Abstract

We implemented a parallel version of the Callahan-Kosaraju algorithm [1] for computing all-nearest-neighbors. Our C++/CILK implementation shows very good performance and decent parallel scalability. We also discuss challenges with parallel memory allocation which we had to overcome in order to gain any parallel speedup.

1 Introduction

For this project we implemented a parallel version of the Callahan-Kosaraju algorithm [1] (C-K algorithm) for efficiently computing all-nearest-neighbors for a large set of points. After a linear-time (in the number of points) precomputing step, C-K algorithm computes nearest-neighbor queries in constant time.

We will now give an informal introduction to the C-K algorithm. For a formal treatment, please see [1] or slides for the class. Actual code for the algorithm, and the parallelization, is discussed in the subsequent section. For the rest of the paper, we denote by \(S \) the point set, and with \(n = |S| \) the number of points.

1.1 Step 1: Constructing k-d decomposition tree

The algorithm starts by creating a k-d tree of the point set \(S \). K-d tree is built by recursively splitting points by the longest dimension of the bounding box enclosing the points. The procedure is presented visually in Figure 1. As a result algorithm returns a binary tree, with leaf nodes for each of the points. Depth of the tree depends on the distribution of the points; uniform distributions result in shallow trees. For each internal node, we record the associated bounding box. \(^1\)

1.2 Step 2: Well-Separated Realization

We now describe the main innovation of the C-K algorithm. The idea is to create interaction edges between nodes in the decomposition tree, such that following requirements are fulfilled:

- From each leaf (point), there is a path to any other leaf that consists of tree edges up (zero or more), across an interaction edge and tree edges down.

\(^1\)This procedure works well in practice, but for some datasets it might lead to an exponential running time. Callahan and Kosaraju present in [1] also a more robust procedure, which is based on storing the points in linked lists sorted by each dimension. Although the running time is better in a worst case, this algorithm is more difficult to parallelize. For this work, we therefore use the simpler algorithm.
Trees in Euclidean Space: Quad/Oct

- Find an axis aligned bounding box for all points.

- The partitions themselves are much more irregular.

15-853 Page7

Trees in Euclidean Space: k-d tree

15-853 Page8

Callahan-Kosaraju

- A decomposition of points in d-dimensional space... edge is "well separated".

15-853 Page36

Bounding Rectangle R(P)

- If cut along medians then no more than O(log n) deep.

- Similar to Quad/Oct but cut only one dimension at a time.

- Executed on a 8-CPU Intel Nehalem computer.

- Timings for the implementation are from experiments.

- Our implementation was configured only for 3-dimensional pointsets, but is easily modified to support larger dimensions.

- We implemented the algorithm in C++. For parallel primitives we used CILK+ [2]. Parallelization was straightforward in principle, but to achieve reasonable performance, we had to avoid frequent memory allocation.

- The algorithm for finding K nearest neighbor is much more complicated, and we do not discuss it here.

- Applications

1. Build well-separated realization: O(n) time

2. Build tree decomposition: O(n log n) time

Well separated pair decompositions

- A decomposition of points in d-dimensional space... edge is "well separated".

- The number of interaction edges is O(n).

- Decomposition tree, supplied with the interaction edges is called well-separated realization (WSR).

- Algorithm for building the WSR is a triple-recursive algorithm, which we present in the next section.

- For the proof of the correctness, we refer reader to [1]. A simple well-separated realization is shown in Figure 2.

1.3 Step 3: Finding the nearest neighbor

- Given the WSR graph, we can now find the nearest neighbor for a point p in constant time by following all the interaction edges from the associated leaf. It is easy to show that we do not need to follow interaction edges from parents of p, since any connected subset is well-separated from the parent and cannot thus contain a nearest-neighbor (i.e, any child of the parent would be closer).

- The algorithm for finding K nearest neighbor is much more complicated, and we do not discuss it here.

2 Implementation

- We implemented the algorithm in C++. For parallel primitives we used CILK+ [2]. Parallelization was straightforward in principle, but to achieve reasonable performance, we had to avoid frequent memory allocation.

- Our implementation was configured only for 3-dimensional pointsets, but is easily modified to support larger dimensions. Timings for the implementation are from experiments executed on a 8-CPU Intel Nehalem computer.
2.1 Data structures

We used an object-oriented data structure to present the tree and interaction edges. Each node is presented by objects of class `treenode`:

```cpp
class treenode {
public:
    treenode * left;
    treenode * right;
    treenode * parent;
    box boundingbox;
    int point_idx;
    std::list<treenode *> * interacts;
    ...
    [methods]
};
```

Field `pointidx` is an index to an array of `point`-objects and is set only for leaf-nodes. Point-objects simply contain an array of coordinates.

Field `interacts` is a linked-list (using C++ STL list) of nodes.

2.2 Decomposition tree

The algorithm for building the k-d tree is a straightforward recursive algorithm; it resembles quicksort. For performance reasons, our implementation is very memory efficient and does not require memory allocation in the intermediate steps (see discussion below).

Algorithm takes as an argument a set of points \(P \) and a parent node. First it computes the bounding box for points in \(P \) and chooses the largest dimension \(d_m \). New node is created and the bounding box recorded. \(P \) is then divided into two point sets: first set contains the points having \(d_m \) coordinate less than the midpoint of the bounding box in that dimension; second set contains rest of the points. Algorithm is then called recursively for the two sub-pointsets, and resulting nodes attached as left and right node of node.

For the C++ implementation we avoid creating new arrays for the splitted point sets and simply pass pointers to the start and end of the sub-range of the point-array in question. The points are then sorted so that points in the first sub-pointset appear first. Thus, each call to the algorithm works on a fixed range of the point array and sorts points \textit{in-place} inside its range. In this way, it is similar to a typical quicksort implementation in C/C++.

The sequential C++ implementation (with some details omitted) is below:

```cpp
treenode * btree(pointset_part p, treenode * parent, int level) {
    if (p.length == 1) {
        return leaf(parent, pointidx[p.begin]);
    } else {
        std::pair<int, double> dmax = maxpart_dim(p);
        // Split
        double midpoint = dmax.second;
        int end = p.begin + p.length;
        int c=p.begin;
        // Sort points according to whether they have less than
        // or greater than position
        // in the largest dimension of the bounding box.
        for(int i=p.begin; i<end; i++) {
            if (points[pointidx[i]].coord[dmax.first] < midpoint) {
                workarray[c++] = pointidx[i];
            }
        }
        int p2start=c;
    }
    return new treenode();
}
```
for(int i=p.begin; i<end; i++) {
 if (points[pointidx[i]].coord[dmax.first] >= midpoint) {
 workarray[c++] = pointidx[i];
 }
}
// Move to correct parts of the array
for(int i=p.begin; i<end; i++) {
 pointidx[i] = workarray[i];
}
treenode * node = newnode(parent, p2start);
node->boundingbox = pointpart_box(p);
node->lmax = lmax(node->boundingbox);
node->left = btree(pointset_part(p.begin, p2start-p.begin),
 node, level+1);
node->right = btree(pointset_part(p2start, c-p2start),
 node, level+1);
return node;
}

2.2.1 Parallel version

Like with quicksort, we can use CILK to execute the recursive calls in parallel. As a simple opti-
mization, we spawn parallel invocations only if we are high up in the recursion. We also only spawn
the first recursive call in parallel.

#ifdef CILK

treenode * leftn;
treenode * rightn;
if (level < MAXPARALLELDEPTH) {
 leftn = cilk_spawn btree(pointset_part(p.begin,
p2start-p.begin), node, level+1);
 rightn = btree(pointset_part(p2start,
c-p2start), node, level+1);
 cilk_sync;
} else {
 rightn = btree(pointset_part(p2start, c-p2start),
 node, level+1);
 leftn = btree(pointset_part(p.begin, p2start-p.begin),
 node, level+1);
}
node->left = leftn;
node->right = rightn;
#else
[sequential version]
#endif

2.2.2 Efficient memory allocation

Our initial tests showed no improvement in performance when run in parallel (on up to 8 cpus).
Indeed, the tree building was sometimes even slower than sequentially. The culprit was memory
allocation when creating new treenode-objects: a standard malloc/new is slow as it sequen-
tializes memory allocations. But even CILK’s more efficient memory manager (“miser”) failed to
scale, miserably. It seems that large number of small allocations are problematic for the memory
manager. However, we did not investigate the issue further and it may be possible to configure miser
to work better with our needs.

We solved the problem efficiently by preallocating all nodes. As the number of nodes in a binary
tree is always $2n - 1$, this does not waste any memory. We create two arrays of treenode-objects:
one for internal nodes, internalnodes and another for leaf nodes, leaves. Leaves are placed
to the array location in leaves corresponding to the index of the associated point in the point-
array. Internal nodes are placed into array \texttt{internalnodes} at index that is same as the index of the \textit{splitting point}. That is, assume a call to \texttt{btree()} processes points that are in the point array at positions \([a..b]\). After choosing the dimension to split the points, it arranges points to split the range to two subranges \([a..c]\) and \([(c+1)..b]\). Then the new node will be placed in \texttt{internalnodes}[c]. It is easy to see that no internal nodes will get same array index.

Due to the preallocation, the tree-building algorithm does not need to allocate any memory, and there is no concurrent accesses to memory.

2.2.3 Parallel performance of the tree building

Following table displays some selected measurements for a sequential and 8-cpu execution of the tree building algorithm. Parallel speedup for large sets is \(2.5x - 3x\). For smaller sets the speedup is smaller, as expected, due to overhead of CILK and multithreading.

<table>
<thead>
<tr>
<th>Number of points</th>
<th>Tree depth</th>
<th>Sequential time (s)</th>
<th>Parallel - 8 cpus (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 K</td>
<td>16</td>
<td>0.0034</td>
<td>0.002</td>
<td>1.7</td>
</tr>
<tr>
<td>64 K</td>
<td>19</td>
<td>0.08</td>
<td>0.034</td>
<td>2.3</td>
</tr>
<tr>
<td>0.5 mil</td>
<td>23</td>
<td>0.9</td>
<td>0.35</td>
<td>2.5</td>
</tr>
<tr>
<td>2 mil</td>
<td>25</td>
<td>4.67</td>
<td>1.65</td>
<td>2.8</td>
</tr>
<tr>
<td>4.2 mil</td>
<td>27</td>
<td>10.3</td>
<td>3.6</td>
<td>2.86</td>
</tr>
</tbody>
</table>

2.3 Well-Separated Realization

Computing the well-separated realization (WSR) is a simple triple recursion that starts by call \texttt{wsr(root)}. CILK-parallelization is similar to the tree building algorithm. As a departure from the original algorithm, we add interaction edges only if other side of the edge is a leaf. Interactions between internal nodes are not relevant for the nearest neighbor computation.

```c
void wsr(treenode * node) {
    if (node->left == NULL) {
        // is leaf
        return;
    } else {
        #ifdef CILK
            cilk_spawn wsr(node->left);
            wsr(node->right);
            cilk_sync;
        #else
            wsr(node->left);
            wsr(node->right);
        #endif
        wsrPair(node->left, node->right);
    }
}

void wsrPair(treenode * t1, treenode * t2) {
    if (wellSeparated(t1->boundingbox, t2->boundingbox)) {
        // Add interactions only to leaves.
        if (t1->left == NULL) t1->add_interaction(t2);
        if (t2->left == NULL) t2->add_interaction(t1);
    } else if ((t1->lmax) > (t2->lmax)) {
        wsrPair(t1->left, t2);
        wsrPair(t1->right, t2);
    } else {
        wsrPair(t1, t2->left);
        wsrPair(t1, t2->right);
    }
}
```
2.3.1 Parallel performance of the WSR computation

Following table lists selected performance measurements for the WSR computation. Parallel scalability is similar to the tree building.

<table>
<thead>
<tr>
<th>Number of points</th>
<th>Tree depth</th>
<th>Sequential time (s)</th>
<th>Parallel - 8 cpus (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 K</td>
<td>16</td>
<td>0.011</td>
<td>0.007</td>
<td>1.6</td>
</tr>
<tr>
<td>64 K</td>
<td>19</td>
<td>0.27</td>
<td>0.14</td>
<td>1.9</td>
</tr>
<tr>
<td>0.5 mil</td>
<td>23</td>
<td>2.4</td>
<td>1.02</td>
<td>2.3</td>
</tr>
<tr>
<td>2 mil</td>
<td>25</td>
<td>9.8</td>
<td>3.96</td>
<td>2.5</td>
</tr>
<tr>
<td>4.2 mil</td>
<td>27</td>
<td>19.8</td>
<td>7.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>

2.4 Nearest Neighbor given WSR

Finally, we need to compute nearest neighbor for each point. This takes only constant time per point, since we need to only follow interaction edges from each leaf, not from internal nodes. Parallelization is simply done by computing nearest neighbors for several points in parallel.

```cpp
std::pair<int,double> mindist(point & p, treenode * node, int minDistIdx, double minDistSqr){
    if (node->left == NULL) {
        double r2 = p.rsqr(points[node->point_idx]);
        if (r2<minDistSqr) return std::pair<int,double>(node->point_idx, r2);
        else return std::pair<int,double>(minDistIdx, minDistSqr);
    } else {
        std::pair<int,double> minleft = mindist(p, node->left, minDistIdx, minDistSqr);
        return mindist(p, node->right, minleft.first, minleft.second);
    }
}

void compute_wsr_nn() {
    int psz = points.size();
    #ifdef CILK
    cilk_for(int pntidx=0; pntidx<psz; pntidx++){
    #else
    for(int pntidx=0; pntidx<psz; pntidx++){
    #endif
        double minDistSqr = 1e30;
        int minDistIdx = -1;
        point & p = points[pntidx];
        std::list<treenode *> & interacts = *(p.node->interacts);
        std::list<treenode *>::iterator iter;
        for(iter = interacts.begin(); iter != interacts.end(); iter++) {
            std::pair<int, double> mind = mindist(p, *iter, minDistIdx, minDistSqr);
            minDistIdx = mind.first;
            minDistSqr = mind.second;
        }
        p.nn = minDistIdx;
    }
}

2.4.1 Parallel performance of the nearest neighbor

Following table shows the parallel performance of computing nearest neighbors for points in parallel (given precomputed WSR). The computation is embarrassingly parallel, and we experience good speedup. However, the speedup on larger point sets is still short from the perfect 8x speedup, significantly. This is probably due to large memory footprint which saturates the memory bus. However, we did not analyze this further.
3 Experiments

3.1 Setup

We run experiments with three types of three-dimensional point sets. *Grid* -sets were simple twodimensional equally spaced grids of points. Spatial decomposition works optimally with such distribution. *Random* is a randomly distributed set of points. Same seed was used for each run. *Shell* is a shell-type point cloud (point generation code borrowed from NVIDIA’s nbody-demo for GPUs). See Figure 3 for examples of these pointsets.

![Figure 3: From the left: grid, random and shell -form set of points. Bigger points are closer to “camera” than smaller. Different distribution entails different structure of the spatial decomposition tree.](image)

We run the algorithm on 1 and 8 cpus for several different sizes of point sets, ranging from hundreds to millions of points. All quoted timings include the precomputation steps, and the actual nearest neighbor computation, but not time used for creating the point cloud or validating the results. We validated C-K algorithm’s nearest neighbor computation by computing neighbors with the naive nearest neighbor algorithm for a subset of points. Naive algorithm simply enumerates, for each point, all other points to find the closest, and thus runs in $O(n^2)$ time. C-K algorithm was able to outperform naive algorithm in all but very small datasets.

Figure 4 shows the number of interaction edges for each type of point set as a function of the number of points. It is evident that Grid is very different from the two other types.

<table>
<thead>
<tr>
<th>Number of points</th>
<th>Tree depth</th>
<th>Sequential time (s)</th>
<th>Parallel - 8 cpus (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 K</td>
<td>16</td>
<td>0.0048</td>
<td>0.0014</td>
<td>3.4</td>
</tr>
<tr>
<td>64 K</td>
<td>19</td>
<td>0.30</td>
<td>0.054</td>
<td>5.6</td>
</tr>
<tr>
<td>0.5 mil</td>
<td>23</td>
<td>3.61</td>
<td>0.68</td>
<td>5.3</td>
</tr>
<tr>
<td>2 mil</td>
<td>25</td>
<td>17.2</td>
<td>3.2</td>
<td>5.4</td>
</tr>
<tr>
<td>4.2 mil</td>
<td>27</td>
<td>38.1</td>
<td>7.1</td>
<td>5.4</td>
</tr>
</tbody>
</table>

3.2 Scalability with the size of pointset

According to the theory, C-K should scale linearly with the number of points. However, also the distribution of the points has an effect of the running time. As Figure 5 shows, the algorithm really scales linearly, when the underlying structure of the point set does not change.

3.3 Parallel performance

In previous section we measured the parallel performance of individual steps of the algorithm. Figure 6 shows the total parallel speedup of the algorithm. We compiled a separate version of the program for sequential runs to avoid any CILK overhead. On large datasets, the speedup is close to $4x$ on random and shell point sets, but with grid the scalability is clearly poorer. This is likely due to two reasons: (1) shallow decomposition tree, of whose construction provides less opportunity
for parallelism, (2) point set has only two effective dimensions, which makes distance computations faster than with three dimensions. Less computation per memory access puts relatively more pressure on memory bus. However, we did not study this in detail.

### 3.4 Speedup over Naive Algorithm

And last, Figure 7 shows the dramatic improvement over the naive all-nearest-neighbors algorithm. The naive algorithm scales almost perfectly in parallel and thus is relatively less slower when run in parallel. Already with point sets of mere thousands of points, the speedup is very significant.

**Remark:** the naive running time is estimated from the time taken to compute nearest neighbors for a small sample of points.
Figure 6: Speedup (sequential running time / parallel running time) on a 8-core Intel Nehalem, as a function of pointset size.

Figure 7: Speedup over naive algorithm.

References