COMPUTING GAME-THEORETIC SOLUTIONS FOR SECURITY VINCENT CONITZER Department of Computer Science, Duke University Joint work with Dmytro Korzhyk, Joshua Letchford, Kamesh Munagala, Ronald Parr (Duke); Manish Jain, Zhengyu Yin, Milind Tambe (USC); Christopher Kiekintveld (UT El Paso); Ondrej Vanek, Michal Pechoucek (Czech Technical University); Tuomas Sandholm (CMU) Algorithms for computing game-theoretic solutions are now deployed in real-world security domains, notably air travel. These applications raise some hard questions. How do we deal with the equilibrium selection problem? How is the temporal and informational structure of the game best modeled? What assumptions can we reasonably make about the utility functions of the attacker and the defender? And, last but not least, can we make all these modeling decisions in a way that allows us to scale to realistic instances? I will present our ongoing work on answering these questions. BIO Vincent Conitzer is the Sally Dalton Robinson Professor of Computer Science and Professor of Economics at Duke University, and received his Ph.D. from CMU CSD in 2006, advised by Tuomas Sandholm. His research focuses on computational aspects of microeconomic theory, in particular game theory, mechanism design, voting/social choice, and auctions. He recently received the IJCAI Computers and Thought Award, which is awarded to outstanding young scientists in artificial intelligence.