
A Derivation of the 3-entity-type model

The 3-entity-type model consists of two relationship matrices, a m × n matrix X and a n × r matrix Y . In
the spirit of generalized linear models we define the low rank representations of the relationship matrices to
be X ≈ f1(UV T ) and Y ≈ f2(V ZT ) where f1 : R

m×n → R
m×n and f2 : R

n×r → R
n×r are the prediction

links, and U ∈ R
m×k, V ∈ R

n×k, and Z ∈ R
r×k are the parameters of the model for k ∈ Z. We further

define parameter transformations G : R
m×k → R

m×k, H : R
n×k → R

n×k, I : R
r×k → R

r×k, to model prior
knowledge about our parameters, e.g., regularizers. We additionally required the convex conjugate,

G∗(U) = sup
U∈dom(A)

[U ◦ A − G(A)] ,

where U ◦ A = tr(UT A) =
∑

ij UijAij is the matrix dot product. The overall loss function for our model is

L(U, V, Z|W, W̃ ) = αL1(U, V |W ) + (1 − α)L2(V, Z|W̃ )(1)

where we introduce fixed weight matrices for the observations, W ∈ R
m×n and W̃ ∈ R

n×r. The individual
objectives on the reconstruction of X and Y are, respectively,

L1(U, V |W ) = W ⊙
(

F1(UV T ) − X ◦ UV T
)

+ G∗(U) + H∗(V ),(2)

L2(V, ZW̃ ) = W̃ ⊙
(

F2(V ZT ) − Y ◦ V ZT
)

+ H∗(V ) + I∗(Z).(3)

The objective L(U, V, Z|W, W̃ ) is convex in any one of its arguments, but is in general non-convex in all its
arguments. As such, we use an alternating minimization scheme that optimizes one factor U , V , or Z at a
time. This appendix describes the derivation of both gradient and Newton update rules for U , V , and Z.
For completeness, Section A.1 reviews useful definitions from matrix calculus. The gradient of the objective,
with respect to each argument is derived in Section A.2. Finally, by assuming the loss is decomposable, we
derive the Newton update in Section A.3, whose additional cost over its gradient analogue is essentially a
factor of k times more expensive.

A.1 Matrix Calculus

For the sake of completeness we define matrix derivatives, which generalizes both scalar and vector deriva-
tives. Using this definition of matrix derivatives, we also generalize the scalar chain and product rules to
matrices. The discussion herein is based on Magnus et. al. [1, 2].

Let M be an n× q matrix of variables, where m·j denotes the j-th column of M . The vec-operator vecM
yields an nq × 1 matrix that stacks the columns of M :

vecM =











m·1

m·2

...
m·q











.

While there are several common (and incompatible) definitions of matrix derivatives, the derivative of a n×1
vector f with respect to a m × 1 vector x is almost universally defined as

Df(x) ≡
∂f

∂xT
=







∂f1

∂x1

. . . ∂f1

∂xm

...
...

∂fn

∂x1

. . . ∂fn

∂xm






.

The matrix derivative of an m×p matrix function Q of an n×q matrix of variables M contains mnpq partial
derivatives, and the matrix derivative arranges these partial derivatives into a matrix. We define the matrix
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derivative by coercing matrices into vectors, and using the above definition of the vector derivative,

DQ(M) ≡
∂ vecQ(M)

∂(vecM)T
=









∂[Q(M)]11
∂m11

. . . ∂[Q(M)]11
∂mnq

...
...

∂[Q(M)]mp

∂m11

. . .
∂[Q(M)]mp

∂mnq









,

which is an mp× nq matrix of partial derivatives. This definition encompasses vector and scalar derivatives
as special cases. The advantages of this formulation include (i) unambiguous definitions for the product and
chain rules, and (ii) we can easily convert DQ(M) to the more common definition of the matrix derivative,

∂Q(M)

∂M
=









∂Q(M)
∂m11

. . . ∂Q(M)
∂m1q

...
...

∂Q(M)
∂mn1

. . . ∂Q(M)
∂mnq









,

via the first identification theorem [2, ch. 9]. We additionally require the matrix chain [2, pg. 121] and matrix
product [1] rules:

Definition 1 (Matrix Chain Rule). Given functions ϕ : R
n×q → R

m×p, ϕ1 : R
ℓ×r → R

m×p, and ϕ2 :
R

n×q → R
ℓ×r the derivative of ϕ(M) = ϕ1(Y ), where Y = ϕ2(M), is

Dϕ(Z) = Dϕ1(Y ) × Dϕ2(Z).

where A × B is the matrix product.

Definition 2 (Matrix Product Rule). Given an m×p matrix ϕ1(M) and a p×r matrix ϕ2(M) the derivative
of ϕ1(M)ϕ2(M) with respect to M , D(ϕ1ϕ2)(M) is

D(ϕ1ϕ2)(Z) = (ϕ2(M)T ⊗ Im) · Dϕ1(M) + (Ir ⊗ ϕ1(M)) · Dϕ2(M)

where A ⊗ B is the Kronecker product.

A.2 Computing the Gradient

To compute the derivative of Equation 1 with respect to U , V , and Z we require the following three lemmas:

Lemma 1. For any differentiable function F : R
m×n → R

∂F1(UV T )

∂U
= f1(UV T )V,

∂F1(UV T )

∂V
= f1(UV T )T U

∂F2(V ZT )

∂V
= f2(V ZT )Z,

∂F2(V ZT )

∂Z
= f2(V ZT )T V

Proof. We only derive the result for ϕ(U) = F1(UV T ). The proof is similar for the other three cases. ϕ(U)
can be expressed as the composition of functions: ϕ(U) = F1(Y ), Y = ϕ2(U), ϕ2(U) = UV T . Using the
matrix chain rule Dϕ(U) = DF1(Y ) · Dϕ2(U), we note that

DF1(Y ) =
∂ vecF1(UV T )

(vecUV T )T
= f1(UV T ).(4)

Using the matrix product rule

Dϕ2(U) = (V ⊗ Im)
∂ vecU

∂(vecU)T
+ (In ⊗ U)

∂ vecV T

∂(vec U)T
(5)

= (V ⊗ Im).

Combining equations 4 and 5 using the matrix chain rule yields Dϕ(U) = (vec f1(UV T )V )T . The result
follows immediately from the first identification theorem.
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Lemma 2. Given that the entries of U and V are distinct,

∂(X ◦ UV T )

∂U
= XV,

∂(X ◦ UV T )

∂V
= XT U

∂(Y ◦ V ZT )

∂V
= Y Z,

∂(Y ◦ V ZT )

∂Z
= Y T V.

Proof. We derive the result for ∂(X ◦ UV T )/∂V , the other three derivations are similar. To avoid a long
digression into matrix differentials, we prove the result by element-wise differentiation. Noting that

X ◦ UV T =
∑

i

∑

j

xji

∑

k

ujkvik,

we compute the derivative with respect to vpq

∂(X ◦ UV T )

∂vpq

=
∑

i

∑

j

xji

∂

∂vpq

∑

k

ujkvik

=
∑

j

xjpujq = (XT U)pq

Since the result holds for all p ∈ {1, . . . , n} and q ∈ {1, . . . , k} it follows that ∂(X ◦ UV T )/∂V = XT U .

Lemma 3. For the ℓ2 regularizers where a, b, c > 0 controls the strength of regularizers (larger values =⇒
weaker regularization):

G(U) =
a||U ||2Fro

2
, H(V ) =

b||V ||2Fro

2
, I(Z) =

c||Z||2Fro

2
,

the derivatives for the convex conjugates are

∂G∗(U)

∂U
=

U

a
= A,

∂H∗(V )

∂V
=

V

b
= B,

∂I∗(Z)

∂Z
=

Z

c
= C.

Proof. The result is easily proven by finding the convex conjugate and differentiating it.

Combining Lemmas 1,2, and 3, and denoting the Hadamard (element-wise) product of matrices A ⊙ B,
we have that

∂L(U, V, Z)

∂U
= α

(

W ⊙
(

f1(UV T ) − X
))

V + A,(6)

∂L(U, V, Z)

∂V
= α

(

W ⊙
(

f1(UV T ) − X
))T

U + (1 − α)
(

W̃ ⊙
(

f2(V ZT ) − Y
)

)

Z + B,(7)

∂L(U, V, Z)

∂Z
= (1 − α)

(

W̃ ⊙
(

f2(V ZT ) − Y
)

)T

V + C.(8)

Setting the gradient equal to zero yields update equations either for A, B, C or for U , V , Z. An advantage
of using a gradient update is that we can relax the requirement that the links are differentiable, replacing
gradients with subgradients in the prequel.

A.3 Computing the Newton Update

One may be satisfied with a gradient step. However, the assumption of a decomposable loss means that
most second derivatives are set to zero, and a Newton update can be done efficiently, reducing to row-wise
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optimization of U , V , and Z. For the subclass of models where Equations 6-8 are differentiable and the loss
is decomposable define,

q(Ui·) = α
(

Wi· ⊙
(

f1(Ui·V
T ) − Xi·

))

V + Ai·

q(Vi·) = α
(

Wi· ⊙
(

f1(UV T
i· ) − Xi·

))T
U + (1 − α)

(

W̃i· ⊙
(

f2(Vi·Z
T ) − Yi·

)

)

Z + Bi·

q(Zi·) = (1 − α)
(

W̃·i ⊙
(

f2(V ZT
i· ) − Y·i

)

)T

V + Ci·

Any local optimum of the loss corresponds to roots of the equations {q(Ui·)}
m
i=1, {q(Vi·)}

n
i=1, and {q(Zi·)}

r
i=1.

Using a Newton step, the update for Ui· is

Unew
i· = Ui· − η [q(Ui·)] [q

′(Ui·)]
−1

,(9)

where η ∈ [0, 1] is the step length, chosen using line search with the Armijo criterion [3, ch. 3]. The Newton
steps for Vi· and Zi· are analogous. To describe the Hessians of the loss, q′, we introduce the following
notation for the Hessians of G∗, H∗ and I∗:

Gi ≡ diag(∇2G∗(Ui·)), Hi ≡ diag(∇2H∗(Vi·)), Ii ≡ diag(∇2I∗(Zi·)).

For case of ℓ2-regularization Gi = diag(a−1
1). For conciseness we also introduce the following terms:

D1,i ≡ diag(Wi· ⊙ f ′

1(Ui·V
T )), D2,i ≡ diag(W·i ⊙ f ′

1(UV T
i· )),

D3,i ≡ diag(W̃i· ⊙ f ′

2(V
T
i· Z)), D4,i ≡ diag(W̃·i ⊙ f ′

2(V ZT
i· )).

This allows us to describe the Hessians of Equation 1 with respect to each row of the parameter matrices.

Lemma 4. The Hessians of Equation 1 with respect to Ui·, Vi·, and Zi· are

q′(Ui·) ≡
∂q(Ui·)

∂Ui·

= αV T D1,iV + Gi

q′(Zi·) ≡
∂q(Zi·)

∂Zi·

= (1 − α)V T D4,iV + Ii

q′(Vi·) ≡
∂q(Vi·)

∂Vi·

= αUT D2,iU + (1 − α)ZT D3,iZ + Hi

Proof. We prove the result for q′(Ui·), noting that the other derivations are similar. Since q(·) and its
argument Ui· are both vectors, Dq(Ui·) is identical to ∂q(Ui·)/∂Ui·. Ignoring the terms that do not vary
with Ui·,

Dq(Ui·) = D
[

α(Wi· ⊙ f(Ui·V
T ))V + Ai·

]

= αD
[

(Wi· ⊙ f(Ui·V
T ))V

]

+ DAi·

= α

{

(V T ⊗ I1) ×
∂ vec(Wi· ⊙ f(Ui·V

T ))

∂ vecUi·

+ (Ik ⊗ V )
∂ vecV

∂ vecUi·

}

+
∂ vec∇2G∗(Ui·)

∂ vecUi·

= α
{

(V T ⊗ I1) × D1,iV + (Ik ⊗ V ) × 0
}

+ Gi

= αV T D1,iV + Gi.

Plugging the gradient q(Ui·) and the Hessian q′(Ui·) into Equation 9 yields

Unew
i· q′(Ui·) = Ui·(αV T D1,iV + Gi) + αη

(

Wi· ⊙
(

Xi· − f(Ui·V
T )

))

V − ηAi·(10)

= αUi·V
T D1,iV + αη

(

Wi· ⊙
(

Xi· − f(Ui·V
T )

))

D−1
1,i D1,iV + Ui·Gi − ηAi·

= α
(

Ui·V
T + η

(

Wi· ⊙
(

Xi· − f(Ui·V
T
))

D−1
1,i

)

D1,iV + Ui·Gi − ηAi·
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Likewise for Zi·,

Znew
i· q′(Zi·) = (1 − α)

(

Zi·V
T + η

(

W̃·i ⊙
(

Y·i − f(V ZT
i· )

)

)T

D−1
4,i

)

D4,iV + Zi·Ii − ηCi·(11)

The derivation of the update for Vi· is similar, since L(U, V, Z|W, W̃) is a linear combination and the differ-
ential operator is linear:

V new
i· q′(Vi·) = α

{(

Vi·U
T + η

(

W·i ⊙
(

X·i − f(UV T
i· )

))T
D−1

2.i

)

D2,iU
}

+(12)

(1 − α)
{(

Vi·Z
T + η

(

W̃i· ⊙
(

Yi· − f(Vi·Z
T )

)

)

D−1
3,i

)

D3,iZ
}

+

Vi·Hi − ηBi·

While D ∈ {Dj,i}
4
j=1 may not be invertible, i.e., a diagonal entry is zero when the corresponding weight is

zero, the form of the update equations shows that this does not matter. If a diagonal entry in D is zero,
replacing its corresponding entry in D−1 by any nonzero value does not change the result of Equations 10,
11, and 12, as the zero weight cancels it out.
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