
15-853 Project: Parallel Callahan-Kosaraju
Algorithm for All-Nearest-Neighbors

Aapo Kyrölä
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

akyrola@andrew.cmu.edu

Abstract

We implemented a parallel version of the Callahan-Kosarajun algorithm [1] for
computing all-nearest-neighbors. Our C++/CILK implementation shows very
good performance and decent parallel scalability. We also discuss challenges with
parallel memory allocation which we had to overcome in order to gain any parallel
speedup.

1 Introduction

For this project we implemented a parallel version of the Callahan-Kosaraju algorithm [1] (C-K
algorithm) for efficiently computing all-nearest-neighbors for a large set of points. After a linear-
time (in the number of points) precomputing step, C-K algorithm computes nearest-neighbor queries
in constant time.

We will now give an informal introduction to the C-K algorithm. For a formal treatment, please see
[1] or slides for the class. Actual code for the algorithm, and the parallelization, is discussed in the
subsequent section. For the rest of the paper, we denote by S the point set, and with n = |S| the
number of points.

1.1 Step 1: Constructing k-d decomposition tree

The algorithm starts by creating a k-d tree of the point set S. K-d tree is built by recursively
splitting points by the longest dimension of the bounding box enclosing the points. The procedure is
presented visually in Figure 1. As a result algorithm returns a binary tree, with leaf nodes for each
of the points. Depth of the tree depends on the distribution of the points; uniform distributions result
in shallow trees. For each internal node, we record the associated bounding box. 1

1.2 Step 2: Well-Separated Realization

We now describe the main innovation of the C-K algorithm. The idea is to create interaction edges
between nodes in the decomposition tree, such that following requirements are fulfilled:

• From each leaf (point), there is a path to any other leaf that consists of tree edges up (zero
or more), across an interaction edge and tree edges down.

1This procedure works well in practice, but for some datasets it might lead to an exponential running time.
Callahan and Kosaraju present in [1] also a more robust procedure, which is based on storing the points in
linked lists sorted by each dimension. Although the running time is better in a worst case, this algorithm is
more difficult to parallelize. For this work, we therefore use the simpler algorithm.

1

2!

Trees in Euclidean Space: Quad/Oct
Quad (2d) and Oct (3d)Trees:

–  Find an axis aligned bounding box for all points
–  Recursively cut into 2d equal parts

If points are “nice” then will be O(log n) deep and will
take O(n log n) time to build.

In the worst case can be O(n) deep. With care in
how built can still run in O(n log n) time for
constant dimension.

15-853 Page5

Trees in Euclidean Space: Quad/Oct

15-853 Page6

Trees in Euclidean Space: k-d tree
Similar to Quad/Oct but cut only one dimension at a time.

–  Typically cut at median along the selected dimension
–  Typically pick longest dimension of bounding box
–  Could cut same dimension multiple times in a row

If cut along medians then no more than O(log n) deep and
will take O(n log n) time to build (although this requires
a linear time median, or presorting the data along all
dimensions).

But, partitions themselves are much more irregular.

15-853 Page7

Trees in Euclidean Space: k-d tree

15-853 Page8
Figure 1: Computation of a k-d tree for a two dimensional pointset. Image credits: Guy Blelloch.

• Any nodes connected by an interaction are well-separated. See left side of the Figure 2 for
a visual description.
• The number of interaction edges is O(n).

Decomposition tree, supplied with the interaction edges is called well-separated realization (WSR).
Algorithm for building the WSR is a triple-recursive algorithm, which we present in the next section.
For the proof of the correctness, we refer reader to [1]. A simple well-separated realization is shown
in Figure 2.

9!

Callahan-Kosaraju
Well separated pair decompositions

–  A decomposition of points in d-dimensional
space

Applications
–  N-body codes (calculate interaction forces

among n bodys)
–  K-nearest-neighbors O(n log n) time

Similar to k-d trees but better theoretical
properties

15-853 Page33

Tree decompositions
A spatial decomposition of points

15-853 Page34

{a,b,c,d,e,f,g}

{e,f,g}
{a,b,c,d}

{e,f} {a,b,c}

{b,c} a
b c e f

g d

A “realization”
A single path between any two leaves consisting of

tree edges up, an interaction edge across, and
tree edges down.

15-853 Page35

a
b c e f

g d interaction edge

A “well-separated realization”
A realization such that the endpoints of each

interaction edge is “well separated”

15-853 Page36

a
b c e f

g d

Goal: show that
the number of
interaction edges
is O(n)

10!

Overall approach
Build tree decomposition: O(n log n) time
Build well-separated realization: O(n) time

 Depth of tree = O(n) worst case, but not in practice

We can bound number of interaction edges to O(n)
–  For both n-body and nearest-neighbors we only

need to look at the interaction edges

15-853 Page37 15-853 Page 38

Callahan Kosaraju Outline
Some definitions
Building the tree
Generating well separated realization
Bounding the size of the realization
Using it for nearest neighbors

Some Definitions
Bounding Rectangle R(P)

Smallest rectangle that
contains a set of points P

lmax : maximum length of a
rectangle

Well Separated:
r = smallest radius that

can contain either
rectangle

s = separation constant
d > s * r

15-853 Page39

r

r

d

lmax

More Definitions
Interaction Product

A " B = {{p,p’} : p ∈A, p’ ∈ B, p ! p’}
A Realization of A " B

Is a set {{A1,B1}, {A2,B2}, … , {Ak,Bk}}
such that
1. Ai ⊆ A, Bi ⊆ B i = 1…k
2. Ai∩Bi=
3. (Ai " Bi)∩(Aj " Bj) = (i ! j)
4. A " B = ∪i=1

k Ai " Bi
This formalize the “cross edges”

15-853 Page40

Figure 2: Left: Well-Separated Realization: A decomposition tree with interaction edges (red).
Right: two set of points are well separated with factor s, if the distance d between circles enclosing
them is larger than sr. r is the radius of the larger enclosing circle. For nearest neighbor algorithm,
we use s = 2. Image credits: Guy Blelloch.

1.3 Step 3: Finding the nearest neighbor

Given the WSR graph, we can now find the nearest neighbor for a point p in constant time by
following all the interaction edges from the associated leaf. It is easy to show that we do not need
to follow interaction edges from parents of p, since any connected subset is well-separated from the
parent and cannot thus contain a nearest-neighbor (i.e, any child of the parent would be closer).

The algorithm for finding K nearest neighbor is much more complicated, and we do not discuss it
here.

2 Implementation

We implemented the algorithm in C++. For parallel primitives we used CILK+ [2]. Parallelization
was straightforward in principle, but to achieve reasonable performance, we had to avoid frequent
memory allocation. Our implementation was configured only for 3-dimensional pointsets, but is
easily modified to support larger dimensions. Timings for the implementation are from experiments
executed on a 8-CPU Intel Nehalem computer.

2

2.1 Data structures

We used an object-oriented data structure to present the tree and interaction edges. Each node is
presented by objects of class treenode:

class treenode {
public:

treenode * left;
treenode * right;
treenode * parent;
box boundingbox;
int point_idx;
std::list<treenode *> * interacts;
...

[methods]
};

Field pointidx is an index to an array of point-objects and is set only for leaf-nodes. Point-objects
simply contain an array of coordinates.

Field interacts is a linked-list (using C++ STL list) of nodes.

2.2 Decomposition tree

The algorithm for building the k-d tree is a straightforward recursive algorithm; it resembles quick-
sort. For performance reasons, our implementation is very memory efficient and does not require
memory allocation in the intermediate steps (see discussion below).

Algorithm takes as an argument a set of points P and a parent node. First it computes the bounding
box for points in P and chooses the largest dimension dm. New node is created and the bounding
box recorded. P is then divided into two point sets: first set contains the points having dm coordinate
less than the midpoint of the bounding box in that dimension; second set contains rest of the points.
Algorithm is then called recursively for the two sub-pointsets, and resulting nodes attached as left
and right node of node.

For the C++ implementation we avoid creating new arrays for the splitted point sets and simply pass
pointers to the start and end of the sub-range of the point-array in question. The points are then
sorted so that points in the first sub-pointset appear first. Thus, each call to the algorithm works on
a fixed range of the point array and sorts points in-place inside its range. In this way, it is similar to
a typical quicksort implementation in C/C++.

The sequential C++ implementation (with some details omitted) is below:

treenode * btree(pointset_part p, treenode * parent, int level) {
if (p.length == 1) {

return leaf(parent, pointidx[p.begin]);
} else {

std::pair<int,double> dmax = maxpart_dim(p);
// Split
double midpoint = dmax.second;
int end = p.begin + p.length;
int c=p.begin;
// Sort points according to whether they have less than
// or greater than position
// in the largest dimension of the bounding box.
for(int i=p.begin; i<end; i++) {

if (points[pointidx[i]].coord[dmax.first] < midpoint) {
workarray[c++] = pointidx[i];

}
}
int p2start=c;

3

for(int i=p.begin; i<end; i++) {
if (points[pointidx[i]].coord[dmax.first] >= midpoint) {

workarray[c++] = pointidx[i];
}

}
// Move to correct parts of the array
for(int i=p.begin; i<end; i++) {

pointidx[i] = workarray[i];
}
treenode * node = newnode(parent, p2start);
node->boundingbox = pointpart_box(p);
node->lmax = lmax(node->boundingbox);
node->left = btree(pointset_part(p.begin, p2start-p.begin),
node, level+1);
node->right = btree(pointset_part(p2start, c-p2start),
node, level+1);
return node;

}
}

2.2.1 Parallel version

Like with quicksort, we can use CILK to execute the recursive calls in parallel. As a simple opti-
mization, we spawn parallel invocations only if we are high up in the recursion. We also only spawn
the first recursive call in parallel.

#ifdef CILK
treenode * leftn;
treenode * rightn;
if (level < MAXPARALLELDEPTH) {

leftn = cilk_spawn btree(pointset_part(p.begin,
p2start-p.begin), node, level+1);

rightn = btree(pointset_part(p2start,
c-p2start), node, level+1);

cilk_sync;
} else {

rightn = btree(pointset_part(p2start, c-p2start),
node, level+1);

leftn = btree(pointset_part(p.begin, p2start-p.begin),
node, level+1);

}
node->left = leftn;
node->right = rightn;

#else
[sequential version]

2.2.2 Efficient memory allocation

Our initial tests showed no improvement in performance when run in parallel (on up to 8 cpus).
Indeed, the tree building was sometimes even slower than sequentially. The culprit was memory
allocation when creating new treenode -objects: a standard malloc/new is slow as it sequen-
tializes memory allocations. But even CILK’s more efficient memory manager ("miser") failed to
scale, miserably. It seems that large number of small allocations are problematic for the memory
manager. However, we did not investigate the issue further and it may be possible to configure miser
to work better with our needs.

We solved the problem efficiently by preallocating all nodes. As the number of nodes in a binary
tree is always 2n−1, this does not waste any memory. We create two arrays of treenode-objects:
one for internal nodes, internalnodes and another for leaf nodes, leaves. Leaves are placed
to the array location in leaves corresponding to the index of the associated point in the point-

4

array. Internal nodes are placed into array internalnodes at index that is same as the index of
the splitting point. That is, assume a call to btree() processes points that are in the point array at
positions [a..b]. After choosing the dimension to split the points, it arranges points to split the range
to two subranges [a..c] and [(c+1)..b]. Then the new node will be placed in internalnodes[c].
It is easy to see that no internal nodes will get same array index.

Due to the preallocation, the tree-building algorithm does not need to allocate any memory, and
there is no concurrent accesses to memory.

2.2.3 Parallel performance of the tree building

Following table displays some selected measurements for a sequential and 8-cpu execution of the
tree building algorithm. Parallel speedup for large sets is 2.5x− 3x. For smaller sets the speedup is
smaller, as expected, due to overhead of CILK and multithreading.

Number of points Tree depth Sequential time (s) Parallel - 8 cpus (s) Speedup
4 K 16 0.0034 0.002 1.7

64 K 19 0.08 0.034 2.3
0.5 mil 23 0.9 0.35 2.5
2 mil 25 4.67 1.65 2.8

4.2 mil 27 10.3 3.6 2.86

2.3 Well-Separated Realization

Computing the well-separated realization (WSR) is a simple triple recursion that starts by call
wsr(root). CILK-parallelization is similar to the tree building algorithm. As a departure from
the original algorithm, we add interaction edges only if other side of the edge is a leaf. Interactions
between internal nodes are not relevant for the nearest neighbor computation.

void wsr(treenode * node) {
if (node->left == NULL) {

// is leaf
return;

} else {
#ifdef CILK

cilk_spawn wsr(node->left);
wsr(node->right);
cilk_sync;

#else
wsr(node->left);
wsr(node->right);

#endif
wsrPair(node->left, node->right);

}
}

void wsrPair(treenode * t1, treenode * t2) {
if (wellSeparated(t1->boundingbox, t2->boundingbox)) {
// Add interactions only to leaves.
if (t1->left == NULL) t1->add_interaction(t2);
if (t2->left == NULL) t2->add_interaction(t1);

} else if ((t1->lmax) > (t2->lmax)) {
wsrPair(t1->left, t2);
wsrPair(t1->right, t2);

} else {
wsrPair(t1, t2->left);
wsrPair(t1, t2->right);

}
}

5

2.3.1 Parallel performance of the WSR computation

Following table lists selected performance measurements for the WSR computation. Parallel scala-
bility is similar to the tree building.

Number of points Tree depth Sequential time (s) Parallel - 8 cpus (s) Speedup
4 K 16 0.011 0.007 1.6

64 K 19 0.27 0.14 1.9
0.5 mil 23 2.4 1.02 2.3
2 mil 25 9.8 3.96 2.5

4.2 mil 27 19.8 7.6 2.6

2.4 Nearest Neighbor given WSR

Finally, we need to compute nearest neighbor for each point. This takes only constant time per point,
since we need to only follow interaction edges from each leaf, not from internal nodes. Paralleliza-
tion is simply done by computing nearest neighbors for several points in parallel.

std::pair<int,double> mindist(point & p, treenode * node, int minDistIdx, double minDistSqr){
if (node->left == NULL) {

double r2 = p.rsqr(points[node->point_idx]);
if (r2<minDistSqr) return std::pair<int,double>(node->point_idx, r2);
else return std::pair<int,double>(minDistIdx, minDistSqr);

} else {
std::pair<int,double> minleft = mindist(p, node->left, minDistIdx, minDistSqr);
return mindist(p, node->right, minleft.first, minleft.second);

}
}

void compute_wsr_nn() {
int psz = points.size();
#ifdef CILK

cilk_for(int pntidx=0; pntidx<psz; pntidx++){
#else

for(int pntidx=0; pntidx<psz; pntidx++){
#endif

double minDistSqr = 1e30;
int minDistIdx = -1;
point & p = points[pntidx];
std::list<treenode *> & interacts = *(p.node->interacts);
std::list<treenode *>::iterator iter;
for(iter = interacts.begin(); iter != interacts.end(); iter++) {

std::pair<int, double> mind = mindist(p, *iter, minDistIdx, minDistSqr);
minDistIdx = mind.first;
minDistSqr = mind.second;

}
p.nn = minDistIdx;

}
}

2.4.1 Parallel performance of the nearest neighbor

Following table shows the parallel performance of computing nearest neighbors for points in paral-
lel (given precomputed WSR). The computation is embarrassingly parallel, and we experience good
speedup. However, the speedup on larger point sets is still short from the perfect 8x speedup, sig-
nificantly. This is probably due to large memory footprint which satures the memory bus. However,
we did not analyze this further.

6

Number of points Tree depth Sequential time (s) Parallel - 8 cpus (s) Speedup
4 K 16 0.0048 0.0014 3.4

64 K 19 0.30 0.054 5.6
0.5 mil 23 3.61 0.68 5.3
2 mil 25 17.2 3.2 5.4

4.2 mil 27 38.1 7.1 5.4

3 Experiments

3.1 Setup

We run experiments with three types of three-dimensional point sets. Grid -sets were simple two-
dimensional equally spaced grids of points. Spatial decomposition works optimally with such dis-
tribution. Random is a randomly distributed set of points. Same seed was used for each run. Shell is
a shell-type point cloud (point generation code borrowed from NVIDIA’s nbody-demo for GPUs).
See Figure 3 for examples of these pointsets.

Figure 3: From the left: grid, random and shell -form set of points. Bigger points are closer to
"camera" than smaller. Different distribution entails different structure of the spatial decomposition
tree.

We run the algorithm on 1 and 8 cpus for several different sizes of point sets, ranging from hundreds
to millions of points. All quoted timings include the precomputation steps, and the actual nearest
neighbor computation, but not time used for creating the point cloud or validating the results. We
validated C-K algorithm’s nearest neighbor computation by computing neighbors with the naive
nearest neighbor algorithm for a subset of points. Naive algorithm simply enumerates, for each
point, all other points to find the closest, and thus runs in O(n2) time. C-K algorithm was able to
outperform naive algorithm in all but very small datasets.

Figure 4 shows the number of interaction edges for each type of point set as a function of the number
of points. It is evident that Grid is very different from the two other types.

3.2 Scalability with the size of pointset

According to the theory, C-K should scale linearly with the number of points. However, also the
distribution of the points has an effect of the running time. As Figure 5 shows, the algorithm really
scales linearly, when the underlying structure of the point set does not change.

3.3 Parallel performance

In previous section we measured the parallel performance of individual steps of the algorithm. Fig-
ure 6 shows the total parallel speedup of the algorithm. We compiled a separate version of the
program for sequential runs to avoid any CILK overhead. On large datasets, the speedup is close
to 4x on random and shell point sets, but with grid the scalability is clearly poorer. This is likely
due to two reasons: (1) shallow decomposition tree, of whose construction provides less opportunity

7

0 2 4 6 8 10
x 106

0

0.5

1

1.5

2

2.5x 108 Number of interaction edges

Number of points

in

te
ra

ct
io

n
ed

ge
s Shell

Random

Grid (2−d)

Figure 4: Number of interaction edges (size of WRS), as a function of pointset size.

0 2 4 6 8 10
x 106

0

50

100

150
Running time: All Nearest Neighbors

Number of points

Ti
m

e
(s

ec
s)

Grid (2−d)

Random
Shell

Figure 5: Running time as function of pointset size.

for parallelism, (2) point set has only two effective dimensions, which makes distance computa-
tions faster than with three dimensions. Less computation per memory access puts relatively more
pressure on memory bus. However, we did not study this in detail.

3.4 Speedup over Naive Algorithm

And last, Figure 7 shows the dramatic improvement over the naive all-nearest-neighbors algorithm.
The naive algorithm scales almost perfectly in parallel and thus is relatively less slower when run in
parallel. Already with point sets of mere thousands of points, the speedup is very significant.

Remark: the naive running time is estimated from the time taken to compute nearest neighbors for
a small sample of points.

8

0 2 4 6 8 10
x 106

0

1

2

3

4
Parallel Scalability

Number of points

Sp
ee

du
p

(8
 c

pu
s)

Random

Shell

Grid (2−d)

Figure 6: Speedup (sequential running time / parallel running time) on a 8-core Intel Nehalem, as a
function of pointset size.

0 2 4 6 8 10
x 106

0

1000

2000

3000

4000

5000

6000
Speedup vs. Naive Nearest−Neighbor

Number of points

Sp
ee

du
p

to
 N

ai
ve

1 cpu

8 cpus

Figure 7: Speedup over naive algorithm.

References
[1] P.B. Callahan and S.R. Kosaraju. A decomposition of multidimensional point sets with applications to

k-nearest-neighbors and n-body potential fields. Journal of the ACM (JACM), 42(1):67–90, 1995.
[2] I. Cilk+. Software Development Kit. Intel Corporation, Feb, 2010.

9

