successful ap-
plication of strategies that query for the most uncertain
label [11, 33]. In our problem setup, we must choose the
next field of the document by balancing two conflicting
objectives — the correct label for the field should be ben-
eficial for predicting the rest of the fields, and the system
must already be reasonably confident about making an
initial guess for the field to be queried. Another crucial
difference is that in Active Learning, the learner actively
queries for labels during the training phase. In our case,
the querying takes place during the test or classification
phase. In this sense, our setup is more closely related to
the concept of Active Classifiers [16] that are designed
to work with missing values during classification. An
active classifier can, at a cost, ask for some of the un-
specified attributes before deciding on the class label.
However, they still maintain a distinction between in-
put attributes and class labels, whereas this distinction
is lost in our problem setup — each field behaves as an
input attribute or target variable at different steps of
the sequential prediction process.

Another related research area is multi-task learning
that deals with simultaneously learning good models for
multiple prediction tasks [2, 32]. The focus is on learn-
ing a set of interrelated prediction targets by leveraging
their structural similarities with respect to a common
set of input features. In our case, we have a set of
prediction targets, but there is no common set of in-
put features; instead, the prediction targets themselves
comprise the predictors for the other target variables
due to the sequential nature of the interactive process.
This setup has not received significant attention in the
field of machine learning.

7 Discussion and Future Work

Our approach, by design, provides an approximate solu-
tion to the task ordering problem. The approximation
arises due to limiting attention to only pairwise task
order preferences, while ignoring any higher order inter-
actions between the prediction tasks. For instance, task
t; might be highly dependent on task ?;, thus creating
a strong preference for ordering ¢; before ¢;. However,
this preference might be obviated by the presence of a
third task ¢, which is highly predictive of ¢;. Ignoring

such interactions may restrict the algorithm from fully
exploring the search space. While this is a bias in the
algorithm introduced intentionally for tractability, its
effect on the (sub-)optimality of the solution is difficult
to characterize.

Secondly, we only considered static task ordering in
this paper — using past data, an optimal order is learned,
which is then held fixed for future user interactions. A
more effective approach would be active task ordering,
where the system dynamically chooses the next field
based on the current state of user interaction.

8 Conclusions

This paper presents the first attempt at understanding
and solving the optimal task ordering problem. We for-
mulate optimal task ordering as an optimization prob-
lem with an explicit objective function that allows differ-
ent performance criteria to be plugged in and compared.
We reduce the intractable optimization problem to the
well-known Linear Ordering Problem by relaxing the
objective function in terms of pairwise task order prefer-
ences. We demonstrate how the proposed approach can
be used to directly optimize the task order with respect
to a utility metric that is appropriate for a given do-
main. Our results indicate encouraging improvements
over baseline approaches that do not leverage task de-
pendencies. We hope that this paper serves as a start-
ing point for more sophisticated approaches that have a
strong potential for improving user experience in a wide
range of multi-step interactive processes.
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