
Teaching Statement – Anvesh Komuravelli

My passion for teaching stems from the personal satisfaction I obtain by helping someone learn
something new and the numerous benefits it has on my own understanding. Moreover, given the
practical nature of Computer Science, I am motivated to take the responsibility for shaping tomor-
row’s computer scientists who will impact the whole world. With this in mind, I have the following
main teaching objectives: students should be able to (a) summarize and explain concepts in abstract
and intuitive ways, (b) develop the right questioning and problem-solving skills, and (c) propose new
problems and invent new approaches for solving them and think beyond what exists today.

Abstract and intuitive characterization of concepts is essential for a better understanding which
helps in remembering and applying the concepts where and when necessary. To facilitate this, a
teacher should be motivating and engaging with the students to make sure they really understand
their significance. This is especially true when the concepts form the core of the subject and the
teacher should strive to be as creative as possible. I still remember my high school days when I used
to enjoy learning the basic concepts of Physics because our teacher had a very illustrative style of
teaching with beautiful pictorial representations on the blackboard. Perhaps surprisingly, this also led
me to appreciate the mathematics that actually helped solve Physics problems and Physics used to
be my favorite subject. Two years ago, I was reading a research paper on logical analysis of hardware
systems where the mathematics was so detailed and seemed too technical. But, when I later attended a
presentation of the paper at a conference with wonderful pictorial representations using Venn diagrams
and such, it all made sense and seemed so intuitive! I wish the paper made use of those representations.
A good representation helps students grasp the concept easily, explain it intuitively, and apply it in
non-trivial ways in a different setting.

To help students develop questioning and problem-solving skills, a teacher should first create an
interactive environment, maintaining a natural chain of thought that evolves from simple to complex
reasoning. A teacher should always try to put herself in the shoes of the students to figure out how
the presentation will be perceived and whether some important detail has been overlooked. Then, the
teacher should herself ask relevant questions and take the students through the process of analyzing
and answering them by means of active learning. Two years ago, I was co-teaching (with another
PhD student) two 8-hour sessions on algorithms for Sorting and Searching to 30 bright, high-school
students as part of the IdeaMath summer program. To get them thinking about algorithms and
their efficiency, we distributed small pieces of paper with numbers written on them with the goal of
sorting the numbers using a comparison-based sorting algorithm. The key operation, comparison, was
simulated by talking to a neighboring student about his/her number. This simple exercise made them
later appreciate questions regarding the computational complexity of various sorting algorithms and
why several algorithms exist in the first place. Given that this material is usually taught in introductory
undergraduate courses, we were pleasantly surprised from the final course feedback that the students
found the course to be very useful.

To be able to propose new problems and invent new approaches, especially at the graduate level, a
teacher should engage in one-on-one discussions with the students, listening to their ideas and giving
constructive and critical feedback. Such advising style has helped me tremendously to grow in research.
In the beginning, I used to pick the simplest and not so important problems as interesting research
questions to pursue. But, the discussions with my mentors made me realize their level of importance
and dare to look beyond what’s right in front of my eyes. Along with such advise, students should also
be taught the importance of the values such as persistence, patience, and self-confidence. Unfortunately,
there is little emphasis today on teaching the students how to acquire such values. I believe that a
historical perspective of evolution of the science is one good way of acquiring such qualities. I am
currently reading the book Mechanizing Proof: Computing, Risk, and Trust where the author talks
about the history and the sociology of a subject matter close to my research interests. This book made
me realize, among other things, how motivated and persistent the forefathers of Computer Science were



Anvesh Komuravelli 2

to realize their objectives, despite the negative criticism that surrounded them. I am very interested
in creating and teaching a course that describes how the various concepts came into being and what
motivated the great minds of the past for doing what they did. Going back to the grass roots of the
problem and critically analyzing the various bits and pieces has helped me discover beautiful insights for
my own research. This process is time-consuming and students should be taught to be patient and that
it is okay to take time. Last year, I met an Italian professor in his late 60’s at a conference and when I
was trying to understand his research by asking many basic questions, he tells me within the first few
minutes of our interaction: “I think you will be a great teacher!” That was the greatest compliment I
have ever received. When a teacher advises graduate students, she should also be careful to give them
enough freedom to let them explore on their own, find out their capabilities and limitations, and more
importantly, gain the self-confidence necessary for conducting research. I found this especially useful
for myself and I am grateful to my advisor for that.

I am very self-motivated at teaching and give my best to improve student understanding. When I
was a teaching assistant for a course on automated theorem proving, the introductory lectures assumed
a basic knowledge of logical inference and deductive proofs which some of the students lacked. So, I
and the other teaching assistant volunteered to teach optional lectures on logical inference where we
showed the theory but also some concrete examples explaining the step-by-step process. In one of
those lectures, I was quite happy to receive the compliment “this one hour was more useful than the
90-minute lecture I attended!” from a student. On another occasion, when I was a teaching assistant
for an introductory algorithms course, I found the students confused by the nested minimum and
maximum operators involved in the definitions of worst-case lower and upper bounds on computational
complexity. This only got more complicated with the probabilities in randomized algorithms. I sensed
the problem and realizing that the lecture notes weren’t detailed enough, I volunteered to create a
supplementary handout explaining the concepts with small examples on a few pages and the students
found that to be very useful. Being a student for all my life, I have witnessed the good and the bad
in teaching and to be on the better side, I have enrolled myself in the Future Faculty program at my
university (CMU) and already finished most of the coursework.

I look forward to teaching courses on introductory algorithms and complexity, automata theory, the-
ory of computation, logic for CS, and imperative programming (with the notions of invariants/proofs)
at the undergraduate level and courses on theorem-proving/constraint-solving, automatic verification
techniques including model checking, SAT solvers and decision procedures, abstract interpretation, and
program analysis at the graduate level. As I mentioned earlier, I am also very interested in designing a
course on the history and the sociology of the field and, in particular, of the areas close to my research
interest, especially at the graduate level. On the one hand, this will give a cultural perspective of
CS to the students. On the other hand, this will raise the social awareness and convey the broader
importance associated with the research problems which helps motivate the graduate students. Having
said that, I am also happy to take up other courses, including introductory courses for non-majors. As
my research expands in the future, I expect to be able to also lead graduate level courses on program-
ming aids in general, such as program synthesis and topics from software engineering like model-driven
development.

In conclusion, I believe that teaching is a process which helps both the students and the teacher.
Good teaching often involves a divide-and-conquer approach and explaining how the individual pieces
fit together often brings out unforeseen connections and improves the teacher’s own understanding.
Given that I am a finite being with finite resources, I am always ready to acknowledge my limitations
while being passionate about learning new concepts and expanding my breadth.


