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Abstract. We describe an automated technique for assume-guarantee
style checking of strong simulation between a system and a specifica-
tion, both expressed as non-deterministic Labeled Probabilistic Transi-
tion Systems (LPTSes). We first characterize counterexamples to strong
simulation as stochastic trees and show that simpler structures are insuf-
ficient. Then, we use these trees in an abstraction refinement algorithm
that computes the assumptions for assume-guarantee reasoning as con-
servative LPTS abstractions of some of the system components. The
abstractions are automatically refined based on tree counterexamples
obtained from failed simulation checks with the remaining components.
We have implemented the algorithms for counterexample generation and
assume-guarantee abstraction refinement and report encouraging results.

1 Introduction

Probabilistic systems are increasingly used for the formal modeling and analysis
of a wide variety of systems ranging from randomized communication and se-
curity protocols to nanoscale computers and biological processes. Probabilistic
model checking is an automatic technique for the verification of such systems
against formal specifications [2]. However, as in the classical non-probabilistic
case [7], it suffers from the state explosion problem, where the state space of a
concurrent system grows exponentially in the number of its components.

Assume-guarantee style compositional techniques [18] address this problem
by decomposing the verification of a system into that of its smaller components
and composing back the results, without verifying the whole system directly.
When checking individual components, the method uses assumptions about the
components’ environments and then, discharges them on the rest of the system.
For a system of two components, such reasoning is captured by the following
simple assume-guarantee rule.
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1 : L1 ‖ A � P 2 : L2 � A

L1 ‖ L2 � P
(ASym)

Here L1 and L2 are system components, P is a specification to be satisfied
by the composite system and A is an assumption on L1’s environment, to be
discharged on L2. Several other such rules have been proposed, some of them
involving symmetric [19] or circular [8,19,16] reasoning. Despite its simplicity,
rule ASym has been proven the most effective in practice and studied exten-
sively [19,4,11], mostly in the context of non-probabilistic reasoning.

We consider here the automated assume-guarantee style compositional veri-
fication of Labeled Probabilistic Transition Systems (LPTSes), whose transitions
have both probabilistic and non-deterministic behavior. The verification is per-
formed using the rule ASym where L1, L2, A and P are LPTSes and the con-
formance relation � is instantiated with strong simulation [20]. We chose strong
simulation for the following reasons. Strong simulation is a decidable, well studied
relation between specifications and implementations, both for non-probabilistic
[17] and probabilistic [20] systems. A method to help scale such a check is of a
natural interest. Furthermore, rule ASym is both sound and complete for this
relation. Completeness is obtained trivially by replacing A with L2 but is essen-
tial for full automation (see Section 5). One can argue that strong simulation is
too fine a relation to yield suitably small assumptions. However, previous suc-
cess in using strong simulation in non-probabilistic compositional verification [5]
motivated us to consider it in a probabilistic setting as well. And we shall see
that indeed we can obtain small assumptions for the examples we consider while
achieving savings in time and memory (see Section 6).

The main challenge in automating assume-guarantee reasoning is to come
up with such small assumptions satisfying the premises. In the non-probabilistic
case, solutions to this problem have been proposed which use either automata
learning techniques [19,4] or abstraction refinement [12] and several improve-
ments and optimizations followed. For probabilistic systems, techniques using
automata learning have been proposed. They target probabilistic reachability

checking and are not guaranteed to terminate due to incompleteness of the
assume-guarantee rules [11] or to the undecidability of the conformance rela-
tion and learning algorithms used [10].

In this paper we propose a complete, fully automatic framework for the com-
positional verification of LPTSes with respect to simulation conformance. One
fundamental ingredient of the framework is the use of counterexamples (from
failed simulation checks) to iteratively refine inferred assumptions. Counterex-
amples are also extremely useful in general to help with debugging of discovered
errors. However, to the best of our knowledge, the notion of a counterexample
has not been previously formalized for strong simulation between probabilistic
systems. As our first contribution we give a characterization of counterexamples
to strong simulation as stochastic trees and an algorithm to compute them; we
also show that simpler structures are insufficient in general (Section 3).
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We then propose an assume-guarantee abstraction-refinement (AGAR) algo-
rithm (Section 5) to automatically build the assumptions used in compositional
reasoning. The algorithm follows previous work [12] which, however, was done
in a non-probabilistic, trace-based setting. In our approach, A is maintained as
a conservative abstraction of L2, i.e. an LPTS that simulates L2 (hence, premise
2 holds by construction), and is iteratively refined based on tree counterexam-
ples obtained from checking premise 1. The iterative process is guaranteed to
terminate, with the number of iterations bounded by the number of states in
L2. When L2 itself is composed of multiple components, the second premise
(L2 � A) is viewed as a new compositional check, generalizing the approach to
n ≥ 2 components. AGAR can be further applied to the case where the specifi-
cation P is instantiated with a formula of a logic preserved by strong simulation,
such as safe-pCTL.

We have implemented the algorithms for counterexample generation and for
AGAR using JavaTM and Yices [9] and show experimentally that AGAR can
achieve significantly better performance than non-compositional verification.

Other Related Work. Counterexamples to strong simulation have been char-
acterized before as tree-shaped structures for the case of non-probabilistic sys-
tems [5] which we generalize to stochastic trees in Section 3 for the probabilistic
case. Tree counterexamples have also been used in the context of a composi-
tional framework that uses rule ASym for checking strong simulation in the
non-probabilistic case [4] and employs tree-automata learning to build deter-
ministic assumptions.

AGAR is a variant of the well-known CounterExample Guided Abstraction
Refinement (CEGAR) approach [6]. CEGAR has been adapted to probabilistic
systems, in the context of probabilistic reachability [13] and safe-pCTL [3]. The
CEGAR approach we describe in Section 4 is an adaptation of the latter. Both
these works consider abstraction refinement in a monolithic, non-compositional
setting. On the other hand, AGAR uses counterexamples from checking one
component to refine the abstraction of another component.

2 Preliminaries

Labeled Probabilistic Transition Systems. Let S be a non-empty set.
Dist(S) is defined to be the set of discrete probability distributions over S. We
assume that all the probabilities specified explicitly in a distribution are ratio-
nals in [0, 1]; there is no unique representation for all real numbers on a computer
and floating-point numbers are essentially rationals. For s ∈ S, δs is the Dirac
distribution on s, i.e. δs(s) = 1 and δs(t) = 0 for all t 6= s. For µ ∈ Dist(S), the
support of µ, denoted Supp(µ), is defined to be the set {s ∈ S|µ(s) > 0} and for
T ⊆ S, µ(T ) stands for

∑
s∈T µ(s). The models we consider, defined below, have

both probabilistic and non-deterministic behavior. Thus, there can be a non-
deterministic choice between two probability distributions, even for the same
action. Such modeling is mainly used for underspecification and moreover, the
abstractions we consider (see Definition 8) naturally have this non-determinism.
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Fig. 1: Four reactive and fully-probabilistic LPTSes.

As we see below, the theory described does not become any simpler by disallow-
ing non-deterministic choice for a given action (Lemmas 4 and 5).

Definition 1 (LPTS). A Labeled Probabilistic Transition System (LPTS) is

a tuple 〈S, s0, α, τ〉 where S is a set of states, s0 ∈ S is a distinguished start

state, α is a set of actions and τ ⊆ S × α×Dist(S) is a probabilistic transition

relation. For s ∈ S, a ∈ α and µ ∈ Dist(S), we denote (s, a, µ) ∈ τ by s
a
−→ µ

and say that s has a transition on a to µ.
An LPTS is called reactive if τ is a partial function from S × α to Dist(S)

(i.e. at most one transition on a given action from a given state) and fully-
probabilistic if τ is a partial function from S to α × Dist(S) (i.e. at most one

transition from a given state).

Figure 1 illustrates LPTSes. Throughout this paper, we use filled circles to
denote start states in the pictorial representations of LTPSes. For the distribu-

tion µ = {(s1, 0.1), (s2, 0.9)}, L2 in the figure has the transition s1
output
−−−−→ µ. All

the LPTSes in the figure are reactive as no state has more than one transition
on a given action. They are also fully-probabilistic as no state has more than
one transition. In the literature, an LPTS is also called a simple probabilistic

automaton [20]. Similarly, a reactive (fully-probabilistic) LPTS is also called a
(Labeled) Markov Decision Process (Markov Chain). Also, note that an LPTS
with all the distributions restricted to Dirac distributions is the classical (non-
probabilistic) Labeled Transition System (LTS); thus a reactive LTS corresponds
to the standard notion of a deterministic LTS. For example, L1 in Figure 1 is
a reactive (or deterministic) LTS. We only consider finite state, finite alphabet
and finitely branching (i.e. finitely many transitions from any state) LPTSes.

We are also interested in LPTSes with a tree structure, i.e. the start state is
not in the support of any distribution and every other state is in the support of
exactly one distribution. We call such LPTSes stochastic trees or simply, trees.

We use 〈Si, s
0
i , αi, τi〉 for an LPTS Li and 〈SL, s

0
L, αL, τL〉 for an LPTS L.

The following notation is used in Section 5.

Notation 1 For an LPTS L and an alphabet α with αL ⊆ α, Lα stands for the

LPTS 〈SL, s
0
L, α, τL〉.

Let L1 and L2 be two LPTSes and µ1 ∈ Dist(S1), µ2 ∈ Dist(S2).

Definition 2 (Product [20]). The product of µ1 and µ2, denoted µ1 ⊗ µ2, is

a distribution in Dist(S1 × S2), such that µ1 ⊗ µ2 : (s1, s2) 7→ µ1(s1) · µ2(s2).
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Fig. 2: Explaining µ1 ⊑R µ2 by means of splitting (indicated by arrows) and matching
(indicated by solid lines) the probabilities.

Definition 3 (Composition [20]). The parallel composition of L1 and L2,

denoted L1 ‖ L2, is defined as the LPTS 〈S1 × S2, (s
0
1, s

0
2), α1 ∪ α2, τ〉 where

((s1, s2), a, µ) ∈ τ iff

1. s1
a
−→ µ1, s2

a
−→ µ2 and µ = µ1 ⊗ µ2, or

2. s1
a
−→ µ1, a 6∈ α2 and µ = µ1 ⊗ δs2 , or

3. a 6∈ α1, s2
a
−→ µ2 and µ = δs1 ⊗ µ2.

For example, in Figure 1, L is the composition of L1 and L2.

Strong Simulation. For two LTSes, a pair of states belonging to a strong
simulation relation depends on whether certain other pairs of successor states
also belong to the relation [17]. For LPTSes, one has successor distributions

instead of successor states; a pair of states belonging to a strong simulation
relation R should now depend on whether certain other pairs in the supports

of the successor distributions also belong to R. Therefore we define a binary
relation on distributions, ⊑R, which depends on the relation R between states.
Intuitively, two distributions can be related if we can pair the states in their
support sets, the pairs contained in R, matching all the probabilities under the
distributions.

Consider an example with sRt and the transitions s
a
−→ µ1 and t

a
−→ µ2 with

µ1 and µ2 as in Figure 2(a). In this case, one easy way to match the probabilities
is to pair s1 with t1 and s2 with t2. This is sufficient if s1Rt1 and s2Rt2 also
hold, in which case, we say that µ1 ⊑R µ2. However, such a direct matching may
not be possible in general, as is the case in Figure 2(b). One can still obtain a
matching by splitting the probabilities under the distributions in such a way that
one can then directly match the probabilities as in Figure 2(a). Now, if s1Rt1,
s1Rt2, s2Rt2 and s2Rt3 also hold, we say that µ1 ⊑R µ2. Note that there can be
more than one possible splitting. This is the central idea behind the following
definition where the splitting is achieved by a weight function. Let R ⊆ S1 ×S2.
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Definition 4 ([20]). µ1 ⊑R µ2 iff there is a weight function w : S1 × S2 →
Q ∩ [0, 1] such that

1. µ1(s1) =
∑

s2∈S2
w(s1, s2) for all s1 ∈ S1,

2. µ2(s2) =
∑

s1∈S1
w(s1, s2) for all s2 ∈ S2,

3. w(s1, s2) > 0 implies s1Rs2 for all s1 ∈ S1, s2 ∈ S2.

µ1 ⊑R µ2 can be checked by computing the maxflow in an appropriate net-
work and checking if it equals 1.0 [1]. If µ1 ⊑R µ2 holds, w in the above definition
is one such maxflow function. As explained above, µ1 ⊑R µ2 can be understood
as matching all the probabilities (after splitting appropriately) under µ1 and
µ2. Considering Supp(µ1) and Supp(µ2) as two partite sets, this is the weighted
analog of saturating a partite set in bipartite matching, giving us the following
analog of the well-known Hall’s Theorem for saturating Supp(µ1).

Lemma 1 ([21]). µ1 ⊑R µ2 iff for every S ⊆ Supp(µ1), µ1(S) ≤ µ2(R(S)).

It follows that when µ1 6⊑R µ2, there exists a witness S ⊆ Supp(µ1) such
that µ1(S) > µ2(R(S)). For example, if R(s2) = ∅ in Figure 2(a), its probability
1
2 under µ1 cannot be matched and S = {s2} is a witness subset.

Definition 5 (Strong Simulation [20]). R is a strong simulation iff for every

s1Rs2 and s1
a
−→ µa

1 there is a µa
2 with s2

a
−→ µa

2 and µa
1 ⊑R µa

2.

For s1 ∈ S1 and s2 ∈ S2, s2 strongly simulates s1, denoted s1 � s2, iff there

is a strong simulation T such that s1Ts2. L2 strongly simulates L1, also denoted

L1 � L2, iff s01 � s02.

When checking a specification P of a system L with αP ⊂ αL, we implicitly
assume that P is completed by adding Dirac self-loops on each of the actions
in αL \ αP from every state before checking L � P . For example, L � P in
Figure 1 assuming that P is completed with {send, ack}. Checking L1 � L2 is
decidable in polynomial time [1,21] and can be performed with a greatest fixed
point algorithm that computes the coarsest simulation between L1 and L2. The
algorithm uses a relation variable R initialized to S1×S2 and checks the condition
in Definition 5 for every pair in R, iteratively, removing any violating pairs from
R. The algorithm terminates when a fixed point is reached showing L1 � L2 or
when the pair of initial states is removed showing L1 6� L2. If n = max(|S1|, |S2|)
and m = max(|τ1|, |τ2|), the algorithm takes O((mn6 + m2n3)/ log n) time and
O(mn + n2) space [1]. Several optimizations exist [21] but we do not consider
them here, for simplicity.

We do consider a specialized algorithm for the case that L1 is a tree which we
use during abstraction refinement (Sections 4 and 5). It initializes R to S1 × S2

and is based on a bottom-up traversal of L1. Let s1 ∈ S1 be a non-leaf state
during such a traversal and let s1

a
−→ µ1. For every s2 ∈ S2, the algorithm checks

if there exists s2
a
−→ µ2 with µ1 ⊑R µ2 and removes (s1, s2) from R, otherwise,

where R is the current relation. This constitutes an iteration in the algorithm.
The algorithm terminates when (s01, s

0
2) is removed from R or when the traversal

ends. Correctness is not hard to show and we skip the proof.
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Lemma 2 ([20]). � is a preorder (i.e. reflexive and transitive) and is compo-

sitional, i.e. if L1 � L2 and α2 ⊆ α1, then for every LPTS L, L1 ‖ L � L2 ‖ L.

Finally, we show the soundness and completeness of the rule ASym. The rule
is sound if the conclusion holds whenever there is an A satisfying the premises.
And the rule is complete if there is an A satisfying the premises whenever the
conclusion holds.

Theorem 1. For αA ⊆ α2, the rule ASym is sound and complete.

Proof. Soundness follows from Lemma 2. Completeness follows trivially by re-
placing A with L2. ⊓⊔

3 Counterexamples to Strong Simulation

Let L1 and L2 be two LPTSes. We characterize a counterexample to L1 � L2 as
a tree and show that any simpler structure is not sufficient in general. We first
describe counterexamples via a simple language-theoretic characterization.

Definition 6 (Language of an LPTS). Given an LPTS L, we define its

language, denoted L(L), as the set {L′|L′ is an LPTS and L′ � L}.

Lemma 3. L1 � L2 iff L(L1) ⊆ L(L2).

Proof. Necessity follows trivially from the transitivity of� and sufficiency follows
from the reflexivity of � which implies L1 ∈ L(L1). ⊓⊔

Thus, a counterexample C can be defined as follows.

Definition 7 (Counterexample). A counterexample to L1 � L2 is an LPTS

C such that C ∈ L(L1) \ L(L2), i.e. C � L1 but C 6� L2.

Now, L1 itself is a trivial choice for C but it does not give any more useful
information than what we had before checking the simulation. Moreover, it is
preferable to have C with a special and simpler structure rather than a general
LPTS as it helps in a more efficient counterexample analysis, wherever it is
used. When the LPTSes are restricted to LTSes, a tree-shaped LTS is known to
be sufficient as a counterexample [5]. Based on a similar intuition, we show that
a stochastic tree is sufficient as a counterexample in the probabilistic case.

Theorem 2. If L1 6� L2, there is a tree which serves as a counterexample.

Proof. We only give a brief sketch of a constructive proof here. See Appendix
for a detailed proof. Counterexample generation is based on the coarsest strong
simulation computation from Section 2. By induction on the number of pairs not
in the current relation R, we show that there is a tree counterexample to s1 � s2
whenever (s1, s2) is removed from R. We only consider the inductive case here.

The pair is removed because there is a transition s1
a
−→ µ1 but for every s2

a
−→ µ,

µ1 6⊑R µ i.e. there exists Sµ
1 ⊆ Supp(µ1) such that µ1(S

µ
1 ) > µ(R(Sµ

1 )). Such an
Sµ
1 can be found using Algorithm 1. Now, no pair in Sµ

1 × (Supp(µ) \R(Sµ
1 )) is

in R. By induction hypothesis, a counterexample tree exists for each such pair.
A counterexample to s1 � s2 is built using µ1 and all these other trees. ⊓⊔
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Algorithm 1 Finding T ⊆ S1 such that µ1(T ) > µ(R(T )).

Given µ1 ∈ Dist(S1), µ ∈ Dist(S2), R ⊆ S1 × S2 with µ1 6⊑R µ.

1: let f be a maxflow function for the flow network corresponding to µ1 and µ
2: find s1 ∈ S1 with µ1(s1) >

∑
s2∈S2

f(s1, s2) and let T = {s1}
3: while µ1(T ) ≤ µ(R(T )) do
4: T ← {s1 ∈ S1|∃s2 ∈ R(T ) : f(s1, s2) > 0}
5: end while

6: return T
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Fig. 3: C is a counterexample to L1 � L2.

For an illustration, see Figure 3 where C is a counterexample to L1 � L2.
Algorithm 1 is also analogous to the one used to find a subset failing Hall’s
condition in Graph Theory and can easily be proved correct. We obtain the
following complexity bounds whose proof can be found in Appendix.

Theorem 3. Deciding L1 � L2 and obtaining a tree counterexample takes

O(mn6 + m2n3) time and O(mn + n2) space where n = max(|SL1
|, |SL2

|) and

m = max(|τ1|, |τ2|).

Note that the obtained counterexample is essentially a finite tree execution of
L1. That is, there is a total mapping M : SC → S1 such that for every transition
c

a
−→ µc of C, there exists M(c)

a
−→ µ1 such that M restricted to Supp(µc) is an

injection and for every c′ ∈ Supp(µc), µc(c
′) = µ1(M(c′)). M is also a strong

simulation. We call such a mapping an execution mapping from C to L1. Figure
3 shows an execution mapping in brackets beside the states of C. We therefore
have the following corollary.

Corollary 1. If L1 is reactive and L1 6� L2, there is a reactive tree which serves

as a counterexample.

The following two lemmas show that (reactive) trees are the simplest struc-
tured counterexamples (proofs in Appendix).

Lemma 4. There exist reactive LPTSes R1 and R2 such that R1 6� R2 and no

counterexample is fully-probabilistic.

Thus, if L1 is reactive, a reactive tree is the simplest structure for a counterex-
ample to L1 � L2. This is surprising, since the non-probabilistic counterpart of a
fully-probabilistic LPTS is a trace of actions and it is known that trace inclusion
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coincides with simulation conformance between reactive (i.e. deterministic) LT-
Ses. If there is no such restriction on L1, one may ask if a reactive LPTS suffices
as a counterexample to L1 � L2. That is not the case either, as the following
lemma shows.

Lemma 5. There exist an LPTS L and a reactive LPTS R such that L 6� R
and no counterexample is reactive.

4 CEGAR for Checking Strong Simulation

Now that the notion of a counterexample has been formalized, we describe a
CounterExample Guided Abstraction Refinement (CEGAR) approach [6] to
check L � P where L and P are LPTSes and P stands for a specification of
L. We will use this approach to describe AGAR in the next section.

Abstractions for L are obtained using a quotient construction from a partition
Π of SL. We let Π also denote the corresponding set of equivalence classes and
given an arbitrary s ∈ S, let [s]Π denote the equivalence class containing s. The
quotient is an adaptation of the usual construction in the non-probabilistic case.

Definition 8 (Quotient LPTS). Given a partition Π of SL, define the quo-
tient LPTS, denoted L/Π, as the LPTS 〈Π, [s0L]Π , αL, τ〉 where (c, a, µl) ∈ τ iff

(s, a, µ) ∈ τL for some s ∈ SL with s ∈ c and µl(c
′) =

∑
t∈c′ µ(t) for all c′ ∈ Π.

As the abstractions are built from an explicit representation of L, this is not
immediately useful. But, as we will see in Sections 5 and 6, this becomes very
useful when adapted to the assume-guarantee setting.

Figure 4 shows an example quotient. Note that L � L/Π for any partition
Π of SL (proof in Appendix), with the relation R = {(s, c)|s ∈ c, c ∈ Π} as a
strong simulation.

CEGAR for LPTSes is sketched in Algorithm 2. It maintains an abstraction
A of L, initialized to the quotient for the coarsest partition, and iteratively
refines A based on the counterexamples obtained from the simulation check
against P until a partition whose corresponding quotient conforms to P w.r.t.
� is obtained, or a real counterexample is found. In the following, we describe
how to analyze if a counterexample is spurious, due to abstraction, and how to
refine the abstraction in case it is (lines 4− 6). Our analysis is an adaptation of
an existing one for counterexamples which are arbitrary sub-structures of A [3];
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Algorithm 2 CEGAR for LPTSes: checks L � P

1: A← L/Π, where Π is the coarsest partition of SL

2: while A 6� P do

3: obtain a counterexample C
4: (spurious,A′)← analyzeAndRefine(C,A,L) {see text}
5: if spurious then

6: A← A′

7: else

8: return counterexample C
9: end if

10: end while

11: return L � P holds

while our tree counterexamples have an execution mapping to A, they are not
necessarily sub-structures of A.

Analysis and Refinement (analyzeAndRefine(·)). Assume that Π is a par-
tition of SL such that A = L/Π and A 6� P . Let C be a tree counterexample
obtained by the algorithm described in Section 3, i.e. C � A but C 6� P . As
described in Section 3, there is an execution mapping M : SC → SA which
is also a strong simulation. Let RM ⊆ SC × SL be {(s1, s2)|s1M [s2]Π}. Our
refinement strategy tries to obtain the coarsest strong simulation between C
and L contained in RM , using the specialized algorithm for trees described in
Section 2 with RM as the initial candidate. Let R and Rold be the candidate
relations at the end of the current and the previous iterations, respectively, and
let s1

a
−→ µ1 be the transition in C considered by the algorithm in the current

iteration. (Rold is undefined initially.) The strategy refines a state when one of
the following two cases happens before termination and otherwise, returns C as
a real counterexample.

1. R(s1) = ∅. There are two possible reasons for this case. One is that the states
in Supp(µ1) are not related, by R, to enough number of states in SL (i.e.
µ1 is spurious) and (the images under M of) all the states in Supp(µ1) are
candidates for refinement. The other possible reason is the branching (more
than one transition) from s1 where no state in RM (s1) can simulate all the
transitions of s1 and M(s1) is a candidate for refinement.

2. M(s1) = [s0L]Π , s0L ∈ Rold(s1)\R(s1) and R(s1) 6= ∅, i.e. M(s1) is the initial
state of A but s1 is no longer related to s0L by R. Here, M(s1) is a candidate
for refinement.

In case 1, our refinement strategy first tries to split the equivalence class
M(s1) into Rold(s1) and the rest and then, for every state s ∈ Supp(µ1), tries
to split the equivalence class M(s) into Rold(s) and the rest, unless M(s) =
M(s1) and M(s1) has already been split. And in case 2, the strategy splits the
equivalence class M(s1) into Rold(s1) \ R(s1) and the rest. It follows from the
two cases that if C is declared real, then C � L with the final R as a strong
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simulation between C and L and hence, C is a counterexample to L � P . The
following lemma (proof in Appendix) shows that the refinement strategy always
leads to progress.

Lemma 6. The above refinement strategy always results in a strictly finer par-

tition Π ′ < Π.

5 Assume-Guarantee Abstraction Refinement

We now describe our approach to Assume-Guarantee Abstraction Refinement
(AGAR) for LPTSes. The approach is similar to CEGAR from the previous
section with the notable exception that counterexample analysis is performed
in an assume guarantee style: a counterexample obtained from checking one
component is used to refine the abstraction of a different component.

Given LPTSes L1, L2 and P , the goal is to check L1 ‖ L2 � P in an assume-
guarantee style, using rule ASym. The basic idea is to maintain A in the rule
as an abstraction of L2, i.e. the second premise holds for free throughout, and
to check only the first premise for every A generated by the algorithm. As in
CEGAR, we restrict A to the quotient for a partition of S2. If the first premise
holds for an A, then L1 ‖ L2 � P also holds, by the soundness of the rule.
Otherwise, the obtained counterexample C is analyzed to see whether it indicates
a real error or it is spurious, in which case A is refined (as described in detail
below). Algorithm 3 sketches the AGAR loop.

For an example, A in Figure 5 shows the final assumption generated by
AGAR for the LPTSes in Figure 1 (after one refinement).

Algorithm 3 AGAR for LPTSes: checks L1 ‖ L2 � P

1: A← coarsest abstraction of L2

2: while L1 ‖ A 6� P do

3: obtain a counterexample C
4: obtain projections C ↾L1

and C ↾A

5: (spurious, A′)← analyzeAndRefine(C ↾A, A, L2)
6: if spurious then

7: A← A′

8: else

9: return counterexample C
10: end if

11: end while

12: return L1 ‖ L2 � P holds

Analysis and Refinement. The counterexample analysis is performed com-
positionally, using the projections of C onto L1 and A. As there is an execution

mapping from C to L1 ‖ A, these projections are the contributions of L1 and A
towards C in the composition. We denote these projections by C ↾L1

and C ↾A,
respectively. In the non-probabilistic case, these are obtained by simply project-
ing C onto the respective alphabets. In the probabilistic scenario, however, com-
position changes the probabilities in the distributions (Definition 2) and alphabet
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projection is insufficient. For this reason, we additionally record the individual
distributions of the LPTSes responsible for a product distribution while perform-
ing the composition. Thus, projections C ↾L1

and C ↾A can be obtained using
this auxiliary information. Note that there is a natural execution mapping from
C ↾A to A and from C ↾L1

to L1. We can then employ the analysis described in
Section 4 between C ↾A and A, i.e. invoke analyzeAndRefine(C ↾A, A, L2) to de-
termine if C ↾A (and hence, C) is spurious and to refine A in case it is. Otherwise,
C ↾A� L2 and hence, (C ↾A)

α2 � L2. Together with (C ↾L1
)α1 � L1 this implies

(C ↾L1
)α1 ‖ (C ↾A)

α2 � L1 ‖ L2 (Lemma 2). As C � (C ↾L1
)α1 ‖ (C ↾A)

α2 , C is
then a real counterexample. Thus, we have the following result.

Theorem 4 (Correctness and Termination). Algorithm AGAR always ter-

minates with at most |S2| − 1 refinements and L1 ‖ L2 6� P if and only if the

algorithm returns a real counterexample.

Proof. Correctness: AGAR terminates when either Premise 1 is satisfied by the
current assumption (line 12) or when a counterexample is returned (line 9). In
the first case, we know that Premise 2 holds by construction and since ASym

is sound (Theorem 1) it follows that indeed L1‖L2 � P . In the second case, the
counterexample returned by AGAR is real (see above) showing that L1 ‖ L2 6� P .

Termination: AGAR iteratively refines the abstraction until the property
holds or a real counterexample is reported. Abstraction refinement results in a
finer partition (Lemma 6) and thus it is guaranteed to terminate since in the
worst case A converges to L2 which is finite state. Since rule ASym is trivially
complete for L2 (proof of Theorem 1) it follows that AGAR will also terminate,
and the number of refinements is bounded by |S2| − 1. ⊓⊔

In practice, we expect AGAR to terminate earlier than in |S2|−1 steps, with
an assumption smaller than L2. AGAR will terminate as soon as it finds an as-
sumption that satisfies the premises or that helps exhibit a real counterexample.
Note also that, although AGAR uses an explicit representation for the individual
components, it never builds L1 ‖ L2 directly (except in the worst-case) keeping
the cost of verification low.

Reasoning with n ≥ 2 Components. So far, we have discussed compositional
verification in the context of two components L1 and L2. This reasoning can be
generalized to n ≥ 2 components using the following (sound and complete) rule.

1 : L1 ‖ A1 � P 2 : L2 ‖ A2 � A1 ... n : Ln � An−1

‖ni=1 Li � P
(ASym-N)

The rule enables us to overcome the intermediate state explosion that may be
associated with two-way decompositions (when the subsystems are larger than
the entire system). The AGAR algorithm for this rule involves the creation of
n−1 nested instances of AGAR for two components, with the ith instance com-
puting the assumption Ai for (L1 ‖ · · · ‖ Li) ‖ (Li+1 ‖ Ai+1) � P . When the
AGAR instance for Ai−1 returns a counterexample C, for 1 < i ≤ n − 1, we
need to analyze C for spuriousness and refine Ai in case it is. From Algorithm
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3, C is returned only if analyzeAndRefine(C ↾Ai−1
, Ai−1, Li ‖ Ai) concludes that

C ↾Ai−1
is real (note that Ai−1 is an abstraction of Li ‖ Ai). From analyzeAn-

dRefine in Section 4, this implies that the final relation R computed between the
states of C ↾Ai−1

and Li ‖ Ai is a strong simulation between them. It follows
that, although C ↾Ai−1

does not have an execution mapping to Li ‖ Ai, we can
naturally obtain a tree T using C ↾Ai−1

, via R, with such a mapping. Thus, we
modify the algorithm to return T ↾Ai

at line 9, instead of C, which can then be
used to check for spuriousness and refine Ai. Note that when Ai is refined, all
the Aj ’s for j < i need to be recomputed.

Compositional Verification of Logical Properties. AGAR can be further
applied to automate assume-guarantee checking of properties φ written as for-
mulae in a logic that is preserved by strong simulation such as the weak-safety

fragment of probabilistic CTL (pCTL) [3] which also yield trees as counterex-
amples. The rule ASym is both sound and complete for this logic (|= denotes
property satisfaction) for αA ⊆ α2 with a proof similar to that of Theorem 1.

1 : L1 ‖ A |= φ 2 : L2 � A

L1 ‖ L2 |= φ

A can be computed as a conservative abstraction of L2 and iteratively refined
based on the tree counterexamples to premise 1, using the same procedures as
before. The rule can be generalized to reasoning about n ≥ 2 components as
described above and also to richer logics with more general counterexamples
adapting existing CEGAR approaches [3] to AGAR. We plan to further investi-
gate this direction in the future.

6 Implementation and Results

Implementation.We implemented the algorithms for checking simulation (Sec-
tion 2), for generating counterexamples (as in the proof of Lemma 2) and for
AGAR (Algorithm 3) with ASym and ASym-N in JavaTM . We used the front-
end of PRISM’s [15] explicit-state engine to parse the models of the components
described in PRISM’s input language and construct LPTSes which were then
handled by our implementation.

While the JavaTM implementation for checking simulation uses the greatest
fixed point computation to obtain the coarsest strong simulation, we noticed
that the problem of checking the existence of a strong simulation is essentially a
constraint satisfaction problem. To leverage the efficient constraint solvers that
exist today, we reduced the problem of checking simulation to an SMT problem
with rational linear arithmetic as follows. For every pair of states, the constraint
that the pair is in some strong simulation is simply the encoding of the condition
in Definition 5. For a relevant pair of distributions µ1 and µ2, the constraint for
µ1 ⊑R µ2 is encoded by means of a weight function (as given by Definition 4)
and the constraint for µ1 6⊑R µ2 is encoded by means of a witness subset of
Supp(µ1) (as in Lemma 1), where R is the variable for the strong simulation.
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Example ASym ASym-N Mono

(param) |L| |P | |L1| |L2| Time Mem |LM | |AM | |Lc| Time Mem |LM | |AM | Time Mem

CS1(5) 94 16 36 405 7.2 15.6 182 33 36 74.0 15.1 182 34 0.2 8.8
CS1(6) 136 19 49 1215 11.6 22.7 324 41 49 810.7 21.4 324 40 0.5 12.2
CS1(7) 186 22 64 3645 37.7 49.4 538 56 64 out – – – 0.8 17.9

CSN (2) 34 15 25 9 0.7 7.1 51 7 9 2.4 6.8 40 25 0.1 5.9
CSN (3) 184 54 125 16 43.0 63.0 324 12 16 1.6k 109.6 372 125 14.8 37.9
CSN (4) 960 189 625 25 out – – – 25 out – – – 1.8k 667.5

MER (3) 16k 12 278 1728 2.6 19.7 706 7 278 3.6 14.6 706 7 193.8 458.5
MER (4) 120k 15 465 21k 15.0 53.9 2k 11 465 34.7 37.8 2k 11 out –
MER (5) 841k 18 700 250k – out1 – – 700 257.8 65.5 3.3k 16 – out1

SN (1) 462 18 43 32 0.2 6.2 43 3 126 1.7 8.5 165 6 1.5 27.7
SN (2) 7860 54 796 32 79.5 112.9 796 3 252 694.4 171.7 1.4k 21 4.7k 1.3k
SN (3) 78k 162 7545 32 out – – – 378 7.2k 528.8 1.4k 21 – out

Table 1: AGAR vs monolithic verification. 1 Mem-out during model construction.

We use Yices (v1.0.29) [9] to solve the resulting SMT problem; a real variable in
Yices input language is essentially a rational variable. There is no direct way to
obtain a tree counterexample when the SMT problem is unsatisfiable. Therefore
when the conformance fails, we obtain the unsat core from Yices, construct
the sub-structure of L1 (when we check L1 � L2) from the constraints in the
unsat core and check the conformance of this sub-structure against L2 using the
JavaTM implementation. This sub-structure is usually much smaller than L1 and
contains only the information necessary to expose the counterexample.

Results. We evaluated our algorithms using this implementation on several ex-
amples analyzed in previous work [11]. Some of these examples were created
by introducing probabilistic failures into non-probabilistic models used earlier
[19] while others were adapted from PRISM benchmarks [15]. The properties
used previously were about probabilistic reachability and we had to create our
own specification LPTSes after developing an understanding of the models. The
models in all the examples satisfy the respective specifications. We briefly de-
scribe the models and the specifications below, all of which are available at
http://www.cs.cmu.edu/~akomurav/publications/agar/AGAR.html.

CS1 and CSN model a Client-Server protocol with mutual exclusion having
probabilistic failures in one or all of the N clients, respectively. The specifi-
cations describe the probabilistic failure behavior of the clients while hiding
some of the actions as is typical in a high level design specification.

MER models a resource arbiter module of NASA’s software for Mars Explo-

ration Rovers which grants and rescinds shared resources for several users.
We considered the case of two resources with varying number of users and
probabilistic failures introduced in all the components. As in the above ex-
ample, the specifications describe the probabilistic failure behavior of the
users while hiding some of the actions.

SN models a wireless Sensor Network of one or more sensors sending data and
messages to a process via a channel with a bounded buffer having proba-
bilistic behavior in the components. Creating specification LPTSes for this
example turned out to be more difficult than the above examples, and we
obtained them by observing the system’s runs and by manual abstraction.

http://www.cs.cmu.edu/~akomurav/publications/agar/AGAR.html
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Table 1 shows the results we obtained when ASym and ASym-N were com-
pared with monolithic (non-compositional) conformance checking. |X| stands
for the number of states of an LPTS X. L stands for the whole system, P for
the specification, LM for the LPTS with the largest number of states built by
composing LPTSes during the course of AGAR, AM for the assumption with
the largest number of states during the execution and Lc for the component
with the largest number of states in ASym-N. Time is in seconds and Memory

is in megabytes. We also compared |LM | with |L|, as |LM | denotes the largest
LPTS ever built by AGAR. Best figures, among ASym, ASym-N and Mono,
for Time, Memory and LPTS sizes, are boldfaced. All the results were taken on a
Fedora-10 64-bit machine running on an Intel R© CoreTM2 Quad CPU of 2.83GHz
and 4GB RAM. We imposed a 2GB upper bound on Java heap memory and a 2
hour upper bound on the running time. We observed that most of the time dur-
ing AGAR was spent in checking the premises and an insignificant amount was
spent for the composition and the refinement steps. Also, most of the memory
was consumed by Yices. We tried several orderings of the components (the Li’s
in the rules) and report only the ones giving the best results.

While monolithic checking outperformed AGAR for Client-Server, there are
significant time and memory savings for MER and Sensor Network where in
some cases the monolithic approach ran out of resources (time or memory).
One possible reason for AGAR performing worse for Client-Server is that |L|
is much smaller than |L1| or |L2|. When compared to using ASym, ASym-N

brings further memory savings in the case of MER and also time savings for
Sensor Network with parameter 3 which could not finish in 2 hours when used
with ASym. As already mentioned, these models were analyzed previously with
an assume-guarantee framework using learning from traces [11]. Although that
approach uses a similar assume-guarantee rule (but instantiated to check prob-

abilistic reachability) and the results have some similarity (e.g. Client-Server is
similarly not handled well by the compositional approach), we can not directly
compare it with AGAR as it considers a different class of properties.

7 Conclusion and Future Work

We described a complete, fully automated abstraction-refinement approach for
assume-guarantee checking of strong simulation between LPTSes. The approach
uses refinement based on counterexamples formalized as stochastic trees and
it further applies to checking safe-pCTL properties. We showed experimentally
the merits of the proposed technique. We plan to extend our approach to cases
where the assumption A has a smaller alphabet than that of the component
it represents as this can potentially lead to further savings. Strong simulation
would no longer work and one would need to use weak simulation [20], for which
checking algorithms are unknown yet. We would also like to explore symbolic
implementations of our algorithms, for increased scalability. As an alternative
approach, we plan to build upon our recent work [14] on learning LPTSes to
develop practical compositional algorithms and compare with AGAR.
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A Proof of Lemma 2

We first show that � is a preorder. Reflexivity can be easily proved by showing
that the identity relation is a strong simulation. We only consider transitivity.
Let L1 � L2 and L2 � L3. Thus, there are strong simulations R12 ⊆ S1×S2 and
R23 ⊆ S2 × S3. Consider the relation R = {(s1, s3)|∃s2 : s1R12s2 and s2R23s3}.

Let s1Rs3 and s1
a
−→ µ1. Also, let s2 ∈ S2 be such that s1R12s2 and s2R23s3.

As R12 is a strong simulation, there exists s2
a
−→ µ2 with µ1 ⊑R12

µ2. Again,

as R23 is a strong simulation, there exists s3
a
−→ µ3 with µ2 ⊑R23

µ3. Now, let
S ⊆ Supp(µ1) be arbitrary. We have µ1(S) ≤ µ2(R12(S)) ≤ µ3(R23(R12(S))) =
µ3(R(S)) (Lemma 1). Thus, µ1 ⊑R µ3 and hence, R is a strong simulation. Also,
s01Rs03 by definition of R. We conclude that L1 � L3.

Now, we show that � is compositional. Assume L1 � L2 with α2 ⊆ α1. Let
R12 ⊆ S1 × S2 be a strong simulation. Consider the relation R defined below.

R = {((s1, s), (s2, s))|s1R12s2 and s ∈ SL}

Let (s1, s)R(s2, s) and (s1, s)
a
−→ µa. So, s1R12s2. By Definition 3, there are

three cases to analyze.

s1
a
−→ µ1, s

a
−→ µ and µa = µ1 ⊗ µ : As R12 is a strong simulation, there

exists s2
a
−→ µ2 with µ1 ⊑R12

µ2. And by Definition 3, (s2, s)
a
−→ µ′

a where
µ′
a = µ2 ⊗ µ. Now, let X ⊆ Supp(µa). For each s ∈ SL, let Xs ⊆ X contain

all the pairs of X with s as the second member. Thus, the Xs’s partition X.
We have µa(X)

=
∑

s∈SL

µa(Xs × {s})

=
∑

s∈SL

µ1(Xs) · µ(s) definition of µa

≤
∑

s∈SL

µ2(R12(Xs)) · µ(s) R12 is a strong simulation

=
∑

s∈SL

µ′
a(R12(Xs)× {s}) definition of µ′

a

=
∑

s∈SL

µ′
a(R(Xs × {s})) definition of R

= µ′
a(

⋃

s∈SL

R(Xs × {s})) the sets R(Xs × {s}) are disjoint for distinct s

= µ′
a(R(

⋃

s∈SL

Xs × {s}))

= µ′
a(R(X))

which implies that µa ⊑R µ′
a.
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a 6∈ α1, s
a
−→ µ and µa = δs1 ⊗ µ : As α2 ⊆ α1, a 6∈ α2 and by Definition 3,

(s2, s)
a
−→ µ′

a with µ′
a = δs2⊗µ. Now, let X ⊆ Supp(µa) and let X2 denote the

set of all the second members of the pairs in X. We have µa(X) = µ(X2) =
µ′
a({s2} ×X2) ≤ µ′

a(R(X)) and hence, µa ⊑R µ′
a.

s1
a
−→ µ1, a 6∈ αL and µa = µ1⊗ δs : As R12 is a strong simulation, there exists
s2

a
−→ µ2 with µ1 ⊑R12

µ2. Now, let X ⊆ Supp(µa) and let X1 denote the
set of all the first members of the pairs in X. We have µa(X) = µ1(X1) ≤
µ2(R12(X1)) = µ′

a(R(X)) and hence, µa ⊑R µ′
a.

Hence, R is a strong simulation. Also, (s01, s
0
L)R(s02, s

0
L) by definition of R.

We conclude that L1 ‖ L � L2 ‖ L. ⊓⊔

B Proof of Theorem 2

We give a constructive proof. Assume that L1 6� L2.
We first describe, briefly, a well-known algorithm used to check L1 � L2 [1].

We start with a candidate R for the coarsest strong simulation between L1 and
L2 initialized to S1×S2. Each iteration, an arbitrary pair (s1, s2) in the current
R is picked and the local conditions in the definition of a strong simulation
(Definition 5) are checked for R. If the pair fails, that is because there is a

transition s1
a
−→ µ1 but for every s2

a
−→ µ2, µ1 6⊑R µ2. In this case, the pair is

removed and another iteration begins. Note that, at this point we can conclude
that s1 6� s2. Otherwise, a new pair is picked for examination. The algorithm
stops when (s01, s

0
2) (the pair of the initial states) is removed from the current R

at which point we conclude that L1 6� L2, or when a fixed point is reached and
we conclude that L1 � L2. By the correctness and termination of this algorithm,
this will eventually happen. And by the assumption made above that L1 6� L2,
we are only interested in the former scenario of termination.

We show that whenever a pair (s1, s2) is removed from R, there is a tree T12

which serves as a counterexample to s1 � s2. As argued above, (s01, s
0
2) is eventu-

ally removed from R and hence, we have a tree T which serves a counterexample
to s01 � s02 and therefore, to the conformance. We proceed by strong induction
on the number of pairs removed so far from the initial R = S1 × S2.

The base case is when no pair has been removed so far. In this case, (s1, s2)

will be removed only because there is a transition s1
a
−→ µ1 and there is no

transition on action a from s2. Then, a counterexample will simply be the tree
T12 representing the transition s1

a
−→ µ1. It is easy to see that T12 � (L1, s1) but

T12 6� (L2, s2).
For the inductive case, assume that a new pair (s1, s2) has been removed

from the current R. We have to analyze two cases. The first case is when we
have a transition s1

a
−→ µ1 but there is no transition s2

a
−→ µ2. This is similar to

the base case above. So, we will only consider the other case below.
Now, there is a transition s1

a
−→ µ1 and the set ∆ = {µ ∈ Dist(S2)|s2

a
−→ µ}

is non-empty but for every µ ∈ ∆, µ1 6⊑R µ. Consider an arbitrary µ ∈ ∆.
Because µ1 6⊑R µ, we conclude that there is a set Sµ

1 ⊆ Supp(µ1) such that
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µ1(S
µ
1 ) > µ(R(Sµ

1 )) (Lemma 1). Intuitively, this is because Sµ
1 is not related to

enough number of states from Supp(µ). Let Sµ
2 = Supp(µ) \R(Sµ

1 ).

We start building a tree T12 with s1 as the root and s1
a
−→ µ1 as the only

outgoing transition. Now, let s ∈
⋃

µ∈∆ Sµ
1 . Consider the set Us =

⋃
{Sµ

2 |s ∈ Sµ
1 }.

Then, for every t ∈ Us, we simply attach the counterexample tree for (s, t) (exists
by induction hypothesis) below the state s in T12. We claim that T12 built this
way is a counterexample to s1 � s2.

First of all, it is easy to see that T12 � (L1, s1) as T12 is obtained from the
states and the corresponding distributions of L1. Let µ ∈ ∆ and let R′ be a
strong simulation between T12 and L2. By construction, Sµ

1 ⊆ Supp(µ1) and
further, by induction hypothesis for every (s, t) ∈ Sµ

1 ×Sµ
2 , (T12, s) 6� (L2, t) and

hence, (s, t) 6∈ R′. Therefore µ1(S
µ
1 ) > µ(R(Sµ

1 )) ≥ µ(R′(Sµ
1 )). It follows that

µ1 6⊑R′ µ and hence, (s1, s2) 6∈ R′. As µ and R′ are arbitrary, we conclude that
T12 6� (L2, s2). ⊓⊔

C Proof of Theorem 3

It can be easily be seen that Algorithm 1 takes O(n3) time and O(n) space which
increases the complexity of checking µ1 ⊑R µ2 to O(n3) time and O(n2) space
(see Section 2). The rest of the argument is similar to that of the fixed point
algorithm for computing the coarsest strong simulation [1]. ⊓⊔

D Proof of Lemma 4
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Fig. 6: An example where there is no fully-probabilistic counterexample.

Consider the two reactive LPTSes R1 and R2 in Figure 6. The states along
with the outgoing actions and distributions are labeled as in the figure. Clearly
r11 6� r21 and r11 6� r23. It follows that µ10 6⊑� µ20 and hence, R1 6� R2. We are
interested in a counterexample to demonstrate this.

Let us assume that there is a fully-probabilistic LPTS C (with initial state
c0) which serves as a counterexample. Thus, C � R1 but C 6� R2. By Definition



AGAR for Probabilistic Systems 21

5 there exists a strong simulation U such that (c0, r10) ∈ U . If c0 has no outgoing
transitions, clearly C � R2. So, it must have an outgoing distribution, say µ0.
As (c0, r10) ∈ U and as µ10 is labeled by x, µ0 must be labeled by x too. Let
c1 be an arbitrary state in Supp(µ0) with an outgoing transition (there may be
no such c1). Then, the transition must be labeled by y or z. Otherwise, clearly
(c1, r11) 6∈ U and (c1, r12) 6∈ U which imply µ0 6⊑U µ10 and hence, (c0, r10) 6∈ U
contradicting the assumption. Moreover, (c1, r12) 6∈ U as r12 has no transitions.
This forces (c1, r11) to be in U . Let the (only) outgoing distribution µ1 of c1 be
labeled by y. Then, for every state c2 ∈ Supp(µ1), (c2, r13) ∈ U for otherwise
µ1 6⊑U µ110 which implies (c1, r11) 6∈ U leading to a contradiction. This forces
c2 to not have any transitions. We have the same conclusion if µ1 is labeled by
z instead.

Thus, C can only be a tree with exactly one transition µ0 labeled by x from
the initial state and for every state in the support of this distribution, there is
at most one transition labeled by either y or z. Also, if Sy and Sz are the sets
of states in Supp(µ0) with a transition labeled by y and z, respectively, then
µ0(Sy ∪ Sz) ≤

1
2 . This is because, U(Sy ∪ Sz) = {r11} and µ10(r11) =

1
2 .

Now, we define a relation V between the states of C, SC , and that of R2,
S2. The initial states are related. Let c be an arbitrary state of C. If c has no
transitions it is related to every state of R2. If c has its transition labeled by
y, it is related to r21 and r22. Otherwise its transition is labeled by z and it
is related to r22 and r23. To show that V is a strong simulation, the only non-
trivial thing to consider is whether µ0 ⊑V µ20. For that, take an arbitrary set
X ⊆ Supp(µ0). If X has any state with no transitions, V (X) = S2 and hence
µ0(X) ≤ µ20(V (X)) = 1. Otherwise, X only has states with transitions labeled
by y or z, i.e. X ⊆ Sy∪Sz, and by the observation made in the above paragraph,
µ0(X) ≤ 1

2 whereas µ20(V (X)) ≥ 2
3 . Thus, µ0(X) ≤ µ20(V (X)). This shows that

V is a strong simulation and we conclude that C � R2 immediately giving us a
contradiction to the assumption that C is a counterexample. ⊓⊔

E Proof of Lemma 5

Consider the LPTS L and the reactive LPTS R in Figure 7. The states along with
the outgoing actions and distributions are labeled as in the figure. By similar
arguments as made in the proof of Lemma 4, one can show that µ110 6⊑� µ23,
µ111 6⊑� µ21 whereas µ110 ⊑� µ21, µ22 and µ111 ⊑� µ22, µ23. All these imply
that L 6� R. We are interested in a counterexample to show this.

Assume that a reactive LPTS C exists which serves as a counterexample.
Again, similar to the arguments made in the proof of Lemma 4, one can show
that C can only be a tree with exactly one transition µ0 labeled by x from the
initial state and for every state in Supp(µ0), there is at most one distribution
labeled by y (because l11 has transitions on no other action). Furthermore, if any
state in the support of this distribution has any transitions, all the transitions
from all the states in the support will be labeled by the same action and that
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Fig. 7: There is no reactive counterexample to L � R.

too, by either z or w. Then, if Sy is the set of states in Supp(µ0) with outgoing
distributions (which should only be labeled by y) then µ0(Sy) ≤

1
2 .

Now, we define a relation V ⊆ SC × S2, where SC is the set of states of C,
in a similar fashion. All the states in C with no transitions are related to every
state in S2. The initial states are related. For every other state c, if it has a
transition labeled by z or w, c is related to all the states having a transition on z
or w, respectively and if it is labeled by y, it is related to r21 (r23) and r22 if the
states in the support have transitions on z (w) and to all three of r21, r22 and
r23 otherwise. One can similarly show that V is a strong simulation implying
C � R. This contradicts the assumption that C is a counterexample. ⊓⊔

F Quotient is an Abstraction : L � L/Π

It suffices to show that R = {(s, c)|s ∈ c, c ∈ Π} is a strong simulation between L

and L/Π. Let sRc and s
a
−→ µ. As s ∈ c, there exists a transition, by Definition 8,

c
a
−→ µl such that for every c′ ∈ Π, µl(c

′) =
∑

s′∈c′ µ(s
′). Let S ⊆ SL. Now, µ(S)

=
∑

s′∈S

µ(s′)

=
∑

c′∈R(S)

∑

s′∈c′∩S

µ(s′)

≤
∑

c′∈R(S)

∑

s′∈c′

µ(s′)

=
∑

c′∈R(S)

µl(c
′)

= µl(R(S))
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As S is arbitrary, this implies from Lemma 1 that µ ⊑R µl. Note that s
0
LR[s0L].

We conclude that L � L/Π. ⊓⊔

G Proof of Lemma 6

Let s1, µ1 and M be as in Section 4. Consider the first case where R(s1) = ∅.
If Rold(s1) = RM (s1), it follows that there exists s ∈ Supp(µ1) with Rold(s) ⊂
RM (s). This can be easily proved by contradiction and we omit this proof. As
M(s) is split into Rold(s) and the rest, the strategy results in a finer partition.
Otherwise, Rold(s1) is a strict subset of RM (s1) and as R(s1) = ∅, the strategy
splits M(s1) into Rold(s1) and the rest which also results in a finer partition.

Now, consider the second case where R(s1) 6= ∅, M(s1) = [s0L]Π and s0L ∈
Rold(s1) \ R(s1). It follows that Rold(s1) \ R(s1) is a non-empty, proper subset
of RM (s1) and hence, this also results in a finer partition. ⊓⊔
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