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Abstract

Relational learning can be used to aug-
ment one data source with other corre-
lated sources of information, to improve
predictive accuracy. We frame a large
class of relational learning problems as ma-
trix factorization problems, and propose
a hierarchical Bayesian model. Train-
ing our Bayesian model using random-walk
Metropolis-Hastings is impractically slow,
and so we develop a block Metropolis-
Hastings sampler which uses the gradient and
Hessian of the likelihood to dynamically tune
the proposal. We demonstrate that a predic-
tive model of brain response to stimuli can
be improved by augmenting it with side in-
formation about the stimuli.

1 Introduction

In attribute-value learning, entities are represented by
a predetermined set of features, or attributes. Entities
are then represented as records, or tuples of assign-
ments to attributes, and are assumed to be fully de-
scribed by their attributes (i.e., records are exchange-
able). In relational learning, by contrast, objects
have both attributes and relations, properties involv-
ing multiple attributes. We take a broad view of rela-
tions, as functional mappings from tuples of entities to
a subset of the real numbers. Observing relational in-
formation correlates entities, and so we seek to exploit
these correlations to improve predictive accuracy.!

Target application for relational learning: Func-
tional Magnetic Resonance Imaging (fMRI) is often
used to measure responses in small regions of the brain
(i.e., voxels) to external stimuli. In this paper, we con-
sider stimuli which are word-picture pairs displayed
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on a screen. Given enough experiments, on a suffi-
ciently broad range of stimuli, one can build models
that predict patterns of brain activation given new
stimuli [9]. The fMRI data can be viewed as a re-
lation, Response(stimulus, voxel) € [0, 1], measuring
the response in a region of the brain under a particu-
lar stimulus, averaged over all patients. Running fMRI
experiments is costly, but we can often collect cheap
side information about the stimuli: e.g., we can col-
lect statistics of whether the stimulus word co-occurs
with other commonly-used words in large, freely avail-
able text corpora. The stimulus side-information can
be viewed as a relation Co-occurs(word, stimulus) €
{0, 1}, measuring whether or not a word co-occurs near
a stimulus word in the corpus. Both relations provide
information about the same stimuli, and we seek to
improve the quality of a predictive model of brain ac-
tivity, the Response relation, using word co-occurrence
data, the Co-occurs relation.

Overview: Our goal is to predict unobserved values
of the Response relation. We begin with a baseline
model that represents each relation as a matrix, and
jointly factors the matrices under regularized maxi-
mum likelihood (Section 2). The performance of the
baseline model is poor. We first attempt to address
the limitations of the baseline model by introducing a
hierarchical prior, using maximum a posteriori (MAP)
inference for computational efficiency (Section 3). Un-
fortunately, the performance of the hierarchical MAP
model is not significantly better than the baseline. We
attribute this failure to the poor match between MAP
inference and relational learning: typical arguments of
asymptotic consistency do not apply when the number
of parameters to estimate grows as quickly as the avail-
able data. This observation leads us to seek the full
posterior distribution for our same hierarchical model
(Section 4); and indeed, when we do so, performance
vastly improves on our target application. Model-
ing the full posterior distribution is computationally
expensive: the naive block Metropolis-Hastings ap-
proach, using the common random-walk proposal, is



impractically slow to mix in our case. We exploit the
fact that matrix factorization models are bilinear to
reduce the fully Bayesian inference problem to train-
ing a set of tied Bayesian Generalized Linear Models
(GLMSs). This reduction allows us to use the local gra-
dient and Hessian of the likelihood to create an adap-
tive proposal distribution (Section 4.2). The adaptive
proposal distributions eliminate the need for tedious
hand tuning of a large number of proposal distribu-
tions, making block Metropolis-Hastings practical.

2 Collective Matrix Factorization

An arity-two relation can be represented as a matrix,
and sets of correlated relations can be represented as
sets of matrices which share dimensions. In our fMRI
example, the Co-occurs relation is an m x n matrix X;
the Response relation is an n x r matrix Y. We embed
the entities in a k-dimensional space, by factoring an
indirect representation of each matrix, X ~ f(UVT)
and Y ~ g(VZT). Thus, U is an m x k factor repre-
senting words, Z is an r X k factor representing voxels,
and V is an n x k factor representing stimuli. f and
g are link functions. Given parameters F = (U,V, Z),
and data D = (X,Y), the likelihood of each matrix is
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The per-entry distributions px and py are one-
parameter exponential families with natural param-
eters U1V] and Vj. ZT, respectively. The modeler
chooses px and py, and they need not be from the
same exponential family. This allows us to inte-
grate relations with different response types: e.g.,
Co-occurs is well-modelled by the Bernoulli distribu-
tion, but Response is better modelled by a Gaussian.
The fixed weights W;; € {0,1} and W, € {0,1} al-
low for missing data: set a weight to zero when the
corresponding value in the data matrix is unobserved.
Maximizing Equation 1 is a weighted version of Expo-
nential Family PCA [4].

Maximizing the product of Equations 1 and 2 with
respect to the factors F is an example of collective
matrix factorization [19]. Given that the number of
parameters grows with the data, we place a multivari-
ate Gaussian prior on each row of U:

p(U6v) = [[N Wi | mo, o), 3)

i=1

where N(-|pv,Xy) is a Gaussian with mean vec-
tor py and covariance matrix Y. We assume that
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Figure 1: Plate graphical models for collective matrix
factorization (Section 2) and its analogue with hierar-
chical priors (Section 3). Shaded nodes indicate known
quantities; dashed nodes are fixed parameters in the
hyperprior. Weight matrices W and W are elided.

Oy = (uv,Xy) is known. The priors over V' and
7Z are defined similarly, with © = (Oy,0y,0yz).
Equations 1-3 define the posterior distribution P =
p(U,V,Z| X,Y,W,W,0)

pU[6u)p(V [Ov)p(Z]O2z),
where ¢ is a normalizing constant. Figure 1(a) is a
plate representation of Equation 4. Maximum a poste-
riori inference (a.k.a. regularized maximum likelihood)
involves searching for the parameters which minimize
the negative log-posterior

L= _1ng(U7 V7Z|X7KW5 W’ 6)

The prediction link f is equivalent to the choice of
px: E[Xi;] = f(Ui.V}') where f is the derivative of
the log-partition function of the exponential family of

x (likewise g and py). While £ is non-convex, it
is componentwise convez: i.e., convex in one low-rank
factor when the others are fixed.



Componentwise convexity leads to an elegant algo-
rithm for maximum a posteriori estimation. Consider
the graphical model form of collective matrix factor-
ization (Figure 1(a)). Using d-separation [12], it is
easy to deduce that if only one factor is free (say U)
then the rows of that factor are independent of one
other. Furthermore, the per-row optimization is con-
vex. Therefore, the projection over a large factor ma-
trix can be reduced into parallel convex optimizations
over each row of that factor. Each row of a factor has
only k < min{m,n,r} parameters, and so both the
gradient and Hessian may be used to minimize £ with
respect to a factor row. We call this approach alter-
nating Newton-projections. In Section 4, the same de-
composition into per-row updates will lead to a block
Metropolis-Hastings sampler, where the gradient and
Hessian computed here are used to select the proposal
distribution.

3 Hierarchical Collective Matrix
Factorization

Collective Matrix Factorization requires choosing a
good fixed value for the hyperparameters © =
(@U,@V,@Z), where VF' € F, Op = (,LLF,EF).
Searching over © is costly, even if the prior means are
zero and the covariances spherical.

Another concern is that information between entities
can only be shared indirectly, through another factor:
e.g., in f(UVT), two distinct rows of U are correlated
only through V. Computationally, the independence
of rows in the free factor is useful. Statistically, we
want a more direct way of pooling shared behaviour
among rows or columns of a matrix.

Both concerns can be addressed by extending Collec-
tive Matrix Factorization (Figure 1(a)) to include hier-
archical priors (Figure 1(b)). Since we do not know O,
we place a weak prior on it and treat it as a quantity to
be learned: i.e., a hierarchical model. The hierarchi-
cal prior is designed to preserve independence of factor
rows under alternating Newton-projections. We place
separate hierarchical priors on Oy, Oy, and Oz, elect-
ing to use the conjugate prior for Gaussian parame-
ters: the normal-Inverse-Wishart distribution [5]. The
normal-Inverse-Wishart prior on @ p = (up, Xp) is de-
fined by first sampling the covariance from a Wishart
distribution, W, then conditionally sampling the mean
from a Gaussian distribution, N:

E;vl ~ W(VF, \IJF),
pr | X ~N(Er,Xr/Bo).

The fixed hyperprior parameters vp > k, Up €

Rﬁ_Xk, & € RF, By > 0 are chosen by the modeler.?
Our choice of hierarchical priors for matrix factoriza-
tion is identical to that of Salakhutdinov and Mnih
[16], though we do not make the restrictive simplify-
ing assumption that the likelihood is conjugate to the
hierarchical prior.

The hierarchical prior acts as a shrinkage estimator
for the rows of a factor, pooling information indirectly,
through ©. Shrinkage may be especially useful when
some entities are associated with only a few observa-
tions: in the absence of data, the low-rank representa-
tion of an entity tends towards the population mean.

Maximum a posteriori estimation of (F, ©) is straight-
forward: alternate between optimizing F given fixed
O, and optimizing O given fixed F. Given fixed F, the
most likely value of (up, X r) is the mode of a normal-
Inverse-Wishart distribution with parameters
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The fixed hyperprior parameters are referred to as

60 = (I/Ua\IJU7§U7VV7WV7§V7V27WZ7§Z7BO)'

Factoring the posterior distribution over (F,0), ac-
cording to the hierarchical model, yields the following
objective for maximum a posteriori:

L+ logp(OF|O).
FeF

O:

4 Bayesian Inference for the
Hierarchical Model

Thus far we have discussed only maximum a posteri-
ori estimation, but there may be substantial posterior
uncertainty in (F, ©), especially when each entity par-
ticipates only in a few relationships. The Frequentist
argument of asymptotic consistency does not hold for
matrix factorization models: the number of parame-
ters grow with the size of X and Y.

Moreover, point estimators, like MAP, tend to perform
poorly when predicting the behaviour of new entities—
here, new rows or columns in the data matrices which

2In all our experiments, for each factor F, vr = k, i.e.,
the embedding dimension; Vg is a k X k identity matrix;
& = 0; and fBo = 1. The results are not particularly
sensitive to the value of the hyperprior parameters.



did not appear in the training data. Welling et al. [20]
provides a compelling theoretical justification for this
behaviour.

Finally, point estimation is limited in how it can ex-
ploit correlations between the data matrices. Con-
sider Collective Matrix Factorization on the three
entity-type example, where the posterior distribution
is p(U,V,Z | X,Y,0). The analogous posterior involv-
ing only the X data matrix is p(U,V | X, 0,0y ). In
each case we can compute the marginal distribution
of an element of a factor, say Uy € U. If we com-
pare the posterior distribution over U;, in the single
and two-matrix cases, it is clear that the two distribu-
tions p(Uie | X,Y,0) and p(Uiy | X, Oy, Oy ) can, and
usually will, differ. Under maximum a posteriori in-
ference, the only difference we see between the two
distributions is a difference in the mode: changes in
the variance, skew, and other properties of the distri-
bution are not accounted for. Changes in the poste-
rior mode account for some of the effect of information
sharing between matrices; changes in the full posterior
distribution account for all of the effect.

A fully Bayesian approach to training the hierarchical
model introduced in Section 3 addresses the aforemen-
tioned concerns. Instead of approximating the poste-
rior p(F,0|D,0p) by its mode, we approximate it
using samples drawn from it.

4.1 Block Metropolis-Hastings

In a block Metropolis-Hastings sampler we partition
the unknowns Q = (F, ©) into subsets (blocks) of cor-
related variables, cyclically sampling from each block
given that the others are fixed. We choose the follow-
ing blocks for Metropolis-Hastings:

VEeF Vi=1...np: F. ~p(F|Q—F.), (8

This grouping of parameters for block Metropolis-
Hastings is similar to the grouping in alternating
Newton-projections: sample the hyperparameters,
then sample each factor by sampling each row of
the factor in parallel. Equation 9 is sampling from
a normal-Inverse-Wishart; Equation 8 lacks a closed
form, unless X and Y are assumed Gaussian—i.e., the
data distributions and priors are mutually conjugate.
In the single matrix case, with px Gaussian, the model
is that of Salakhutdinov and Mnih [17].

4.2 Hessian Metropolis-Hastings

In our motivating fMRI example, the entries of differ-
ent data matrices have different response types: bi-
nary word co-occurrence, real-valued voxel responses.

This flexibility in response type significantly improves
predictive accuracy (see Section 6). We do not wish
to sacrifice the flexibility of our model, which sup-
ports multiple response types, to reap the benefits
of Bayesian inference. Instead of assuming that px
and py are Gaussian, and resorting to Gibbs sam-
pling, we allow px and py to be any rank-one ex-
ponential family distribution, and consider the more
general Metropolis-Hastings sampler.

In Metropolis-Hastings, one often resorts to sampling
from a “random walk” proposal distribution: a Gaus-
sian with mean equal to the sample at time t, Fi(,t)
and covariance matrix v; - I. The user must choose v;,
for each row, so that the Markov chain mixes quickly.
Tuning one proposal distribution is tedious; tuning a
proposal distribution for each entity is masochistic.
Worse, if the Hessian of the target distribution, with
respect to Fi(,t), is far from spherical, then the rate at
which the underlying Markov chain mixes can be slow,
regardless of how v; is tuned.

The distribution in Equation 8 may not be easy to
sample from; but given a point, namely Fi(,t)7 we can
easily compute the local gradient and Hessian of the
distribution with respect to F;.. By using the gradient
and Hessian, we can create a proposal distribution that

better approximates p(F;. | Q — F;.).

Once one realizes that p(F;. | — F;.) is the likelihood
of a Bayesian Generalized Linear Model, we can use
what we know about efficient inference in Bayesian
GLMs to accelerate sampling from Equation 4. In par-
ticular, a contribution of this work is the insight that
we can use Hessian Metropolis-Hastings (HMH) [14]
in Bayesian matrix factorization. HMH uses both the
gradient and Hessian to automatically construct a pro-
posal distribution at each sampling step. Intuitively,
since we have a efficient Newton-projection for finding
the mode of p(F;. | Q2 — F'), we should use it to pick a
proposal that is closer to the mode.

To define a Metropolis-Hastings sampler, we need to
define the forward sampling distribution, from which a

proposal value FZ(*) is drawn given the previous value

in the chain, Fi(,t). The choice of a forward sampling
distribution leads to a corresponding backward sam-
pling distribution, which defines the probability of re-
turning to Fi(,t) from the proposal value Fl(*) The
forward sampling distribution in HMH is a Gaussian
whose mean is determined by taking one Newton step
from Fi(,t), and whose covariance is derived from the
Hessian used to take the Newton step. The backward
sampling distribution in HMH is a Gaussian whose
mean is determined by taking one Newton step from

Fi(,*), and whose covariance is derived from the Hessian



used to take the Newton step. Instead of searching
over step lengths 1, we sample from a fixed distribu-
tion over step lengths (here, uniformly at random).
Algorithm 1 describes the block decomposition, which
is common to all three approaches. Algorithms 2 and 3
describe the Hessian Metropolis-Hastings sampler for
Equation 8.3

4.3 Generalization to an Arbitrary Number
of Relations

Algorithms 1-3 are presented for the general case,
which can involve more than two related matrices.
Here, we describe the general notation. Entity-types,
the different kinds of relation arguments, are indexed
by ¢ = 1...t. The number of entities of type 7 in the
training set is denoted n;. A matrix corresponding to a
relation between entity-types 7 and j is denoted X (%),
Each relation matrix is represented as the product of
low-rank factors:

X () ny () <U(i) (U(j))T) ;

where f(97) is the element-wise link function that maps
the low-rank latent representation into predictions.
Bach factor U® has its own Gaussian prior, defined
over factor rows. In the hierarchical case, each prior is
assigned a normal-Inverse-Wishart hyperprior.

4.4 Bayesian Prediction

There are two basic prediction tasks we consider, hold-
out and fold-in. The difference is whether or not the
entity being tested was in the training set; fold-in is
therefore the more difficult problem.

Hold-out prediction: We want to predict the values of
relations that an entity participates in, e.g., predict
X;j. Given a point estimate of the latent factors, the
prediction is Xij = f(UszT) Given the posterior, we
integrate out uncertainty:

p(X51D) = [ p(X5 | 7 OMF O d{F .6} (10)
hF,0) =p(F,0|X,Y,W,W).
Equation 10 is known as the posterior predictive distri-

bution. Since we have only samples from the posterior,

{(F®),00))}, we use a Monte Carlo approximation?,

p(Xi; | D) =

0|~

S
> p(Xi | F, 00,
s=1

3The extended notation used in Algorithms 1-3 are de-
scribed in Section 4.3.

4The number of samples S is S = 20 on hold-out exper-
iments, and S = 10 on fold-in experiments. The predictive
performance did not significantly improve with larger S.

Algorithm 1: Decomposition Algorithm for MAP
and Hessian Metropolis-Hastings

Input: Data matrices, {X(¢¢)}. The model
(embedding dimension k, the choice of
exponential family for each matrix, and the
hyperparameters O, if they are fixed).

Output: Low rank factors for each entity-type:

v .U,

fore=1...F do

Initialize U(¢9) using Algorithm 2 with prior

mean . = 0 and Y. = I. This initialization

works well for either MAP or Bayesian inference.
while not converged/mized do

fore=1...F do

foreach row of U(t) : Ui(,e"t) do

Update Ul-(_e’tﬂ) using Ui(,e"t) and all the
observations involving the current entity:
ie., Ve, x©) For MAP, the update is a

B
convex optimization, approximated by one
Newton step; for Bayesian inference, we
sample from the conditional sampling
distribution for each factor row

(Equation 8) using Hessian
Metropolis-Hastings (Algorithm 3).

If the hyperparameters for factor U(®), i.e.,
(te, X¢), are not fixed, then compute the
normal-Inverse-Wishart posterior with
parameters defined in Equations 5-7. Use the
posterior mode for MAP, or a Gibbs sample
for Bayesian inference.

t=t+1

Fold-in prediction: To generate a low-rank representa-
tion for an entity not in the training set under Bayesian
inference, we approximate the posterior by fixing the
value of () and ©() for each sample, and use HMH
to generate five samples from the posterior over the
new factor row.> A fraction of the data involving the
new entity is used to generate the posterior samples.
Under maximum a posteriori, fold-in reduces to find-
ing the most likely value for a new factor row, given
that the learned (F,©) is fixed.

5 Related Work

There is an abundance of work on matrix factoriza-
tion models; this paper subsumes many of them. The
most closely related methods, all based on the bilin-
ear form X ~ f(UVT), are compared in Table 1.

When sampling the posterior over folded-in entities,
we discard the first twenty samples (burn-in), and every
other sample after that (subsampling).



Algorithm 2: Initialization for Hessian M-H

Algorithm 3: Hessian Metropolis-Hastings

Input: Number of entities of type e, n.. Prior mean
1e and covariance ..
Output: Initial value for low-rank factor U(¢0).
Mean and negative precision matrix for the

first forward sampling distribution: Ui(,e’o)
and V20 (U{?).

fori=1...n. do

Sample from the prior: Ul.(_e’o) ~ N (e, Xe ).
Choose a random step length: n ~ U0, 1].
Compute gradient and Hessian. Estimate

posterior mean using one Newton step:
g0 —
i

Ul 4 [vo (U}?*”)} [v? 0 (U}?*”)} o

We compare the number of matrices involved (#M),
whether the method is Bayesian (Bayes?), the type
of prior (Prior/Reg), whether the prior is learned au-
tomatically (Hier), whether or not the entries can be
modelled using any one-parameter exponential family
(Exp), and the optimization techniques used (Opti-
mizer). If the prior is Gaussian, we note whether the
covariance is spherical (SC) or diagonal (DC).

The closest competing approach to our Bayesian model
is PMDC, which is restricted to modeling entries of
a matrix with a Gaussian. The variational Bayesian
solution is based on approximating the posterior over
each row of a factor as a multivariate Gaussian. Our
approach makes a similar Gaussian assumption for the
proposal, without having to worry about biases that
can be introduced by variational methods.

Our decomposition approach is greatly informed by
BMF: we sample the hyperparameters using the same
Gibbs step. However, we can model sets of related ma-
trices, without requiring that the predictions be Gaus-
sian. The Hybrid Monte Carlo sampler in BXPCA
uses the gradient of the likelihood; we use the gradient
and the Hessian for each factor row.

When one of the matrices is a bag-of-words represen-
tation, it is common to replace the one-parameter ex-
ponential family link with a multinomial link: e.g.,
pLSI-pHITS [3] ties the parameters of two pLSI mod-
els together to add citation information to a pLSI topic
model; Latent Dirichlet Allocation (LDA) has been
augmented with side information by tying hyperpa-
rameters in multiple LDA models [11], or by tying LDA
parameters to a matrix factorization [2].

Supervised matrix factorization techniques [13, 15] can
be viewed as subsets of the two matrix scenario where
one of the matrices consists of labels.

Input: Previous sample from the Markov chain,

Ui(,e"t). Observations involving entity 7.
Output: Next sample: Ui(,e’tH). Mean and negative
precision of the next proposal.

Sample the proposal:

Ul ~ N (U.(”) -v2o(ui)] _1>.

Compute the gradient [VO(U;.)] and Hessian
[V2O(U,.)] at UL,

Estimate the posterior mean using one Newton step
with random step length, n ~ U]0, 1]:

_ -1
Compute the acceptance probability o = min{1, p},
where p =

(U7 D, F0 0) N<Uff3’”|0i(~ﬁ’*)v [-vro(uis”)] 71)
p(USY | D.F0.00) ) N(U}?’*HU}?’”,[7V2O(U§e‘“)rl>
if » ~U[0,1] < a then k = x else k = t.

Collect outputs:
Ui(.e.,tJrl) _ Uv(e,k)7 U_(.e.,tJrl) _ Uv(e,k)7

V20 (UEHD) = v20 (U6,

6 Experiments and Discussion

Data: The data collection protocol is described in
Mitchell et al. [9]. Stimuli, the shared entities, consist
of word-picture pairs flashed onto a screen (e.g., bear,
barn, pliers); stimuli are chosen to be exemplars of cat-
egories (e.g., animals, buildings, tools). Nine subjects
are presented with sixty stimuli. Each subject was pre-
sented with each stimulus six times—the fMRI image
for a subject given a stimulus is the average of the six
presentations. Averaging the voxel response over pa-
tients yields the Response(stimulus,voxel) relation.
While a fMRI image contains >20,000 voxels, we use
only the 500 most stable voxels, following [9]. Train-
ing and test voxels are drawn from both hemispheres
of the brain, with weak spatial correlation, since voxels
associated with vision tend to be more stable.

The Co-occurs(word, stimulus) relation is collected
by measuring whether or not the stimulus word occurs
within five tokens of a word in the Google Tera-word
corpus [1]. Of the ~50,000 common words in the text
corpus, we select 20,000 uniformly at random to re-
duce the cost of learning. The relations map into two
matrices: X = Co-occurs and Y = Response. Un-
less stated otherwise, we assume that X;; is Bernoulli
distributed, and that Y;; is Gaussian. The embedding
dimension is k = 25 throughout. We standardize the
entries of the Y matrix, to avoid estimating a per-
matrix variance as part of the link function g(-).



Table 1: Comparison to related matrix factorization models.

Algorithm #M  Bayes? Prior/Reg Hier Exp  Optimizer

PMF [16] 1 MLE Gaussian (SC) v v Gradient descent

E-PCA [4] 1 MLE — X v Alt. Bregman

BMF [17] 1 Bayes Gaussian v X Gibbs sampling

BXPCA [10] 1 Bayes Multiple v v Hybrid MC

VBSVD 6] 1 Bayes Gaussian (D v X Variational Bayes

SoRec [8] 2 MLE Gaussian (SC X X Gradient descent

PMDC [21] 2+ Bayes Gaussian (D v X Variational Bayes

MRMF [7] 2+ MLE Gaussian (SC) X X Gradient descent

CMF [19] 2+ MLE Gaussian (SC) X v Alternating Newton

This paper 2+ Bayes, MLE  Gaussian v v Alt. HMH/Alt. Newton
Evaluation: In both fold-in and hold-out experi- - 14 -

=H-cve EH-cvr

ments, our concern is predicting voxel response, i.e.,
entries of Y, under mean squared error. Fold-in exper-
iments involve testing on voxels, columns of Y, which
did not appear in the training data. In fold-in exper-
iments, two-thirds of a new entity’s observations are
used in folding-in; the rest for estimating test error.
In hold-out experiments, one-tenth of the observations
are used to estimate test error.

Models Compared: We compare the three ap-
proaches discussed in Sections 2—4:

e Hierarchical Bayesian Collective Matrix Factoriza-
tion (HB-CMF), where we approximate the posterior
over (F,0) using multiple samples from it. [Struc-
ture: Figure 1(b); Training: Section 4]

e Hierarchical Collective Matrix Factorization (H-
CMF), where we approximate the posterior over
(F,©) using the posterior mode. [Structure: Fig-
ure 1(b); Training: Section 3].

e Collective Matrix Factorization (CMF), our baseline
model, where we find the most likely value of F
given fixed ©. [Structure: Figure 1(a); Training:
Section 2]. To avoid the computational cost of find-
ing a good value for © by grid search, we use psychic
initialization: the j** diagonal element of X5 is the
variance of the j*" column of the estimate of F pro-
duced by H-CMF'. Prior means are fixed to zero.

The only difference between CMF and H-CMF is the
hierarchical prior; the only difference between H-CMF
and HB-CMF is in how the posterior is approximated.

Predictive Accuracy: Figure 2 illustrates how much
better the hierarchical Bayesian approach is than point
estimate alternatives, on both hold-out and fold-in
tasks. Using HB-CMF, a statistically significant im-
provement is achieved by augmenting the Response re-
lation with the Co-occurs relation, on both hold-out
and fold-in tasks. The results on the fold-in experi-

12| CJemr 12 Ccwr

Words + Voxels Voxels

(a) Hold-out

Words + Voxels Voxels

(b) Fold-in

Figure 2: Performance on predicting Response using
just the Response relation (Voxel) and augmenting
with Co-occurs (Words + Voxels). The bars repre-
sent algorithms. Error bars are 2-standard deviations,
and MSE=1 is chance level.
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Figure 3: Mixing behavior of Hessian M-H. The slow-
est mixing instance of the hold-out and fold-in experi-
ments are shown. Each point on the energy vs. epochs
plots (top) measures the loss of a sample. Each point
on the test error vs. time plots (bottom) measures the
test error of a sample on predicting Response (Voxel)
or Co-occurs (Word).

ment (Figure 2(b)) show that we can achieve high pre-
diction accuracy even when testing voxels that never
appeared in the training data.

The mean over voxel responses (entries in Y) is used as
a baseline. Since Y has been standardized, the mean
predictor is 0, and the mean squared error equals the



variance, i.e., 1. Comparing H-CMF and HB-CMF, it
becomes clear that on the same model, with the same
data, the MAP estimate captures no signal, while the
fully Bayesian approach does.

Importance of Non-Gaussian Response Types:
If one assumed that X;; and Y;; were Gaussian, the ar-
gument in favour of the adaptive proposal would be far
less compelling. Even if the Gibbs sampling chain did
not converge quickly, one could resort to variational
Bayes, as in [21]. However, non-Gaussian response
types significantly improve predictive accuracy. If, in
HB-CMF, we assume that px is Gaussian instead of
Bernoulli, prediction accuracy decreases: by 26% on
hold-out; by 39% on fold-in. While non-Gaussianity
complicates the construction of proposal distributions
for Metropolis-Hastings, it does have a significant im-
pact on predictive accuracy.

Computational Cost of Training: Sampling the
parameters and hyperparameters in HB-CMF takes,
on average, 7.2s for the hold-out experiment using a
parallel implementation on four processors.® Our im-
plementation was developed in MATLAB, using the
Distributed Computing Environment toolkit. An anal-
ogous iteration of H-CMF takes < 10s. That said, H-
CMF converges in less than 20 iterations; HB-CMF
takes over 100 iterations to converge. The energy
vs. epochs plots (Figure 3) suggest that the underlying
Markov chain over states mixes quickly.

7 Conclusions

We do not claim a radically new approach for incor-
porating side information (see Table 1). However, ex-
isting methods force one to choose between ignoring
parameter uncertainty or making Gaussianity assump-
tions. In our case study, both uncertainty and non-
Gaussianity are critical to prediction; we believe this
property is ubiquitous in applications of matrix fac-
torization. This observation motivates our main tech-
nical contribution: we address the computational cost
of Metropolis-Hastings by constructing a block sam-
pler that exploits both the bilinear structure of ma-
trix factorization and the local structure of the like-
lihood. A further contribution is the point that, in
relational matrix factorization models, true Bayesian
inference seems to be necessary to realize the benefit of
hierarchy; without our improvements in computational
speed, it would have been difficult to test this hypothe-
sis. Finally, in our case study, we have leveraged cheap
data to avoid the need for additional, highly expensive
fMRI runs; and, we have provided evidence that we
can shed light on the brain’s internal representation of
concepts simply by looking at word co-occurrences.

5The four processors are cores on an Opteron 2384 CPU.
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