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ABSTRACT

We consider the problem of learning to rank relevant and
novel documents so as to directly maximize a performance
metric called Expected Global Utility (EGU), which has
several desirable properties: (i) It measures retrieval per-
formance in terms of relevant as well as novel information,
(ii) gives more importance to top ranks to reflect common
browsing behavior of users, as opposed to existing objective
functions based on set-coverage, (iii) accommodates different
levels of tolerance towards redundancy, which is not taken
into account by existing evaluation measures, and (iv) ex-
tends naturally to the evaluation of session-based retrieval
comprising multiple ranked lists. Our ground truth is de-
fined in terms of “information nuggets”, which are obviously
not known to the retrieval system when processing a new
user query. Therefore, our approach uses observable query
and document features (words and named entities) as surro-
gates for nuggets, whose weights are learned based on user
feedback in an iterative search session. The ranked list is
produced to maximize the weighted coverage of these sur-
rogate nuggets. The optimization of such coverage-based
metrics is known to be NP-hard. Therefore, we use a greedy
algorithm and show that it guarantees good performance
due to the submodularity of the objective function. Our ex-
periments on Topic Detection and Tracking data show that
the proposed approach represents an efficient and effective
retrieval strategy for maximizing EGU, as compared to a
purely-relevance based ranking approach that uses Indri, as
well as a MMR-based approach for non-redundant ranking.
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1. INTRODUCTION

There has been growing interest in building and optimiz-
ing retrieval systems with respect to multiple criteria like
relevance, novelty, and diversity of information [30, 6, 22,
29]. However, each of the current approaches is based on its
own objective function that does not fully capture all the
factors that are essential for realistic evaluation and opti-
mization of systems with respect to relevance and novelty.

One of the most common modes of interaction with re-
trieval systems (e.g., search engines) is ranked retrieval, where
the system produces a list of documents ordered by decreas-
ing relevance. However, so far novelty detection has not
received much attention in a ranked retrieval setting. For
instance, the TREC novelty track [24], which is represen-
tative of the research on novelty detection, assumed a fixed
chronological order of documents, and the system’s task was
to merely detect the relevant and novelty sentences, without
re-ordering them. While such a setting helped in isolating
the novelty detection task and greatly simplified the cre-
ation of ground truth (i.e., pre-judged relevant and novel
sentences), it obviously does not reflect how users interact
with today’s retrieval systems. Similarly, diversity-based re-
trieval has been treated as a set retrieval problem: The ob-
jective function is reduced to the set-covering problem [30,
1], which does not differentiate between orderings of docu-
ments. This leads to an undesirable gap between set-based
objective functions and the ranked-based evaluation metrics
that are of ultimate interest.

Moreover, users often have different tolerances towards re-
dundancy, as was also noted by [1, 4, 8]. While some users
only want to see previously unseen documents, other users
might desire a certain level of redundancy in the ranked list
for various reasons like corroboration of information, or as-
sessing the consensus or opinions on a single topic or product
based on different news sources, reviewers, or blogs. How-
ever, none of the existing approaches to novelty or diversity-
based ranking take this into account.

Accounting for redundancy in a principled manner is espe-
cially important when dealing with multiple ranked lists, for
example, in an interactive session with a Web search engine,
where the user goes through multiple rounds of query refor-
mulation and feedback. It is not clear how to model novelty
across multiple ranked lists. Simple strategies exist, e.g., pe-
nalizing or removing documents that were already presented,
or are similar to already-presented documents. Such an ap-



proach is reasonable in an adaptive filtering setting [32], but
not for ranked retrieval: Users generally do not read all doc-
uments presented to them in a ranked list (especially in long
ranked lists produced by search engines). They are more
likely to read the top-ranked documents, and stop at some
position based on their patience or satisfaction. A possible
solution would be to assume a fixed position where users
stop in each ranked list, e.g., assuming that all users read
the top ten documents in each ranked list [14]. However, any
single stopping position would be a crude approximation of
the dynamic behavior of real users and would completely ig-
nore the documents below the cut-off rank for the purpose of
evaluation. Instead, a probabilistic user model is desirable
to model the browsing behavior of a population of users: A
document that was presented at a very low rank in a previ-
ous ranked list has a smaller likelihood of being read by the
user, and hence, should be discounted appropriately for the
purpose of estimating the novelty of subsequent documents,
thus leading to a probabilistic notion of novelty that extends
naturally to multiple ranked lists in a search session.

Finally, the non-independent nature of novelty raises new
challenges for learning from user feedback, which might be
available in explicit (e.g., “like”/“dislike” buttons) or implicit
(e.g., clicks) form. Since the utility of each document de-
pends on other documents shown to the user, the feedback
provided by the user should also be interpreted with respect
to previously seen documents. In other words, user feed-
back is an indicator of the marginal utility of documents,
instead of its absolute usefulness with respect to the user’s
information need. However, the latter assumption has been
commonly used for learning from relevance feedback, e.g.,
through regression [16, 28] or language modeling [31].

To summarize, accurate evaluation and optimization of
retrieval systems must be based on a performance measure
with the following properties: (i) It should take both rele-
vance and novelty into account, (ii) give more importance
to top ranks to reflect common browsing behavior of users,
(iii) accommodate different levels of tolerance towards re-
dundancy, and (iv) extend naturally to the evaluation of
session-based retrieval comprising multiple ranked lists. In
this paper, we develop a retrieval strategy for optimizing
a recently proposed performance measure called Expected
Global Utility (EGU) [27] that satisfies the above-mentioned
criteria. We also propose a logistic regression based ap-
proach for learning from user feedback that takes the non-
independent nature of document utility into account.

2. PROPOSED APPROACH

Our approach is based on maximizing a recently-proposed
metric called Expected Global Utility (EGU) [27] that com-
bines all the above-mentioned criteria in a principled man-
ner. Relevance and novelty are modeled in terms of “infor-
mation nuggets”. The gain received from relevant nuggets
follows a diminishing returns property to account for the re-
duced utility of seeing repeated information. However, how
to directly optimize a retrieval system with respect to such a
metric remains an open challenge, which we aim to address
in this paper.

“Information nuggets”, or simply “nuggets”, is a concept
borrowed from question answering evaluation [10]. A nugget
is an atomic piece of information that is either present or ab-
sent from a given document. Thus, the answer keys for each
user query can be defined in terms of the nuggets that sat-

isfy the query. For example, the query “BP oil spill” would
have the following nuggets: “fire started on April 20, 20107,
“nine crew members and two engineers died”, “top hat at-
tempt”, “top kill attempt”, and so on'. A document’s utility
(i.e., relevance and novelty) depends on the nuggets it con-
tains, and whether these nuggets have been seen by the user
in previously displayed documents. The goal of a retrieval
system is to generate ranked lists that would maximize the
utility received by the user.

There are several advantages to using nuggets as retrieval
units. Nuggets can be used as answer keys to create reusable
test collections for relevance and novelty-based retrieval eval-
uations. Previous novelty-based evaluations (e.g., TREC
[24] and TDT [2]) used documents or sentences as retrieval
units and depended on a fixed (chronological) order of re-
trieval, which is clearly unrealistic for ranked retrieval. More-
over, the use of nuggets allows a more natural definition of
novelty where a given document can be deemed as redundant
based on two or more previously seen documents, instead of
a single near-duplicate document seen by the user in the
past. Since entire documents are rarely redundant with re-
spect to each other, nuggets provide a finer granularity for
relevance and novelty-based evaluation.

Next, we describe the Expected Global Utility (EGU) in
detail, followed by our proposed approach for optimizing
retrieval systems with respect to this performance measure.

2.1 Optimization Criterion: Expected Global
Utility
Utility. EGU is based on the notion of “utility” of each
document returned by the system, defined as the difference
between the gain and cost that would be accrued by the user
when he or she reads that document.

U(d;) = G(d;) — C(d:) (1)

The cost of reading the document represents the time and
effort expended by the user in going through the system’s
output. The simplest definition would be unit cost per doc-
ument, which explicitly penalizes longer ranked lists?. More
sophisticated definitions of cost can be based on length of
the document, its language, and so on.

The gain from reading the document is defined in terms of
its nuggets, whose contribution is discounted based on how
many times they have been seen by the user previously:

G(di) = Y wsy" Y (2)

sed;

where ¢ is a nugget, ws is the weight of §, n(d,7 — 1) is
the number of times ¢ appears in the ranked list up to rank
i — 1. v is a pre-specified parameter that reflects the user’s
tolerance for redundancy. Thus, the gain received from each

Note that nuggets are defined at a conceptual level, e.g.,
a nugget like “Barack Obama” acts as a placeholder for all
possible ways of referring to the same person, e.g., “Obama’”,
“President Obama”, etc. Therefore, nuggets must be some-
how matched to their various possible surface-level mani-
festations. To solve this problem, we use the dataset and
nugget-matching rules that are made publicly available by
[28]. (See Section 4.1 for description of the dataset).

2Such a penalization can be used to evaluate retrieval sys-
tems that are expected to limit the amount of information
shown to the user, but is irrelevant for evaluating search en-
gines, which produce very long ranked lists that are never
fully browsed by the user.



successive presentation of the same nugget is discounted by a
factor . If v = 1, no discounting takes place: The user is as-
sumed to be fully tolerant to redundancy, and the evaluation
reduces to be relevance-based only. At the other extreme of
v = 0, reading a nugget after the first time is assumed to be
completely useless to the user (interpreting 0" =1 if n =0,
and 0 for n > 0).
The gain of an entire ranked list can thus be defined as:

1 — ~1s(L)
G(Llq) = Z W(sili7 (3)

seng

where 15(L) is the number of times nugget ¢ appears in
the ranked list L, and A, is the set of all nuggets that are
relevant to the query gq.

Expected Utility. The current definition of gain of a
ranked list does not favor early retrieval of useful informa-
tion. We must take the typical browsing behavior of users
into account: Users are more likely to browse ranked lists in
a top-down manner and stop at some position due to various
reasons like satisfaction or frustration. To capture this be-
havior, the utility of a ranked list is interpreted as a function
of the user’s stopping position s, which is assumed to be a
random variable. By defining a probability distribution over
s, say, Pr(s|p) with parameter p, we can obtain the ezpected
utility of a ranked list:

4
E.[U(s)] = D Pr(slp)U(s) (4)

£
= Pr(s|p)(G(s) — C(s)) (5)

We assume Pr(s) to be a geometric distribution with pa-
rameter p to model the common observation that users are
more likely to stop at early positions in a ranked list.

Multiple Ranked Lists The above definition extends
naturally to session-based retrieval with multiple ranked lists
by extending the definition of stopping distribution as well
as utility to multiple ranked lists®. Specifically, let Pr(s) =
Pr(s1) Pr(s1)... Pr(sk), where s1, ...sx represent the respect-
ing stopping positions in the K ranked lists. Similarly, util-
ity can be defined as a function of stopping positions in
all ranked lists by considering only the nuggets that appear
in the respective top si1..sx documents in each ranked list.
Since the expectation is calculated by summing over all stop-
ping positions in each ranked list, we can obtain a more ac-
curate estimate of the utility of multiple interrelated ranked
lists without having to assume a hard reading cut-off in each
ranked list?®.

Next, we focus on the main problem of system optimiza-
tion, i.e., designing a retrieval strategy to maximize EGU.

2.2 System Optimization

As mentioned earlier, the ground truth is defined in terms
of nuggets. However, a retrieval system would obviously
not have access to the true nuggets for an unseen query.

3Since the multiple ranked lists are assumed to be part of
a single coherent session, their utility cannot be calculated
independently of each other due to the non-independent na-
ture of novelty.

4Summing over all stopping positions in multiple ranked lists
can be computationally prohibitive; See Section A.1 for so-
lutions.

Therefore, it must depend on observable features of docu-
ments (e.g., words) to rank them with respect to a query.
Several approaches have been used for estimating the rel-
evance of documents in terms of the query and document
words, e.g., hand-crafted scoring functions like BM25 [23],
or probabilistic approaches like language modeling [17]. Sim-
ilarly, novelty of documents has been measured in terms of
word-level similarities between documents, e.g., cosine sim-
ilarities [4, 27]. However, such approaches would only pro-
vide an indirect way of optimizing EGU without taking into
account its various nuances like user’s tolerance for redun-
dancy (v, see Eq. 3) and browsing persistence (p, see Eq. 4).
Moreover, such approaches measure relevance and novelty
independently and then combine them to score each docu-
ment (e.g., using the MMR strategy [4]). That is, relevance
and novelty are treated as compensatory: High novelty can
compensate for low relevance. Hence, it is possible for such
methods to favor a document that is highly novel but ir-
relevant to the given query. However, users generally treat
relevance as a pre-condition for usefulness of information [19,
12]. Therefore, it is more appropriate to directly target the
retrieval of relevant and novel information.

Nuggets directly capture relevant and novel information.
Therefore, we argue that the system’s model of relevance
and novelty should also be based on nuggets. Again, since
the true nuggets are unknown to the system, it must use
observable features (e.g., words or named entities) as sur-
rogates for the true nuggets. However, the main challenge
is that not all features are equally important: e.g., certain
frequently occurring words known as “stopwords” carry neg-
ligible information. Moreover, the importance of a feature
depends on the user’s query: e.g., for a query like “BP oil
spill”, the system should focus on the coverage of words and
named entities that denote the occurrence, consequences,
and containment efforts related to the oil spill. Further-
more, for broad or ambiguous queries, the importance of
the features might depend on the intention or focus of the
particular user, which can be determined based on explicit
or implicit feedback.

Next, we will illustrate our retrieval approach and describe
how it addresses the above-mentioned problems.

Proposed Retrieval Approach. Given a query, rank-
ing documents is a multi-step process:

1. Obtain a candidate set of documents using a standard
retrieval approach.

2. Identify and assign weights to all features that appear
in the candidate set.

3. Re-rank the documents to maximize the coverage of
the features as defined by the EGU objective function.

4. Update weights of features based on user feedback. Re-
peat.

Let us look at each of these steps in detail.

2.2.1 Obtaining a Candidate Set

This step is accomplished using an off-the-shelf retrieval
system, and serves to limit the number of documents that
need to considered for creating the final ranking. In our
experiments, we use a state-of-the-art retrieval engine, Indri
[26], to retrieve the initial set of documents.



2.2.2 Identifying and Assigning Weights to Features

The candidate set of documents is used to extract features
that will act as surrogates for the true nuggets that the user
is interested in. We use the following features as surrogates
for nuggets:

e Words: The simplest and most straightforward choice
is to use words as surrogates for nuggets. Then, our
goal is to re-rank the initial ranked list so as to cover
as many different words as possible, subject to an ap-
propriate weighting scheme.

e Named Entities: Named entities are phrases that

contain names of persons, organizations, locations, times,

and quantities. They can be treated as units of infor-
mation and have been used to support various natural
language applications tasks like e.g., retrieval [3], nov-
elty detection [15], and question answering, where a
majority of who-, where-, and when- questions have
answers in the form of person, location, and temporal
entities, respectively [21, 25].

Each nugget (i.e., word or named entity) is assigned a
weight based on two factors:

1. Its TF-IDF (Term Frequency-Inverse Document Fre-
quency) value, where term frequency (TF) is defined as
the number of times the nugget appears in the candi-
date set of documents, and inverse document frequency
(IDF) is negative logarithm of the fraction of docu-
ments in the entire corpus that contain the nugget.
Favoring nuggets that occur frequently in the initial
result-set but are not too common in the entire cor-
pus serves the purpose of identifying nuggets that are
potentially relevant and discriminative with respect to
the user’s query.

2. The scores of the documents (as assigned by the ini-
tial retrieval engine—Indri in our case) that the nugget
appears in. This serves the purpose of favoring those
terms that appear in documents deemed more relevant
by the retrieval engine. Since a single nugget can ap-
pear in multiple documents, we use the average score
of such documents.

That is, the weight ws assigned to the nugget 0 is:
ws = 3(d) - TF(0) - IDF(6) (6)

where 5(9) is the average score of the documents in which &
appears.

Note that this is only an initial assignment of weights
and is updated based on user feedback, as described in Sec-
tion 2.2.4.

2.2.3 Ranking the Documents

Once weights are assigned to features, we must rank the
documents so as to maximize the weighted coverage of the
features at the top ranks, so that a typical user who browses
the ranked list in a top-down manner is likely to come across
the most number of (surrogate) nuggets. It is already known
that finding the optimal set of documents that will maxi-
mize the coverage of any discrete elements (aspects, nuggets,
categories, etc.) is an NP-hard problem [30, 1, 5]. The
NP-hardness also extends to the ranking problem. In Sec-
tion A.2, we show that maximizing EGU can be reduced to

Algorithm 1 Greedy algorithm (GREEDY)

1: /* Input: Documents to rank D = {di,d2,...,di} */

2: /* Output: Ranked list L */

3 L0

4: for i=1to k do

5: j < CHOOSE-NEXT-DoC(L, D)

6: L —LUd;

7 D —D\d,

8: end for

9:

10: sub CHOOSE-NEXT-Doc(L, D) do

11: /* Input: Current ranked list L, remaining docu-
ments D */

12: /* Output: Index of next document from D to
include in the ranked list */

13: for i=1to|D| do

14: s0(i) = MARGINAL-UTILITY(d;, L)

15: end for

16: return argmax, so(%)

17: end sub

the Maximum Coverage Problem, and that a simple greedy
algorithm guarantees good performance due to the submod-
ularity of EGU. Here, we only focus on the greedy algorithm.
Algorithm 1 shows the steps involved in the greedy algo-
rithm for ranking. At each step, the algorithm picks the
document with the highest marginal utility, which in turn
depends on the expected number of times each nugget in
the document has already appeared in documents already
included in the ranked list L:

MARGINAL-UTILITY(d;, L) = Z wiry"s (F) (7
sed;

The definition of marginal utility can be extended to mul-
tiple ranked lists by replacing ns(L) by the expected number
of times each nugget appeared in all previously displayed
ranked lists (Eq. 14).

2.2.4 Updating Weights based on User Feedback

The initial weights obtained in Section 2.2.2 are further
tuned to adapt to the user’s information needs by leverag-
ing feedback obtained from the user. In a deployed sys-
tem, such feedback could be available in an explicit (e.g.,
“like”/“dislike” buttons in the interface) or implicit (e.g.,
clicks on documents) form. For the purpose of this paper,
we will simulate the presence of positive and negative feed-
back on documents returned by the system. We aim to use
this feedback to automatically infer the user’s interest in
particular pieces of information, i.e., nuggets.

Learning from user feedback poses two main challenges:
First, user feedback is generally available at the document
level. However, we need to learn the concept of usefulness
at a much lower granularity of nuggets. Second, unlike tra-
ditional retrieval setup, where the relevance of each docu-
ment is assumed to be independent of other documents in
the ranked list, the usefulness of each document depends on
other documents presented in the ranked list. Therefore, the
user’s feedback on a document can no longer be assumed to
be independent of what he or she has seen before the current
document. In other words, the user’s feedback is an indica-
tor of the marginal utility of a document, not its absolute
utility.



To solve both these problems, we use a learning approach
based on logistic regression, which models the user’s feed-
back as a function of the marginal gain provided by each
document (as opposed to its absolute gain). Specifically,
the log-odds of receiving a positive feedback on a document
is modeled as a linear combination of the marginal gain of
each nugget in the document:

Pr(fi=1lw) = m (8)
where f; is the feedback on the i*" document, and g;(w) is
the corresponding marginal gain interpreted as a function of
the weights w of the nuggets:

gi(w) = Z Wé,yEns(dm_O (9)
ded;

where w; is the weight of nugget ¢, and Ens(di:i—1) is the
expected number of times nugget 0 has been seen by the
user before the current document.

Thus, each document in a ranked list is a training in-
stance with label equal to the user’s feedback (+1 or —1), and
predictors equal to the marginal gain of each nugget. The
goal of logistic regression is to find the weights for nuggets
that best explain the observed user feedback. The optimal
weights w* are found through maximum a-posteriori (MAP)
estimation, using a Normal prior whose mean is equal to the
current estimate of the weights:

Pr(w) ~ N (wo, \I) (10)

where A controls the strength of the prior. The use of a
prior allows the system to adapt to the user’s interests in an
incremental manner by using the previous iteration’s weights
as the prior for the current step.

The optimal weights maximize the log-likelihood over all
documents on which feedback is received:

bw) = = 3 log(1 + eap(—Figi(w) — ) = GIw — wal |

(11)

which can be solved efficiently using conjugate gradient as-
cent [18].

3. TIME COMPLEXITY

Let us estimate the time complexity of the proposed ap-
proach and compare it against the MMR strategy for novelty-
based ranking. Assume an initial candidate set of documents
(cf. Section 2.2.1) of size C. Since retrieval of this candidate
set is common to both re-ranking approaches (and also not
the focus of this paper), we will ignore it from the time com-
plexity calculation. The goal is to create a new ranked list
of length k. Assume that each document contains W words
on average.

The proposed approach first processes the candidate set of
documents to assign initial weights to all surrogate nuggets
(e.g., words), which requires O(CW) operations. Then, the
ranked list is built in k steps: At each step, score the remain-
ing O(C) documents based on their marginal utility, which
requires O(W) operations per document. This step leads
to a time complexity of O(kCW). Hence, the total time
complexity of the proposed approach is O(CW + kCW).

The MMR-based approach is also based on iteratively
building the ranked list: At each of the k steps, score the

10°
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Figure 1: Time complexity of the proposed nugget-
based re-ranking vs. that of MMR-based re-ranking
approach.

remaining O(C) documents by computing their cosine sim-
ilarity with each of the O(k) documents already selected
in the ranked list. A single cosine similarity computation
takes O(W') operations. This leads to a time complexity of
O(K*CW).

Since MMR is based on computing similarities with all
previously displayed documents, its computation is quadratic
in the length of the ranked lists, which can be prohibitive
for long ranked lists, or multiple ranked lists in a search ses-
sion. On the other hand, the proposed approach is based
on marginal utilities of documents, which can be computed
using a running total of the number of times each nugget
has been previously displayed to the user. This acts as a
succinct representation of the user’s browsing history and
leads to the linear time complexity with respect to ranked
list length. Figure 1 shows the difference in time complex-
ities of the two approaches as a function of the ranked list
length (k), assuming that the average document length (W)
is 50 words and the initially retrieved set of candidate docu-
ments is three times the number of documents in the target
ranked list, i.e., C' =3 - k.

4. EXPERIMENTS

We use the Topic Detection and Tracking dataset (de-
scribed below) to compare our proposed approach against
the following baselines: (i) Indri [26], which is a state-of-the-
art retrieval engine, and represents a purely relevance based
approach, and (ii) Indri+MMR: Indri is used to create an
initial set of documents for each query, which are re-ranked
according to the Maximal Marginal Relevance (MMR) [4]
criterion. This represents a baseline for novelty-based rank-
ing that uses cosine similarities between document vectors
to measure redundancy, which is then combined with the
relevance score in a linear fashion®.

We include four variants of the proposed approach to un-

®MMR involves a parameter A (see [4] for details) that con-
trols the trade-off between relevance and novelty. We used
a validation set to choose the best value of A in all experi-
ments.



derstand its behavior: (i) Indri+W, which re-ranks an ini-
tial set of documents returned by Indri by using words as
surrogates for nuggets, but makes no use of feedback, (ii)
Indri+W+F, which again uses words as surrogates but up-
dates their weights based on user feedback, (iii) Indri+NE+F,
which uses named entities as surrogates and leverages user
feedback as above, and (iv) Indri+W+NE+F, which uses
both words and named entities as surrogates and also lever-
ages user feedback.

To assess the behavior and performance of the greedy al-
gorithm for novelty-based ranking, we generate synthetic
ranked lists and evaluate the ranked list returned by the
greedy algorithm against the true ideal ranked list obtained
using exhaustive search.

4.1 Data

Topic Detection and Tracking (TDT) Data. TDT4
was a benchmark corpus used in Topic Detection and Track-
ing (TDT2002 and TDT2003) evaluations. It consists of over
90,000 articles from various news sources published between
October 2000 and January 2001. This corpus was extended
for novelty-based evaluations by creating 120 queries with

corresponding nuggets and nugget-matching rules as described

in [13, 28]. To simulate session-based retrieval with multi-
ple rounds of retrieval and user feedback, we divided the
4-month span of the corpus into 25 chunks, each compris-
ing approximately 5 consecutive days. A retrieval system
is expected to produce a ranked list of documents at the
end of each chunk, receive feedback from the user, and then
produce a new ranked list for the next chunk, and so on.
This setup simulates a user who is following an evolving
news event over an extended period of time—expecting the
retrieval system to return a personalized ranked list of rele-
vant and novel documents after every 5 days.

4.2 Evaluation Metric

We used EGU with three different values of v: 0.0, 0.1, and
1.0, to simulate different tolerances towards redundancy. 0.0
corresponds to no tolerance, 0.1 corresponds to some toler-
ance, and 1.0 corresponds to full tolerance for redundancy,
i.e., the traditional relevance-only based retrieval setup. The
user’s stopping probability p was set to 0.1, which corre-
sponds to an average reading length of 10 documents. Since
we are mainly interested in the ability of the system to re-
turn relevant and novel documents, and do not care about
the lengths of the ranked lists (as is common in ranked re-
trieval evaluation), we use zero cost in EGU (see Section 2.1).

4.3 Results

Main Results. Table 1 shows the performance obtained
by the baselines and different settings of the proposed ap-
proaches®. The use of words and named entities as sur-
rogates for re-ranking, with weights updated through user
feedback (Indri+W+NE+F) performs the best. The per-
formance of words-only with feedback (Indri+W+F) and
named entities-only with feedback (Indri+NE+F) is close
in all cases, but their combination leads to the best perfor-
mance.

When novelty is a factor of consideration (i.e., v = 0.0 or
0.1), the proposed approach using words as surrogates but

5The symbols * and T indicate statistically significant dif-
ferences (p < 0.01 for sign test with paired queries) with
respect to the two baselines, respectively.

Table 1: EGU scores of different systems for three
values of ~.

System EGU

(v=0.0) (y=0.1) (v=1.0)
(Baselines)
Indri 0.3360 0.4016 0.4890
Indri+MMR 0.3424 0.4202 0.4890
(Proposed)
Indri+W 0.3501 0.4278* 0.4666
Indri+W+F 0.3656*t  0.4401*t  0.5017
Indri+NE+F 0.3683*"  0.4445*t  0.5121*1
Indri+ W+NE+F 0.3688*1  0.4473*f 0.5192*

without feedback (Indri+W) performs better than the base-
lines, which demonstrates its ability to model novelty effec-
tively. However, it is disappointing that the feedback-based
variants do not exhibit a substantial improvement over the
no-feedback variant. To some extent, this can be explained
by the fact that the benefits of feedback are nullified by the
demand for novelty: Through feedback, the user indicates
interest in specific items, but at the same time, expects the
system to not retrieve the same (or very similar) items in the
future, but instead, other items that are relevant and novel.
Our evaluation merely shows that the benefits of user feed-
back may be overestimated if novelty (or redundancy) is not
taken into account.

On the other hand, when the user has full tolerance for
redundancy (i.e., v = 1.0), the proposed approach without
any feedback (Indri+W) performs worse than the baseline,
which shows that the proposed re-ranking approach is less
effective for relevance-based ranking unless feedback is pro-
vided. Hence, there is an opportunity to improve the re-
ranking approach itself (possibly through the use of more
sophisticated surrogates for nuggets), which would lead to
further improvements across all settings. When feedback
is provided, the proposed method indeed performs substan-
tially better.

For v = 0.0 and 0.1, MMR-based retrieval (Indri+MMR)
performs better than the baseline of relevance-only ranking
(Indri), as expected. Although the improvement in perfor-
mance of the proposed approaches over MMR is not substan-
tial (especially if feedback is not considered), the proposed
approaches provide a computationally efficient alternative
without requiring parameter tuning. In the MMR approach,
the parameter A must be re-tuned for different tolerances for
redundancy (), whereas the proposed approaches directly
take this into account through the definition of marginal util-
ity (Eq. 7), which can enable a user to dynamically change
his or her redundancy tolerance in a deployed system. More-
over, as mentioned in Section 3, the proposed approach can
be much more computationally efficient compared to the
MMR, approach for longer (or multiple) ranked lists. For
v = 1.0, the MMR approach obtains the same performance
as the Indri baseline because the optimal value of A (see
Section 4) was found to be zero as expected, i.e., no novelty
component in the document scoring.

Performance of the greedy algorithm. An impor-
tant step in our approach is the use of the greedy algorithm
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Figure 2: Approximation factors achieved by the
greedy algorithm on synthetic ranked lists for dif-
ferent redundancy tolerances ~.

to rank the documents so as to maximize the coverage of
nuggets at the top ranks. Therefore, we wish to understand
the performance characteristics of the greedy algorithm, and
assess whether its use is justified for optimizing EGU. While
the greedy algorithm has been shown to perform well for
solving MAX-COVER and SET-COVER problems [5], EGU is a
more general form of MAX-COVER due to the expectation
taken over all possible rank positions (thus, leading to a
probabilistic version of MAX-COVER) as well as the notion of
diminishing returns adjustable using the v parameter (thus,
leading to a notion of “soft coverage”).

We use 1000 randomly generated ranked lists to assess
the effect of v (user’s redundancy tolerance) on the behav-
ior of the greedy algorithm. Figure 2 shows the performance
obtained by the greedy algorithm for different values of ~.
We have plotted the mean (flanked by minimum and max-
imum) approximation factors”, i.e., the score of the greedy
algorithm divided by the best possible score obtained us-
ing exhaustive search. Notice that the approximation fac-
tor tends to improve (i.e., gets close to 1.0) as the value
of ~ increases. This is intuitive, since v = 1 corresponds
to relevance-based ranking, which does not penalize redun-
dancy, and hence, a simple greedy approach of ranking by
decreasing number of nuggets is provably optimal. At the
other extreme, v = 0 corresponds to the “hard” notion of
coverage where every nugget is only counted once, which
corresponds to the standard MAX-COVER problem.

S. RELATED WORK

One of the earliest works on novelty and diversity-based
ranking is the Maximal Marginal Relevance (MMR) method
[4], which proposed a greedy algorithm that incrementally
builds the ranked list by choosing the next document with
the highest “marginal” relevance, i.e., high relevance to the
query, and low similarity to already selected documents in
the ranked list. However, as mentioned in Section 2.2, MMR
can lead to sub-optimal performance due to the independent
treatment of relevance and novelty. Our proposed approach
is based on a unified model of relevance and novelty in terms
of nuggets.

"Only those ranked lists where the greedy algorithm led to
sub-optimal performance were included.

Zhai et al. [30] proposed an approach for diversity-based
retrieval, where diversity is defined in terms of the num-
ber of sub-topics covered by the retrieved documents for
a given search topic. To measure the quality of diversity-
based rankings, they extended the traditional measures of
recall and precision for sub-topic retrieval and defined two
new measures: S-recall and S-precision. However, the au-
thors point out the challenges in defining a single summary
measure that combines relevance and novelty. As a compro-
mise, they measure aspect coverage at a few arbitrarily de-
fined recall levels. For system optimization, the authors use
language modeling based scores for relevance and novelty in
an MMR-like formulation. However, it is evident from the
definition of S-recall and S-precision that their framework
does not allow different tolerances towards redundancy: A
sub-topic is either covered or uncovered, and subsequent pre-
sentations or the same sub-topic receive no credit. In other
words, S-recall and S-precision are inflexible in that they
assume no tolerance towards redundancy for all users.

Agrawal et al. [1] proposed an approach for maximiz-
ing the coverage of different categories of documents in the
ranked list to deal with the inherent ambiguity associated
with certain user queries. Their goal was to maximize the
probability that the user will find at least one document rel-
evant to his or her true intent. However, the authors admit
that such a criterion might be too conservative when serv-
ing users who desire a certain level of redundancy. More-
over, their objective function is set-based, i.e., it does not
differentiate between different permutations of the selected
documents. In reality, the ranking of documents plays an
important role in the perceived utility of the system. The
top-down browsing behavior of users is not explicitly mod-
eled by the objective function, and only manifests as a side-
effect of the greedy ranking algorithm.

In the above-mentioned approaches, there is a disconnect
between the evaluation metric (e.g., S-recall, S-precision in
[30], and IA-NDCG and IA-MAP in [1]), and the objective
function used by the system. In contrast, this paper repre-
sents the first framework where the evaluation metric and
objective function coincide for the optimization of relevance
and novelty-based retrieval.

Clarke at el. [8] proposed a-NDCG as a variation of
NDCG to model relevance and novelty in terms of nuggets.
However, a-NDCG is not based on an explicit model of user
browsing behavior, i.e., the likelihood of user stopping at
various ranks. Therefore, it does not naturally extend to
multiple ranked lists since it is not clear which nuggets in
documents from previous ranked lists would be deemed as
read by the user for the purpose of evaluating the current
ranked list. On the other hand, EGU is based on a proba-
bilistic model of user behavior, and hence, is a more general
optimization criterion for retrieval performance over one or
more ranked lists.

El-Arini et al. [11] proposed an approach for learning from
user’s feedback to provide a personalized set of diverse blogs
to the user. They address the problem of non-independent
feedback. However, their objective function is set-based,
and hence, does not take ranking performance into account.
Also, similar to the other approaches for diversity-based
retrieval, different tolerances towards redundancy are not
taken into account.

Radlinski et al. [22] proposed the use of click-through data
to improve the document rankings produced by the retrieval



system. Since real users implicitly take all pertinent factors
(relevance and novelty with respect to previously seen doc-
uments) into account when clicking on documents, such an
approach can optimize for novelty without explicitly mod-
eling it. However, such approaches are expensive since they
require multiple interactions with real users to collect click-
through patterns on different variations of ranked lists for
each query. Therefore, such approaches do not provide an
efficient means for offline evaluation and tuning of new and
potentially risky algorithms.

6. CONCLUSIONS

Expected Global Utility (EGU) is a recently proposed met-
ric that has several desirable characteristics for measuring

the performance of novelty-based ranking systems. We present

the first approach for directly optimizing retrieval systems
with respect to this performance measure. EGU models rel-
evance and novelty in terms of “nuggets”; Since a retrieval
system does not have access to the true nuggets for a given
query, our approach is based on the use of observable fea-
tures like words and named entities as surrogates for the true
nuggets, whose weights are updated based on user feedback
in an iterative search session. We show that the ranking
problem is NP-hard, and use mathematical as well as em-
pirical analysis to demonstrate that a simple greedy algo-
rithm achieves good performance with respect to EGU. Our
experiments on a nugget-based data collection indicate that
the proposed approach can successfully optimize the perfor-
mance in terms of EGU, compared to a purely relevance based
approach (Indri) as well as an MMR-based approach, which
is computationally expensive for longer (or multiple) ranked
lists.
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APPENDIX
A. MISCELLANEOUS DETAILS

A.1 Efficient Calculation of EGU for Multiple
Ranked Lists

The computation of EGU becomes intractable with increas-
ing number and lengths of ranked lists. Specifically, the com-
putation of expected gain requires summing over all combi-
nations of stopping positions in all ranked lists. Expected
cost is easy to calculate for the linear definition of cost used
in this paper. Therefore, we will only focus on the com-
putation of expected gain over multiple ranked lists. First,
let us re-write expected utility as the sum of expected gain
obtained for each nugget:

775(9)
| (12)

EGU = Zw(;IE { -

where nugget counts 7s(s) depend on the stopping positions
s = s1...sk in the K ranked lists, respectively. We can
approximate EGU by moving the expectation operator inside:

]E[ms( )]

EGU ~ Z W5 (13)

That is, instead of calculating the expected gain with respect
to different browsing patterns, we compute the gain obtained
by the expected number of times each nugget will be read
from all ranked lists, i.e., E[n(s)]. This quantity can be
efficiently calculated by summing over the expected nugget
counts in each ranked list:

Z Z Sk 775 Sk (14)
k=1sp=1

Thus, the approximate computation requires a sum over
O(|L1| + |L2| + ... + |Lk]|) terms, instead of the O(|Li| x
|L2| X ... X |Lk|) terms in the original calculation, which
must consider all combinations of stopping positions in the
K ranked lists.

A.2 NP-Hardness of EGU

Let us focus on a particular parameterization of v = 0
i.e., no tolerance towards redundancy, and P(s = k) = 1,
i.e., the user reads all documents from the top down and
stops at a given rank, say k. Given a set of documents, all
nuggets that appear in at least one of these documents are
said to be covered by the set of documents. Then, finding a
set of k documents that cover the most number of nuggets
is exactly equivalent to the Maximum Coverage Problem,
which is known to be NP-hard [7].

Maximum Coverage Problem (Max-COVER): Given
a collection of sets S = S1,854,...,5m, each containing a
subset of elements, i.e., S; C {e1,eq,...,e,}, find the subset
S* C S of size K such that the number of covered elements
is maximized:

E [ns(s

argmax S
S%gs siLeJS*
st. |97 =k (15)

Our ranking problem can be reduced to MAX-COVER by
mapping documents to sets and nuggets to elements.



Submodularity. Our objective function admits addi-
tional structure that allows approximation algorithms to
guarantee good performance. Specifically, the gain func-
tion of EGU is submodular. Submodularity formalizes the
intuitive property of diminishing returns, and is defined as
follows [20]: A set function F is called submodular if and
only if for all A C B C V and s € V \ B it holds that
F(AU{s}) — F(A) > F(BU{s}) — F(B).

The submodularity of the gain function follows directly
from its concavity with respect to nugget counts. Intuitively,
the increase in gain obtained by adding a document d; to a
ranked list L can never be larger than the increase obtained
by adding d; to a subset of L.

A classic result shows that the simple greedy algorithm
of incrementally building the list of documents based on de-
creasing marginal utilities guarantees a constant approxi-
mation ratio: For any monotonic submodular function, the
greedy algorithm achieves an approximation ratio of (1—1/e)
[20].

However, this lower-bound can be further improved by
taking the special structure of EGU into account, as we show
in Section A.3.

A.3 Improved Bound for Greedy Algorithm

Here, we develop a tighter bound on the performance of
the greedy algorithm for the optimization of EGU. The lower-
bound for MAX-COVER is 1 — 1/e, which is approximately
0.63. The main idea for deriving the new bound is that the
lower bound of 1 — 1/e is too conservative: It is guaranteed
irrespective of the size k of the covering problem, whereas
EGU involves an expectation of MAX-COVER problems of size
k=1,2,..., i.e., all stopping positions.

The lower bound for MAXx-COVER, as a function of k is
[9]:

% >1-(1-1/k)F (16)
Iy

where g is the greedy solution and [} is the ideal solution.

The bound of 1 — 1/e arises because:

(1-1/k)* <1/e (17)

which approaches equality for large k. However, for smaller
values of k, the gap is large. For instance, for k = 1, the
expression (1 — 1/k)* is equal to zero, which corresponds
to the fact that the solution of size 1 is always optimal.
In other words, approximation factors better than 0.63 can
be guaranteed for covering problems of smaller size. Since
the total gain, say G, is calculated by taking an expectation
over all stopping positions, i.e., k = 1,2, ..., we can therefore
derive a tighter bound by taking the size-dependent bound
into account. Specifically, the total gain of the ideal solution,
say I, is equal to:

I=> Pr(klp)k (18)
But due to Eq. (16), we have:

Iy < 1_(19% (19)

Therefore, the desired bound is:

G > Pr(k[p)gr S 11/ (20)
1 S Pr(k|p) gy
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Figure 3: Comparison of the original (1 — 1/e) and
the improved bounds for various values of stopping
probability p.

We compared this bound against the original bound of
(1—1/e) by running the greedy algorithm on 1000 synthetic
ranked lists. Figure 3 shows the bounds obtained for vari-
ous values of the stopping probability p (note that Pr(:|p) is
a geometric distribution with parameter p). Note that the
improved bound is dependent on the greedy scores as well as
the stopping probability, which is evident in Eq. (20). Also,
the bound improves (get closer to 1) with increasing values
of p, which is expected behavior because higher values of p
correspond to higher likelihood of the user to stop at one of
the top ranks, where the greedy algorithm guarantees bet-
ter worst-case performance: In the extreme case of p = 1,
i.e., the user only reads the first document, the greedy strat-
egy of choosing the document with most number of nuggets
(breaking ties arbitrarily) is provably optimal.



