Thesis Defense
Large-Scale Graph Computation on Just a PC

Aapo Kyrölä
akyrola@cs.cmu.edu

Thesis Committee:

Carlos Guestrin
University of Washington & CMU

Guy Blelloch
CMU

Dave Andersen
CMU

Alex Smola
CMU

Jure Leskovec
Stanford
Research Fields

- Machine Learning / Data Mining
- Graph analysis and mining
- External memory algorithms research
- Systems research
- Databases

Motivation and applications

Research contributions
Large-Scale **Graph** Computation on Just a PC

Why Graphs?
BigData with *Structure*: BigGraph

- **Facebook**: social graph
- **LinkedIn**: social graph
- **Twitter**: follow-graph
- **Amazon**: consumer-products graph
- **Netflix**: user-movie ratings graph
- **ENCOD**: DNA interaction graph
- **Google**: WWW link graph
- **NSA**: Communication networks (but “only 3 hops”)
Large-Scale Graph Computation on a

Just a PC

Why on a single machine?

Can’t we just use the Cloud?
Why use a cluster?

Two reasons:

1. One computer cannot handle my graph problem in a reasonable time.

2. I need to solve the problem very fast.
Why use a cluster?

Two reasons:

1. One computer cannot handle my graph problem in a reasonable time.

 Our work expands the space of feasible problems on one machine (PC):
 - Our experiments use the same graphs, or bigger, than previous papers on distributed graph computation. (+ we can do Twitter graph on a laptop)

2. I need to solve the problem very fast.

 Our work raises the bar on required performance for a “complicated” system.
Benefits of single machine systems

Assuming it can handle your big problems…

1. Programmer productivity
 – Global state, debuggers…

2. Inexpensive to install, administer, less power.

3. Scalability
 – Use cluster of single-machine systems to solve many tasks in parallel.

Idea: Trade latency for throughput

< 32K bits/sec
Large-Scale Graph Computation on Just a PC

Computing on Big Graphs
Big Graphs != Big Data

Data size:

\[
\text{facebook} \quad 140 \text{ billion connections} \quad \approx 1 \text{ TB}
\]

Not a problem!

Computation:

Hard to scale
Research Goal

Compute on graphs with billions of edges, in a *reasonable* time, on a single PC.

– *Reasonable* = close to numbers previously reported for distributed systems in the literature.

Experiment PC: Mac Mini (2012)
Terminology

• (Analytical) **Graph Computation:**
 – Whole graph is processed, typically for several iterations → *vertex-centric computation*.
 – Examples: Belief Propagation, Pagerank, Community detection, Triangle Counting, Matrix Factorization, Machine Learning…

• **Graph Queries (database)**
 – Selective graph queries (compare to SQL queries)
 – Traversals: shortest-path, friends-of-friends,…
Thesis statement

The Parallel Sliding Windows algorithm and the Partitioned Adjacency Lists data structure enable computation on very large graphs in external memory, on just a personal computer.
DISK-BASED GRAPH COMPUTATION
GraphChi
(Parallel Sliding Windows)

GraphChi-DB
(Partitioned Adjacency Lists)

Graph Computation

- PageRank
- SALSA
- HITS
- Triangle Counting
- Item-Item Similarity
- Minimum Spanning Forest
- Graph Contraction
- k-Core
- Weakly Connected Components
- Strongly Connected Components
- Label Propagation
- Community Detection
- Multi-BFS
- Loopy Belief Propagation
- Co-EM
- Matrix Factorization

Graph Queries

- Induced Subgraphs
- Friends-of-Friends
- Neighborhood query
- Shortest Path
- Edge and vertex properties
- Graph sampling
- Link prediction
- Graph traversal

DrunkardMob: Parallel Random walk simulation

GraphChi^2

Carnegie Mellon
Computational Model

• Graph $G = (V, E)$
 – **directed edges**: $e = (\text{source, destination})$
 – each edge and vertex associated with a value (user-defined type)
 – vertex and edge values can be modified
 • (structure modification also supported)
Vertex-centric Programming

\[\text{function } \text{Pagerank}(\text{vertex}) \]
\[\text{insum} = \text{sum} \left(\text{edge.value} \text{ for edge in vertex.inedges} \right) \]
\[\text{vertex.value} = 0.85 + 0.15 \times \text{insum} \]
\[\text{foreach edge \text{ in vertex.outedges}:} \]
\[\text{edge.value} = \text{vertex.value} / \text{vertex.num_outedges} \]

\[\text{MyFunc}(\text{vertex}) \]
\[\{ \text{// modify neighborhood } \} \]
Computational Setting

Constraints:

A. Not enough memory to store the whole graph in memory, nor all the vertex values.

B. Enough memory to store one vertex and its edges w/ associated values.
The Main Challenge of Disk-based Graph Computation:

Random Access

~ 100K reads / sec (commodity)
~ 1M reads / sec (high-end arrays)
Random Access Problem

Moral: You can either access in- or out-edges sequentially, but not both!
Our Solution

Parallel Sliding Windows (PSW)
Parallel Sliding Windows: Phases

- PSW processes the graph one **sub-graph** at a time:

 1. Load
 2. Compute
 3. Write

- In one **iteration**, the whole graph is processed.
 - And typically, next iteration is started.
PSW: Shards and Intervals

- Vertices are numbered from 1 to n
 - P intervals
 - **sub-graph** = interval of vertices

In shards, edges sorted by source.
Example: Layout

Shard: in-edges for interval of vertices; sorted by source-id

Shards small enough to fit in memory; balance size of shards
PSW: Loading Sub-graph

Load subgraph for vertices 1..100

- Vertices 1..100
- Vertices 101..700
- Vertices 701..1000
- Vertices 1001..10000

What about out-edges?
Arranged in sequence in other shards

Load all in-edges in memory
PSW: Loading Sub-graph

Load subgraph for vertices 101..700

1. Load
2. Compute
3. Write

Vertices 1..100
Vertices 101..700
Vertices 701..1000
Vertices 1001..10000

Shard 1
Shard 2
Shard 3
Shard 4

Load all in-edges in memory

Out-edge blocks in memory

in-edges for vertices 1..100
sorted by source_id
Parallel Sliding Windows

Only P large reads and writes for each interval.

$$= P^2 \text{ random accesses on one full pass.}$$

Works well on both SSD and magnetic hard disks!
How PSW computes

“GAUSS-SEIDEL” / ASYNCHRONOUS
Synchronous vs. Gauss-Seidel

• **Bulk-Synchronous** Parallel (Jacobi iterations)
 – Updates see neighbors’ values from *previous iteration*. [Most systems are synchronous]

• Asynchronous (**Gauss-Seidel** iterations)
 – Updates see most recent values.
 – GraphLab is asynchronous.

\[V_i^t \leftarrow F(V_0^t, V_1^t, \ldots, V_{i-1}^t, V_i^{t-1}, V_{i+1}^{t-1}, \ldots) \]
PSW runs Gauss-Seidel

Load subgraph for vertices 101..700

Shard 1
Load all in-edges in memory

Shard 2

Shard 3

Shard 4

 Vertices 1..100
Vertices 101..700
Vertices 701..1000
Vertices 1001..10000

Vertices 101..700

Vertices 701..1000

Vertices 1001..10000

Load all in-edges in memory

Fresh values in this “window” from previous phase

Out-edge blocks in memory
Synchronous (Jacobi)

Bulk-Synchronous: requires graph diameter – many iterations to propagate the minimum label.

Each vertex chooses minimum label of neighbor.
PSW is Asynchronous (Gauss-Seidel)

Each vertex chooses minimum label of neighbor.

Gauss-Seidel: expected # iterations on random schedule on a chain graph

\[
= (N - 1) / (e - 1)
\]

\[\approx 60\% \text{ of synchronous}\]
Label Propagation

Joint work: Julian Shun

Side length = 100

<table>
<thead>
<tr>
<th>Method</th>
<th>Side length</th>
<th>PSW: Gauss-Seidel (average, random schedule)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous</td>
<td>100</td>
<td>~57</td>
</tr>
<tr>
<td></td>
<td>199</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>~29</td>
</tr>
<tr>
<td></td>
<td>298</td>
<td>~52</td>
</tr>
</tbody>
</table>

Natural graphs (web, social)

- Graph diameter - 1
- ~0.6 * diameter

Carnegie Mellon
PSW & External Memory Algorithms Research

- PSW is a new technique for implementing many fundamental graph algorithms
 - Especially simple (compared to previous work) for directed graph problems: PSW handles both in- and out-edges
- We propose new graph contraction algorithm based on PSW
 - Minimum-Spanning Forest & Connected Components
- … utilizing the Gauss-Seidel “acceleration”
Consult the paper for a comprehensive evaluation:
• HD vs. SSD
• Striping data across multiple hard drives
• Comparison to an in-memory version
• Bottlenecks analysis
• Effect of the number of shards
• Block size and performance.
GraphChi
(Parallel Sliding Windows)

GraphChi-DB
(Partitioned Adjacency Lists)

DrunkardMob: Parallel Random walk simulation

GraphChi^2

Batch comp.

Evolving graph

Online graph updates

Incremental comp.

Graph Computation

PageRank
SALSA
HITS

Triangle Counting
Item-Item Similarity

Minimum Spanning Forest
Graph Contraction
k-Core

Weakly Connected Components
Strongly Connected Components

Label Propagation
Community Detection
Multi-BFS

Loopy Belief Propagation
Co-EM
Matrix Factorization

Graph Queries

Induced Subgraphs
Friends-of-Friends
Neighborhood query
Shortest Path

Edge and vertex properties
Graph sampling
Link prediction
Graph traversal

Graph Chi^2

Graph Chi!
GraphChi

• C++ implementation: 8,000 lines of code
 – Java-implementation also available
• Several optimizations to PSWV (see paper).

Source code and examples:
http://github.com/graphchi
Experiment Setting

- Mac Mini (Apple Inc.)
 - 8 GB RAM
 - 256 GB SSD, 1TB hard drive
 - Intel Core i5, 2.5 GHz

- Experiment graphs:

<table>
<thead>
<tr>
<th>Graph</th>
<th>Vertices</th>
<th>Edges</th>
<th>P (shards)</th>
<th>Preprocessing</th>
</tr>
</thead>
<tbody>
<tr>
<td>live-journal</td>
<td>4.8M</td>
<td>69M</td>
<td>3</td>
<td>0.5 min</td>
</tr>
<tr>
<td>netflix</td>
<td>0.5M</td>
<td>99M</td>
<td>20</td>
<td>1 min</td>
</tr>
<tr>
<td>twitter-2010</td>
<td>42M</td>
<td>1.5B</td>
<td>20</td>
<td>2 min</td>
</tr>
<tr>
<td>uk-2007-05</td>
<td>106M</td>
<td>3.7B</td>
<td>40</td>
<td>31 min</td>
</tr>
<tr>
<td>uk-union</td>
<td>133M</td>
<td>5.4B</td>
<td>50</td>
<td>33 min</td>
</tr>
<tr>
<td>yahoo-web</td>
<td>1.4B</td>
<td>6.6B</td>
<td>50</td>
<td>37 min</td>
</tr>
</tbody>
</table>
Comparison to Existing Systems

- **PageRank**
- **WebGraph Belief Propagation** (U Kang et al.)

GraphChi computes asynchronously, while all but **GraphLab** synchronously.

- **WebGraph**
- **Matrix Factorization** (Alt. Least Sqr.)
- **Triangle Counting**

Notes: comparison results do not include time to transfer the data to cluster, preprocessing, or the time to load the graph from disk. GraphChi computes asynchronously, while all but GraphLab synchronously.

- **GraphChi can solve as big problems as existing large-scale systems.**
- **Comparable performance.**

Twitter-2010 (1.5B edges)

Yahoo-web (6.7B edges)

GraphChi (Mac Mini)

GraphLab v1 (8 cores)

Hadoop (1636 machines)
PowerGraph Comparison

• **PowerGraph / GraphLab 2** outperforms previous systems by a wide margin on natural graphs.

• With 64 more machines, 512 more CPUs:
 – **Pagerank**: 40x faster than GraphChi
 – **Triangle counting**: 30x faster than GraphChi.

GraphChi has good performance / CPU.
In-memory Comparison

- **Total runtime** comparison to 1-shard GraphChi, with initial load + output write taken into account

<table>
<thead>
<tr>
<th>Application</th>
<th>SSD</th>
<th>In-mem</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected components</td>
<td>45 s</td>
<td>18 s</td>
<td>2.5 x</td>
</tr>
<tr>
<td>Community detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix factorization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix factorization</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

However, sometimes better algorithm available for in-memory than external memory / distributed.

- Comparison
 - 5 iterations of Pageranks / Twitter (1.5B edges)

<table>
<thead>
<tr>
<th>GraphChi</th>
<th>Mac Mini – SSD</th>
<th>790 secs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligra (J. Shun, Blelloch)</td>
<td>40-core Intel E7-8870</td>
<td>15 secs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ligra (J. Shun, Blelloch)</th>
<th>8-core Xeon 5550</th>
<th>230 s + preproc 144 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSW – inmem version, 700 shards (see Appendix)</td>
<td>8-core Xeon 5550</td>
<td>100 s + preproc 210 s</td>
</tr>
</tbody>
</table>
Scalability / Input Size [SSD]

- Throughput: number of edges processed / second.

Conclusion: the throughput remains roughly constant when graph size is increased.

GraphChi with hard-drive is ~ 2x slower than SSD (if computational cost low).

PageRank -- throughput (Mac Mini, SSD)

- Domain
- Twitter-2010
- Uk-2007-05
- Uk-Union
- Yahoo-Web

Performance

- 0.00E+00
- 5.00E+06
- 1.00E+07
- 1.50E+07
- 2.00E+07
- 2.50E+07

Graph size

- 0.00E+00
- 2.00E+00
- 4.00E+00
- 6.00E+00
- 8.00E+00

Billions
New work

GRAPHCHI-DB
Research Questions

• What if there is lot of metadata associated with edges and vertices?
• How to do graph queries efficiently while retaining computational capabilities?
• How to add edges efficiently to the graph?

Can we design a graph database based on GraphChi?
Existing Graph Database Solutions

1) Specialized single-machine graph databases

![Neo4j](image1)

Problems:
- Poor performance with data >> memory
- No/weak support for analytical computation

2) Relational / key-value databases as graph storage

![TITAN](image2)

Problems:
- Large indices
- In-edge / out-edge dilemma
- No/weak support for analytical computation
Our solution

PARTITIONED ADJACENCY LISTS (PAL): DATA STRUCTURE
Review: Edges in Shards

Edge = (src, dst)

Partition by dst

sorted by source_id
Shard Structure (Basic)

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>193</td>
</tr>
<tr>
<td>1</td>
<td>76420</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>872</td>
</tr>
<tr>
<td>7</td>
<td>193</td>
</tr>
<tr>
<td>7</td>
<td>212</td>
</tr>
<tr>
<td>7</td>
<td>89139</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
</tr>
</tbody>
</table>

Diagram:

- src -> dst
Shard Structure (Basic)

Compressed Sparse Row (CSR)

Problem 1:
How to find in-edges of a vertex quickly?

Note: We know the shard, but edges in random order.
PAL: In-edge Linkage

<table>
<thead>
<tr>
<th>Source</th>
<th>File offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Pointers-array

<table>
<thead>
<tr>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
<tr>
<td>193</td>
</tr>
<tr>
<td>76420</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>872</td>
</tr>
<tr>
<td>193</td>
</tr>
<tr>
<td>212</td>
</tr>
<tr>
<td>89139</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Edge-array

src \rightarrow dst
PAL: In-edge Linkage

Problem 2:
How to find out-edges quickly?

Note: Sorted inside a shard, but partitioned across all shards.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3339</td>
</tr>
<tr>
<td>193</td>
<td>3</td>
</tr>
<tr>
<td>76420</td>
<td>1092</td>
</tr>
<tr>
<td>12</td>
<td>289</td>
</tr>
<tr>
<td>872</td>
<td>40</td>
</tr>
<tr>
<td>193</td>
<td>2002</td>
</tr>
<tr>
<td>212</td>
<td>12</td>
</tr>
<tr>
<td>89139</td>
<td>22</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

+ Index to the first in-edge for each vertex in interval.

Augmented linked list for in-edges
PAL: Out-edge Queries

Option 1: Sparse index (inmem)
- 256
- 512
- 1024
- ...

Problem: Can be big -- O(V)
→ Binary search on disk slow.

Option 2: Delta-coding with unary code (Elias-Gamma)
→ Completely in-memory

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next-in-offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3339</td>
</tr>
<tr>
<td>193</td>
<td>3</td>
</tr>
<tr>
<td>76420</td>
<td>1092</td>
</tr>
<tr>
<td>12</td>
<td>289</td>
</tr>
<tr>
<td>872</td>
<td>40</td>
</tr>
<tr>
<td>193</td>
<td>2002</td>
</tr>
<tr>
<td>212</td>
<td>12</td>
</tr>
<tr>
<td>89139</td>
<td>22</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Source
File offset
- 1: 0
- 3: 3
- 7: 5
- ...

Destination

Next-in-offset

Edge-array

Pointer-array

Op 1: Sparse index (inmem)

Op 2: Delta-coding with unary code (Elias-Gamma)

Completely in-memory
Experiment: Indices

Median latency, Twitter-graph, 1.5B edges
Queries: I/O costs

In-edge query: only one shard

Out-edge query: each shard that has edges

Trade-off:
More shards → Better locality for in-edge queries, worse for out-edge queries.

io-cost[inquery(v)] ≤ 1 + \min(\text{indeg}(v), \frac{E}{PB})

\text{io-cost}[\text{outquery}(v)] ≤ \min(P, \text{outdeg}(v)) + \left\lceil \frac{\text{outdeg}(v)}{B} \right\rceil
Edge Data & Searches

Shard X - adjacency

Edge (i)

- ‘weight’: [float]
- ‘timestamp’: [long]
- ‘belief’: (factor)

No foreign key required to find edge data!
(fixed size)

Note: vertex values stored similarly.
Efficient Ingest?

Shards on Disk

Buffers in RAM
Merging Buffers to Disk

Shards on Disk

Buffers in RAM
Merging Buffers to Disk (2)

Merge requires loading existing shard from disk ➔ Each edge will be rewritten always on a merge.

Does not scale: number of rewrites: data size / buffer size = O(E)
Log-Structured Merge-tree (LSM)

Ref: O’Neil, Cheng et al. (1996)

LEVEL 1 (youngest)

LEVEL 2

LEVEL 3 (oldest)

In-edge query:
One shard on each level

Out-edge query:
All shards

New edges

Intervals 1--16

Intervals 1--4

Intervals (P-4) -- P

On-disk shards

Downstream merge

interval 1 interval 2 interval 3 interval 4

Interval P-1 interval P

Carnegie Mellon
Experiment: Ingest

GraphChi-DB with LSM

GraphChi-No-LSM
Advantages of PAL

• Only sparse and implicit indices
 – Pointer-array usually fits in RAM with Elias-Gamma.
 → Small database size.

• Columnar data model
 – Load only data you need.
 – Graph structure is separate from data.
 – *Property graph model*

• Great insertion throughput with LSM
 → Tree can be adjusted to match workload.
GraphChi-DB: Implementation

- Written in Scala
- Queries & Computation
- Online database

All experiments shown in this talk done on Mac Mini (8 GB, SSD)

Source code and examples: http://github.com/graphchi
Comparison: Database Size

Database file size (twitter-2010 graph, 1.5B edges)

Baseline: 4 + 4 bytes / edge.
Comparison: Ingest

<table>
<thead>
<tr>
<th>System</th>
<th>Time to ingest 1.5B edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphChi-DB (ONLINE)</td>
<td>1 hour 45 mins</td>
</tr>
<tr>
<td>Neo4j (batch)</td>
<td>45 hours</td>
</tr>
<tr>
<td>MySQL (batch)</td>
<td>3 hour 30 minutes (including index creation)</td>
</tr>
</tbody>
</table>

If running **Pagerank simultaneously**, GraphChi-DB takes 3 hour 45 minutes
Comparison: Friends-of-Friends Query

Latency percentiles over 100K random queries

Small graph - 50-percentile

GraphChi-DB: 0.379
Neo4j: 0.127

Small graph - 99-percentile

GraphChi-DB: 6.653
Neo4j: 8.078

Big graph - 50-percentile

GraphChi-DB: 759.8
Neo4j: 22.4
MySQL: 5.9

Big graph - 99-percentile

GraphChi-DB: 1264
GraphChi-DB + Pagerank: 1631
MySQL: 4776

68M edges

1.5B edges

See thesis for shortest-path comparison.
LinkBench: Online Graph DB Benchmark by Facebook

- Concurrent read/write workload
 - But only single-hop queries (“friends”).
 - 8 different operations, mixed workload.
 - Best performance with 64 parallel threads

- Each edge and vertex has:
 - Version, timestamp, type, random string payload.

<table>
<thead>
<tr>
<th></th>
<th>GraphChi-DB (Mac Mini)</th>
<th>MySQL+FB patch, server, SSD-array, 144 GB RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge-update (95p)</td>
<td>22 ms</td>
<td>25 ms</td>
</tr>
<tr>
<td>Edge-get-neighbors (95p)</td>
<td>18 ms</td>
<td>9 ms</td>
</tr>
<tr>
<td>Avg throughput</td>
<td>2,487 req/s</td>
<td>11,029 req/s</td>
</tr>
<tr>
<td>Database size</td>
<td>350 GB</td>
<td>1.4 TB</td>
</tr>
</tbody>
</table>

See full results in the thesis.
Summary of Experiments

• Efficient for **mixed read/write** workload.
 – See Facebook LinkBench experiments in thesis.
 – LSM-tree → trade-off read performance (**but, can adjust**).

• State-of-the-art performance for graphs that are much larger than **RAM**.
 – Neo4J’s linked-list data structure good for RAM.
 – DEX performs poorly in practice.
Discussion

Greater Impact

Hindsight

Future Research Questions
GREATER IMPACT
Impact: “Big Data” Research

• GraphChi’s OSDI 2012 paper has received over 85 citations in just 18 months (Google Scholar).
 – Two major direct descendant papers in top conferences:
 • X-Stream: SOSP 2013
 • TurboGraph: KDD 2013

• Challenging the mainstream:
 – You can do a lot on just a PC → focus on right data structures, computational models.
Impact: Users

• GraphChi’s (C++, Java, -DB) have gained a lot of users
 – Currently ~50 unique visitors / day.
• Enables ‘everyone’ to tackle big graph problems
 – Especially the recommender toolkit (by Danny Bickson) has been very popular.
 – Typical users: students, non-systems researchers, small companies…

[Bar chart showing what users use GraphChi for]

Collaborative filtering
Graph analytics
To develop my own...
Machine learning
Other
I work in a [EU country] public university. I can't use a distributed computing cluster for my research ... it is too expensive. Using GraphChi I was able to perform my experiments on my laptop. I thus have to admit that GraphChi saved my research. (...)

Impact: Users (cont.)

How big datasets do you use?

How much memory does your computer (that you use for GraphChi) have?

- 8 GB [5]
- 16 GB [6]
- 32 GB [2]
- 64 GB [0]
- more [0]
- < 2 GB [1]
- 2 GB [0]
- 4 GB [4]
EVALUATION: HINDSIGHT
What is GraphChi Optimized for?

• Original target algorithm: **Belief Propagation** on Probabilistic Graphical Models.

1. Changing value of an edge (both in- and out!).
2. Computation process whole, or most of the graph on each iteration.
3. Random access to all vertex's edges.
 – Vertex-centric vs. edge centric.
GraphChi **Not Good For**

- Very large vertex state.
- Traversals, and two-hop dependencies.
 - Or dynamic scheduling (such as Splash BP).
- High diameter graphs, such as planar graphs.
 - Unless the computation itself has short-range interactions.
- Very large number of iterations.
 - Neural networks.
 - LDA with Collapsed Gibbs sampling.
- No support for implicit graph structure.

+ Single PC performance is limited.
Versatility of PSW and PAL

GraphChi
(Parallel Sliding Windows)

GraphChi-DB
(Partitioned Adjacency Lists)

Batch comp.
Evolving graph
Online graph updates
Incremental comp.

Graph Computation
- PageRank
- SALSA
- HITS
- Triangle Counting
- Item-Item Similarity
- Minimum Spanning Forest
- Graph Contraction
- k-Core
- Weakly Connected Components
- Strongly Connected Components
- Label Propagation
- Community Detection
- Multi-BFS
- Loopy Belief Propagation
- Co-EM
- Matrix Factorization

Graph Queries
- Induced Subgraphs
- Friends-of-Friends
- Neighborhood query
- Shortest Path
- Edge and vertex properties
- Graph sampling
- Link prediction
- Graph traversal

DrunkardMob: Parallel Random walk simulation
GraphChi^2

Carnegie Mellon
Future Research Directions

• Distributed Setting
 1. Distributed PSW (one shard / node)
 1. PSW is inherently sequential
 2. Low bandwidth in the Cloud
 2. Co-operating GraphChi(-DB)’s connected with a Parameter Server

• New graph programming models and Tools
 – Vertex-centric programming sometimes too local: for example, two-hop interactions and many traversals cumbersome.
 – Abstractions for learning graph structure; Implicit graphs.
 – Hard to debug, especially async → Better tools needed.

• Graph-aware optimizations to GraphChi-DB.
 – Buffer management.
 – Smart caching.
 – Learning configuration.
WHAT IF WE HAVE PLENTY OF MEMORY?
Observations

• The I/O performance of PSW is only weakly affected by the amount of RAM.
 – Good: works with very little memory.
 – Bad: Does not benefit from more memory
 • Simple trick: cache some data.

• Many graph algorithms have $O(V)$ state.
 – Update function accesses neighbor vertex state.
 • Standard PSW: ‘broadcast’ vertex value via edges.
 • Semi-external: Store vertex values in memory.
Using RAM efficiently

- Assume that enough RAM to store many $O(V)$ algorithm states in memory.
 - But not enough to store the whole graph.
Parallel Computation Examples

- **DrunkardMob** algorithm (Chapter 5):
 - Store billions of random walk states in RAM.

- **Multiple Breadth-First-Searches:**
 - Analyze neighborhood sizes by starting hundreds of random BFSes.

- Compute in parallel **many different recommender algorithms** (or with different parameterizations).
 - See Mayank Mohta, Shu-Hao Yu’s Master’s project.
CONCLUSION
Summary of Published Work

<table>
<thead>
<tr>
<th>Title</th>
<th>Conference/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphLab: Parallel Framework for Machine Learning</td>
<td>UAI 2010</td>
</tr>
<tr>
<td>(with J. Gonzalvez, Y. Low, D. Bickson, C. Guestrin)</td>
<td></td>
</tr>
<tr>
<td>Distributed GraphLab: Framework for Machine Learning and Data</td>
<td>VLDB 2012</td>
</tr>
<tr>
<td>Mining in the Cloud (-- same --)</td>
<td></td>
</tr>
<tr>
<td>GraphChi: Large-scale Graph Computation on Just a PC</td>
<td>OSDI 2012</td>
</tr>
<tr>
<td>(with C. Guestrin, G. Blelloch)</td>
<td></td>
</tr>
<tr>
<td>DrunkardMob: Billions of Random Walks on Just a PC</td>
<td>ACM RecSys 2013</td>
</tr>
<tr>
<td>Beyond Synchronous: New Techniques for External Memory Graph</td>
<td>SEA 2014</td>
</tr>
<tr>
<td>Connectivity and Minimum Spanning Forest (with Julian Shun, G.</td>
<td></td>
</tr>
<tr>
<td>Blelloch)</td>
<td></td>
</tr>
<tr>
<td>GraphChi-DB: Simple Design for a Scalable Graph Database – on Just</td>
<td>(submitted / arxiv)</td>
</tr>
<tr>
<td>a PC (with C. Guestrin)</td>
<td></td>
</tr>
<tr>
<td>Parallel Coordinate Descent for L1-regularized Loss Minimization</td>
<td>ICML 2011</td>
</tr>
<tr>
<td>(Shotgun) (with J. Bradley, D. Bickson, C. Guestrin)</td>
<td></td>
</tr>
</tbody>
</table>

First author papers in bold.
Summary of Main Contributions

• Proposed Parallel Sliding Windows, a new algorithm for external memory graph computation → GraphChi
• Extended PSW to design Partitioned Adjacency Lists to build a scalable graph database → GraphChi-DB
• Proposed DrunkardMob for simulating billions of random walks in parallel.
• Analyzed PSW and its Gauss-Seidel properties for fundamental graph algorithms → New approach for EM graph algorithms research.

Thank You!
Economics

Equal throughput configurations (based on OSDI’12)

<table>
<thead>
<tr>
<th></th>
<th>GraphChi (40 Mac Minis)</th>
<th>PowerGraph (64 EC2 cc1.4xlarge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investments</td>
<td>67,320 $</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per node, hour</td>
<td>0.03 $</td>
<td>1.30 $</td>
</tr>
<tr>
<td>Cluster, hour</td>
<td>1.19 $</td>
<td>52.00 $</td>
</tr>
<tr>
<td>Daily</td>
<td>28.56 $</td>
<td>1,248.00 $</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assumptions:
- Mac Mini: 85W (typical servers 500-1000W)
- Most expensive US energy: 35c / KwH

It takes about 56 days to recoup Mac Mini investments.
PSW for In-memory Computation

• External memory setting:
 – Slow memory = hard disk / SSD
 – Fast memory = RAM

• In-memory:
 – Slow = RAM
 – Fast = CPU caches

Does PSW help in the in-memory setting?
PSW for in-memory

PSW outperforms (slightly) Ligra*, the fastest in-memory graph computation system on Pagerank with the Twitter graph, including preprocessing steps of both systems.

*: Julian Shun, Guy Blelloch, PPoPP 2013
Remarks (sync vs. async)

• Bulk-Synchronous is embarrassingly parallel
 – But needs twice the amount of space
• Async/G-S helps with high diameter graphs
• Some algorithms converge much better asynchronously
 – Loopy BP, see Gonzalez et al. (2009)
 – Also Bertsekas & Tsitsiklis *Parallel and Distributed Optimization* (1989)
• Asynchronous sometimes difficult to reason about and debug
• Asynchronous can be used to implement BSP
I/O Complexity

- See the paper for theoretical analysis in the Aggarwal-Vitter’s I/O model.
 - Worst-case only 2x best-case.

- Intuition:

![Diagram showing interval and shard relationships with edge loading comments.]

- Inter-interval edge is loaded from disk only once / iteration.
- Edge spanning intervals is loaded twice / iteration.
Impact of Graph Structure

• Algos with long range information propagation, need relatively small diameter \rightarrow would require too many iterations
• Per iteration cost not much affected

• Can we optimize partitioning?
 – Could help thanks to Gauss-Seidel (faster convergence inside “groups”) \rightarrow topological sort
 – Likely too expensive to do on single PC
Graph Compression: Would it help?

- Graph Compression methods (e.g. Blelloch et al., WebGraph Framework) can be used to compress edges to 3-4 bits / edge (web), ~ 10 bits / edge (social)
 - But require graph partitioning → requires a lot of memory.
 - Compression of large graphs can take days (personal communication).

- Compression problematic for evolving graphs, and associated data.

- GraphChi can be used to compress graphs?
 - Layered label propagation (Boldi et al. 2011)
Previous research on (single computer) Graph Databases

• 1990s, 2000s saw interest in object-oriented and graph databases:
 – GOOD, GraphDB, HyperGraphDB…
 – Focus was on modeling, graph storage on top of relational DB or key-value store

• RDF databases
 – Most do not use graph storage but store triples as relations + use indexing.

• Modern solutions have proposed graph-specific storage:
 – Neo4j: doubly linked list
 – TurboGraph: adjacency list chopped into pages
 – DEX: compressed bitmaps (details not clear)
Table 4.2: LinkBench online database benchmark. Latencies are in milliseconds. Note: for clarity we have modified the request names from the original. JVM’s garbage collection pauses cause the high 95-percentiles.
Comparison to FB (cont.)

• GraphChi load time 9 hours, FB’s 12 hours
• GraphChi database about 250 GB, FB > 1.4 terabytes
 – However, about 100 GB explained by different variable data (payload) size
• Facebook/MySQL via JDBC, GraphChi embedded
 – But MySQL native code, GraphChi-DB Scala (JVM)
• Important CPU bound bottleneck in sorting the results for high-degree vertices
Why not even faster when everything in RAM? → computationally bound requests
Possible Solutions

1. Use SSD as a memory-extension?
 [SSDAlloc, NSDI’11]
 Too many small objects, need millions / sec.

2. Compress the graph structure to fit into RAM?
 [→ WebGraph framework]
 Associated values do not compress well, and are mutated.

3. Cluster the graph and handle each cluster separately in RAM?
 Expensive; The number of inter-cluster edges is big.

4. Caching of hot nodes?
 Unpredictable performance.
Number of Shards

- If P is in the “dozens”, there is not much effect on performance.

![Graph showing throughput vs number of shards](image)

- Throughput (edges/sec) vs Number of shards (P)
- Conn comp. (SSD)
- Pagerank (SSD)
- Conn comp. (HD)
- Pagerank (HD)
Multiple hard-drives (RAIDish)

• GraphChi supports *striping* shards to multiple disks → Parallel I/O.

Experiment on a 16-core AMD server (from year 2007).
Bottlenecks

• Cost of constructing the sub-graph in memory is almost as large as the I/O cost on an SSD
 – Graph construction requires a lot of random access in RAM → memory bandwidth becomes a bottleneck.
Bottlenecks / Multicore

- Computationally intensive applications benefit substantially from parallel execution.
- GraphChi saturates SSD I/O with 2 threads.

Experiment on MacBook Pro with 4 cores / SSD.
In-memory vs. Disk

Table 3: Relative performance of an in-memory version of GraphChi compared to the default SSD-based implementation on a selected set of applications, on a Mac Mini. Timings include the time to load the input from disk and write the output into a file.
Experiment: Query latency

See thesis for I/O cost analysis of in/out queries.
Example: Induced Subgraph Queries

• **Induced subgraph** for vertex set S contains all edges in the graph that have both endpoints in S.

• Very fast in GraphChi-DB:
 – Sufficient to query for out-edges
 – Parallelizes well \rightarrow multi-out-edge-query

• Can be used for **statistical graph analysis**
 – Sample induced neighborhoods, induced FoF neighborhoods from graph
Vertices / Nodes

- Vertices are partitioned similarly as edges
 - Similar “data shards” for columns
- Lookup/update of vertex data is \(O(1)\)
- No merge tree here: Vertex files are “dense”
 - Sparse structure could be supported
ID-mapping

- Vertex IDs mapped to internal IDs to balance shards:
 - Interval length constant a

Original ID: 0
256
1 257
2 258
255 511
What if we have a Cluster?

Graph working memory (PSW)

Computation 1 state
Computation 2 state

computational state

disk

RAM

Trade latency for throughput!
Graph Computation: Research Challenges

1. Lack of truly challenging (benchmark) applications

2. ... which is caused by lack of good data available for the academics: big graphs with metadata
 - Industry co-operation → But problem with reproducibility
 - Also: it is hard to ask good questions about graphs (especially with just structure)

3. Too much focus on performance → More important to enable “extracting value”
Random walk in an **in-memory graph**

- Compute one walk a time (multiple in parallel, of course):

```python
parfor walk in walks:
    for i=1 to numsteps:
        vertex = walk.atVertex()
        walk.takeStep(vertex.randomNeighbor())
```

DrunkardMob - RecSys '13
Problem: What if Graph does not fit in memory?

Distributed graph systems:
- Each hop across partition boundary is costly.

Disk-based “single-machine” graph systems:
- “Paging” from disk is costly.

(This talk)
Random walks in GraphChi

- **DrunkardMob** – algorithm
 - Reverse thinking

```java
ForEach interval p:
    walkSnapshot = getWalksForInterval(p)
    ForEach vertex in interval(p):
        mywalks = walkSnapshot.getWalksAtVertex(vertex.id)
        ForEach walk in mywalks:
            walkManager.addHop(walk, vertex.randomNeighbor())
```

Note: Need to store only current position of each walk!