Boosted Backpropagation Learning for Training
Deep Modular Networks

Alexander Grubb and J. Andrew Bagnell

June 2010
CMU-RI-TR-09-45
CMU-CS-09-172

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Divide-and-conquer is key to building sophisticated learning machines: hard
problems are solved by composing a network of modules that solve simpler prob-
lems [I3], 16}, 4]. Many such existing systems rely on learning algorithms which
are based on simple parametric gradient descent where the parametrization
must be predetermined, or more specialized per-application algorithms which
are usually ad-hoc and complicated. We present a novel approach for train-
ing generic modular networks that uses two existing. techniques: the error
propagation strategy of backpropagation and more recent research on descent
in spaces of functions [I4] [I8]. Combining these two methods of optimiza-
tion gives a simple algorithm for training heterogeneous networks of functional
modules using simple gradient propagation mechanics and established learning
algorithms. The resulting separation of concerns between learning individual
modules and error propagation mechanics eases implementation, enables a larger
class of modular learning strategies, and allows per-module control of complex-
ity /regularization. We derive and demonstrate this functional backpropagation
and contrast it with traditional gradient descent in parameter space, observing
that in our example domain the method is significantly more robust to local
optima.

Keywords: boosting, Euclidean functional gradient, gradient descent, back-
propagation, deep networks, ensemble methods

1 Introduction

For difficult learning problems that necessitate complex internal structure, it
is common to use an estimator which is itself a network of simpler modules.
Approaches leveraging such modular networks have been successfully applied
to real-world problems like natural language processing (NLP) [IT], [16], optical
character recognition (OCR) [13, 8], and robotics [4, 20]. Figure |1 shows an
example network for a robotic autonomy system where imitation learning is
used for feedback.

These deep networks are typically composed of layers of learning modules
with multiple inputs and outputs along with various transforming modules,
e.g. the activation functions typically found in neural network literature, with
the end goal of globally optimizing network behavior to perform a given task.
These constructions offer a number of advantages over single learning modules,
such as the ability to compactly represent highly non-linear hypotheses. A
modular network is also a powerful method of representing and building in
prior knowledge about problem structure and inherent sub-problems. [4]

Some approaches to network optimization rely on strictly local information,
training each module using either synthetic or collected data specific to the
function of that module. This is a common approach in NLP and vision systems,
where modules correlate to individual tasks such as part of speech classification
or image segmentation. The problem with this and other local training methods
is the lack of end-to-end optimization of the system as a whole, which can lead
to a compounding of errors and a degradation in performance. These local-
only training algorithms can be useful as good initializations prior to global
optimization, however.

A traditional approach to global network optimization is the well-studied
technique of backpropagation [I7], [I9] which has been used for neural network
training for over two decades. While initially used for training acyclic networks,
extensions for recurrent and time-varying networks [I9] have been developed.
Backpropagation solves the problem of compounding errors between interacting
modules by propagating error information throughout a network, allowing for
end-to-end optimization with respect to a global measure of error. Further,
it can be interpreted as a completely modular [3], object-oriented approach to
semi-automatic differentiation that provides a separation of concerns between
modules in the network.

Other approaches for complete optimization of networks [8 [I0] have also
shown promise as alternatives to backpropagation, but many of these algorithms
are restricted to specific system architectures, and further, often rely upon a
”fine-tuning” based on backpropagation. There have however been compelling
results [2] as to the usefulness of using local module training as an initial opti-
mization step, allowing for rapid learning prior to the traditionally slower global
optimization step.

The basic backpropagation algorithm has previously been used to provide
error signals for gradient descent in parameter space, sometimes making net-
work optimization sensitive to the specific parametrization chosen. Recently,

powerful methods for performing gradient descent directly in a space of func-
tions have been developed both for Reproducing Kernel Hilbert spaces [18] and
for Euclidean function spaces [14} [6].

The former, known as kernel methods, are well studied in the literature
and have been shown to be powerful means for learning non-linear hypotheses.
The latter methods have been shown to be a generalization of the AdaBoost
algorithm [5], another powerful non-linear learning method where complex hy-
potheses are built from arbitrary weak learners.

In the following sections, we present a method for combining functional gra-
dient descent with backpropagation. Just as backpropagation allows a separa-
tion of concerns between modules, the proposed approach cleanly separates the
problem of credit assignment for modules in the network from the problem of
learning. This separation allows both a broader class of learning machines to be
applied within the network architecture than standard backpropagation enables,
and enables complexity control and generalization performance to be managed
independently by each module in the network preventing the usual combinato-
rial search over all modules’ internal complexities simultaneously. The approach
further elucidates the notion of structural local optima—minima that hold in the
space of functions and hence are tied to the modular structure—as contrasted
with parametric local optima which are “accidents” of the chosen parameteriza-
tion.

We have selected Euclidean functional gradients because of the flexibility
provided in choosing base learners and the simplicity of implementing the al-
gorithm in a modular manner. We begin by briefly reviewing Euclidean func-
tional gradient descent, followed by the modified backpropagation algorithm for
functional gradients. Following that we present a comparison of parameterized
gradient descent and our functional gradient based method.

2 Euclidean Functional Gradient Descent

In the Euclidean function optimization setting, we seek to minimize a cost func-
tional R[f], defined over a set of sampled points {x,})_; and accompanying
loss functions {I,,}_; defined over possible predictions

RIf1 =D In(f(xn))

by searching over a Euclidean function space F (an L? space of square-integrable
functions) of possible functions f.

The desired minimizing function for this cost functional can be found using a
steepest descent optimization procedure in function space directly, in contrast to
parameterized gradient descent where the gradient is evaluated with respect to
the parameters of the function. The functional gradient of R[f] in this Euclidean

Labeled
Training Data

Overhead }
\

Overhead c Overhead B
Data Overhead | Classifier Cost
Features Prediction /ﬁ

/0 ng-range . Cost Map
Long-range 2-D
Column ¢ - Planner
Features
_Short-range Example

’Short-range Training Paths

- Column J—
Voxel M Voxel Features

Features M Classifier

Labeled
Training Data

Figure 1: Modular network from the UPI perception and planning system for
an off-road autonomous vehicle. Image courtesy [4].

function space is given as [7]:

N N
ViR[f] = valn(f(xn)) = Z I (f (%n))0x,

using the chain rule and the fact that Vyf(x,) = 0x, [15], where dx, is the
Dirac delta function centered at x,,. The resulting gradient is itself a function
composed of the sum of zero-width impulses centered at the points x,,, scaled
by the derivative %.

Instead of using the explicit functional gradient as the direction for the
gradient step, the gradient is projected onto a space of functions H, to both
allow for generalization and to constrain the search space to some reasonable
hypothesis set. The resulting projected direction A* can be found by minimizing
the functional least squares projection of the gradient in L? function space

[6, [5:

N
h* = arthmHin ;(h(xn) - VfR[f](xn))2 (1)

which is equivalent to the familiar least squares regression problem over the
dataset {x,, VsR[f](xn)}.

These projected gradients are then used to repeatedly update the function,
giving the gradient update rule for f as f(x) « f(x)—ah*(x). The final learned
function is a sum of gradient steps over time

F(x) = fola) =) arhe(x)

Algorithm 1 Projected Functional Gradient Descent

Given: initial function value fy, step size schedule {ay}7l_,
fort=1,...,7 do
Compute gradient V¢R[f].
Project gradient to hypothesis space H using least squares projection to
find h*.
Update f: f; «— fi—1 — azh*.
end for

where h:(z) is a function representing the gradient step taken at time ¢ along
with the corresponding step size «a; and starting point fy. A brief description of
this algorithm is given in Algorithm [I] in a manner that generalizes AdaBoost.
14,)

3 Backpropagation for Functional Gradients

Using the Lagrangian framework previously developed by LeCun [12], we now
present the first part of our contribution: a derivation of backpropagation me-
chanics for functional gradients, both in Euclidean function space and reproduc-
ing kernel Hilbert space (RKHS). In this setting we have a layered network of
functions fr, Xpx = fe(Xnk—1)) where n € [1, N] indexes training examples and
k € [1, K] indexes layers. Here x,, represents the output of layer k for exemplar
n, with x,o defined to be the training input and x, i the network output.

We seek to optimize a subset F' C {f;}5_, of these functions directly while
the rest of the functions f € F remain fixed. These fixed functions are arbitrary
activation or intermediate transformation functions in the network, and can
range from a simple sigmoid function to an A* planner.

The optimization of F is with respect to a set of loss functions defined
over network outputs I, (x,x). We can define the local Lagrange function for
example n and the complete Lagrange function as

L,(F,X,,A,) = x)+
nk Xnk_fk((k— 1)))

n(Xn

K

2
N

L(F,X,A) Z (F, X, An)

with Lagrange multipliers A, enforcing the forward propagation mechanics of
the network.

As discussed by LeCun [12], VL(F, X, A) = 0 is a necessary condition for any
set of functions which are a stationary point with respect to the loss functions
I, while still satisfying the constraints. This results in three separate conditions

which must hold at the stationary point:

OL(F,X,A) OL(F,X,A) OL(F,X,A) 0 @)
OA n X o OF B

3.1 Forward Propagation

Satisfying the first condition from yields a separate constraint for each ex-
ample n and layer k:

AL(F, X, A)
2 N
2 = Eyw

= Xpk = fk(xn(kfl)) vn, k

=0 VYn,k

These constraints simply re-state the forward propagation mechanics of the
network.

3.2 Backward Propagation

Similarly, satisfying the second part of provides another set of constraints
over the training data and layers:

OL(F, X, A)
2 PR S A
@ = O

—)\nK = l;(an) Vn
Ak = Jfk+l (Xnk:)>\n(k+1) Vn, k < K

=0 Vn,k

where J¢(X) is the Jacobian matrix of f at X.

These constraints define the mechanics for backwards error propagation.
The Lagrange multipliers A, store the accumulated results of applying the
chain rule to the original derivatives of the loss function. Using the ordered

derivative notation of Werbos [19], each element A,j; represents the derivative
Aty

of loss with respect to output x,x;, YT

3.3 Functional Gradient Update

The final condition in gives a necessary constraint on the final optimized
functions in F:
OL(F,X,\)
O fr
= V¢[L(F,X,\)]=0 VYfyeF
N
= Y Ak(VilfaKn-1))) =0 Vfr € F

n=1

2) = =0 VfreF

These constraints necessitate that each fi must be a fixed point of the Lagrange
equation L. Since we seek to minimize the loss functions, a steepest descent
procedure can be used to find the minimum with function update rule:

N

S =[x — az)\nk(vf[fk(xn(k—l))]) VfreF

n=1

For RKHS function spaces the functional gradient of a function itself evalu-
ated at x is the kernel centered at that point K(x,-) [I8]. Applying this to our
functional update we get the following functional update rule:

N
Je— fr — azAnkK(Xn(kq)r) Vfr€F

n=1

And for Euclidean function spaces (in the idealized case) the functional gra-
dient of a function itself is again the Dirac delta function. Correspondingly, we
get the following function update rule:

N
fo e fe—aY Aukbx,, VI€EF

n=1

In practice the equivalent projected version of this gradient step is used.
This amounts to building a dataset {(X,k—1), Ank)}h—1 and using it to train a
weak learner h* as in .

3.4 Generalization to Other Network Topologies

The derivation here is presented for a sequential layered network, but it extends
with no complications to directed acyclic graphs of modules. For any DAG, we
can convert it into a layered network as above by first sorting the modules using
a topological ordering and then modifying each layer to only accept values z C
X (k—1) that were originally used by that function: X.r = (fx(2),Xnk-1)/2)-
The backwards propagation rules similarly only apply the Jacobian to a subset of
the errors being passed back, while others are simply passed on in the topological
ordering.

From there the derivation is fundamentally the same, with the functional
update rule operating only on a subset of the inputs x,,(;—1) and error terms
Ank- In a network of this form the backpropagation mechanics naturally follow
the topology created in the network.

4 Implementation for a Modular Network

Using the formal derivation from the previous section, we now present an algo-
rithm for training a series of boosted learning modules, by applying the standard
boosting technique to functional backpropagation.

- — — — 4
Prediction Step

Gradient projection

X,

Figure 2: Example learning module illustrating backpropagation machinery and
Euclidean functional gradient projection.

Algorithm [2] gives an outline for computing the forward and backward prop-
agation steps for each functional learner in the network. The algorithm for
training the complete network is the same as in backpropagation: a forward
pass through the entire network is computed for the training data, the gradient
of the loss function is evaluated, and then the backward pass propagates gra-
dient information through the network and updates individual modules. Like
any gradient-based procedure this can be repeated for a fixed number of steps
or until some measure of convergence is reached.

Unlike standard boosting, there are some restrictions on the weak hypothe-
ses which can be used. To accomodate the backpropagation of gradients, the
functions in the hypothesis space H must be differentiable. Specifically we need
to be able to calculate the Jacobian Jj for every function h € H. From there
the Jacobian of each function fi can be easily computed as they are all linear
combinations of functions in H.

This restriction does preclude some weak learners commonly employed in
boosting, notably decision stumps, but still allows for a wide range of possible
hypothesis spaces. If needed, this restriction can be relaxed for the first func-
tional learner in a network as no gradient needs to be propagated through this
layer.

A single functional module as described here is pictured in Figure [2} Each
learning module is composed of machinery for computing the forward step and
backward gradient propagation step, along with an internal gradient projection
module which performs the boosting steps necessary to actually update the
module.

Algorithm 2 Modular Functional Gradient Update

Functional Gradient Forward Step:
for all x,,(;,—1) do {Step 1}

Compute outputs X,x = fx(Xnk—1)). {Step 2}
end for
Functional Gradient Backward Step:
for all A\, do {Step 3}

Compute A, x—1) = Jr, (Xpn—1)) Ak {Step 6}
end for
Compute VyL[fx] = Aukx,,_,,- {Step 4} 1
Project gradient V;L[fx] on to H using least squares projection to find hj.
{Step 5}
Update fx: fre < fre—1) — aehy.

4.1 Single Output Weak Learners

While the above formalism and algorithm consider each function fi as a multi-
output function, in practice it may be more convenient to treat each function f
as being several single-output functions fi; with outputs X,x = (Tnk1, Tnk2, - -),
where T, = frj(Xnk-1))-

This is fundamentally equivalent to the multi-output formulation, but with
the restriction that the hypothesis space H used for projection is itself a product
of a given single-output hypothesis space H = G™ where m is the output dimen-
sion. The gradient projection step in this restricted hypothesis space is equiva-
lent to m independent projections over the datasets {(x,k—1), Ankj) Hh_q, V5.

4.2 Online and Stochastic Learning

The literature on parametric gradient-based learning has shown that stochastic
and online versions of the standard backpropagation algorithm are highly effec-
tive and convenient methods of learning, providing performance improvements
and enabling practical learning from large or even infinite data sources. Both of
these algorithms extend to the functional gradient versions of backpropagation
presented here.

For Euclidean functional gradient boosting, while online learning on the per-
example level is not feasible, an intuitive way of acheiving online behavior is to
use “mini-batch” learning where a group of examples is collected or sampled
from the underlying dataset and this small dataset is used for one iteration
of the algorithm presented above. Using batches of examples is necessary in
practice to obtain a reasonable and robust functional gradient projection.

In the RKHS setting, online learning easily generalizes and is a well studied
problem in the literature [9].

4.3 Benefits of Modularity

This algorithm is inherently modular in two ways: it separates the individual
pieces of the network from each other and it separates the structural aspects
of the network from the learning in individual modules. This feature makes
implementing complex networks of heterogenous modules straightforward and
provides a number of mechanisms for improving learning performance.

In neural network-based architectures the complexity of the network is usu-
ally regulated by changing the structure of the network in some way. In contrast,
the division between gradient propagation and gradient projection when using
boosted backpropagation provides a means for varying the complexity of each
layer without having to alter the structure of the network.

Another key benefit of the separate weak learners is that the local weak
learners can use the gradient being projected to validate various local param-
eters, reducing the number of parameters and models that need to be globally
optimized and validated. For example, if the weak learner being used is a reg-
ularized least squares regressor, the regularization parameter can be selected
using the gradient dataset and cross-validation. This removes the need for an
additional combinatorial search for regularization parameters at the global level,
potentially saving a large amount of computation.

5 Experimental Results

5.1 Maximum Margin Planning (MMP)

Our first application is a simplified path planning system for an autonomous
vehicle using Maximum Margin Planning (MMP) [15], a method for estimating
optimal controllers which exhibit the same behavior as demonstrated human
examples. The planning system, depicted in Figure [3| consists of feature ex-
traction from overhead data, cost function mapping, and optimal planning (A*,
here) modules. We seek to learn both the feature selection module, where raw
terrain data is transformed into a set of high-level features, and a cost map-
ping function which takes the generated high-level features and produces costs
appropriate for planning.

Formally, we are given a set of example maps M with locations in these maps
x (essentially terrain feature examples). For the cost function module, we define
the input ¢(x) as the output of the feature extraction layer and then compute
output ¢(¢(x)). The MMP cost functional R is defined as the difference between
planned and demonstrated cost

Rid =" (S c(o0)x)-

i=1 xeEM;

pneG;

min { Z (ce(p(x)) — fi("))ﬂ(")})

where p; is the demonstrated path and the minimization min,cg, corresponds
to the optimal path returned by the planning algorithm. This cost functional
mathematically expresses the desired constraint that the behavior of the system
after training duplicates the demonstrated behavior, by ensuring that the lowest
cost paths in the examples are in fact the demonstrated paths. The extra ¢;(x)
term corresponds to a margin function designed to ensure the demonstrated
behavior is achieved by a significant margin. In our experiments we use ¢;(x) = 0
if x is on path p; and 1 otherwise.

" Feature 7 *
Raw Terrain Data —»E Extraction]—»E Cost Function }—» A* Planner

Figure 3: Maximum Margin Planning network for an autonomous vehicle.
Learning modules are colored in blue, while the planning module is a fixed
optimal planner. In this case, both a cost function and feature extraction layer

are learned simultaneously to improve overall performance.
The cost functional as given does not appear to fit our previous model of

a sum of individual loss functions [,,, but we can derive the appropriate initial
backpropagation gradient by considering the functional gradient of R directly.
This first functional gradient is equivalent to the first A term from the formal
derivation above.

Replacing the minimization with the actual optimal path according to the
planner, 7, we get:

N
ViRl = %Z < Z i (X)) — Z N:(X)%(X))

i=1 \xeEM, xeEM;
]' *
VR[] = Z (N(Hi(x) (x) — Hi(x) (X))5¢(x)>
xe{Ug\le Ml}
Intuitively, this is equivalent to defining a loss function over outputs yx =

c(6(x)):

Lx(yx) = yxpti(x) = (yx — £i) 7 (%)
where 7 : x € M;

and using the same machinery formally outlined in Section
Exponentiated Functional Gradient Descent. A number of empirical

results in the MMP literature [I5] have shown exponentiated functional gradi-

ent descent to be superior in performance, so we use this method of steepest

10

Figure 4: Performance on 10 test paths on an unseen map for a parameterized
backpropagation (left) and a Euclidean functional gradient descent backpropa-
gation (right) network. The parameterized version drives all costs to 0, resulting
in a homogeneous map and straight-line paths.

descent for the costing module. The gradient is calculated in the same way as
before, however instead of using an additive model as before, we now update
the function ¢(-) using the appropriate exponentiated gradient rule:

T
C(X) _ 6co(x) H 6oztht(x)

t=1

Similar results can be derived for the parameterized gradient descent version
of this network. In both cases the initial gradient passed in to the network is
identical, and only the learning rule changes.

In the following experiments, the terrain features x are 5 by 5 patches of
image data around each location taken from the satellite imagery. For the
feature extraction module, ¢(x), a two layer neural network was used in the
parameterized gradient case, while an identically structured network using least
squares linear regressors as weak learners was used in the functional gradient
case.

5.1.1 Comparison of Parametric and Functional Gradients

Results for optimizing both networks using 4 example paths are found in Fig-
ures [and [5} In this instance, parameterized backpropagation gets caught in a
severe local minimum early on while functional backpropagation achieves excel-
lent performance.

We hypothesize that the poor performance of parameterized gradient descent
is due to the larger number of negative gradient examples in the demonstrated
path as compared to the planned path, driving costs down primarily. Essentially,
the parametric version gets caught in this local minimum while trying to reduce
the objective (the difference between example and planned path cost) by driving
the costs of both paths down.

11

1400

— Functional Backpropagation

1200 == Parametric Backpropagation| |
Q J
=1 LY
© 1000f 3,
> .
j \~
o
S 800 Sel
g R
= L T
L [I
o 6004 TN Tememeeamaaaaas
=
=
|9
2
‘& 400
(@]

200}

% 5000 10000 15000 20000

Wallclock Time

Figure 5: Plot of MMP objective function value for 4 training paths vs. wallclock
time.

5.1.2 Local Parameter Validation

We also implemented a cross-validation based parameter selection method for
determining the Tikhonov regularization parameter used in the linear least
squares weak learners. Figure [6] shows the resulting parameter values as they
were selected over time. Here we see small values initially, allowing for rapid ini-
tial learning, followed by relatively large values which prevent the network from
overfitting. In contrast, we also performed a combinatorial search by hand for
a good fixed regularization parameter. Figure [7| displays the final performance
for both methods on both the example paths and paths on an unseen map.

Here the ability of the modular parameter validation to adjust over time is
very beneficial, as we found that for small fixed global values initial learning is
fast, but the algorithm is prone to overfitting, while with large fixed values the
learning is slow to the point of making the optimization infeasible. The locally
optimized parameters, however, allow for good initial behavior and generaliza-
tion.

5.2 Classification

We also performed a set of comparison experiments on standard classification
tasks. Our experiments were run on two widely used datasets, the MNIST
handwritten digit dataset and the UCI letter recognition dataset [IJ.

For our experiments we used two-layer, fully connected networks of linear
units, with a hyperbolic tangent activation function on the inner layers of units
and a softmax activation function on the final layer of outputs. The cross
entropy loss was the objective function to be minimized.

In the parameterized gradient case, this is simply a traditional two-layer
neural network. For the boosted backpropagation network we use linear least

12

Tikhonov Regularization Parameter \

0 500 1000 1500 2000 2500 3000
Iteration

Figure 6: Locally optimized Tikhonov regularization parameter values for
top layer of MMP network. Parameter selection was performed using cross-
validation.

Locally Optimal Fixed A = 10

Figure 7: Comparison of training path (green) and test path (blue) performance

for both locally optimized regularization and predetermined regularization pa-
rameters.

13

MNIST Training and Test Set Accuracy vs Time

'''''

Error (log-scale)

— Functional Backprop, Test
10*F| == Parametric Backprop, Test |
= Functional Backprop, Train ;(
% -X Parametric Backprop, Train :

10°

10° 10"

: :
10% 10° 10 10°

Wallclock Time (log-scale)

Figure 8: MNIST training and test set Error for both parameterized and func-
tional backpropagation run on two-layer networks with 800 hidden units each.

Table 1: Test set error rates for MNIST and UCI Letter datasets.

Method MNIST | UCI Letter
Parameterized Gradient 1.7% 8.6%
Functional Gradient 2.0% 7.5%

squares regression for gradient projection to facilitate comparison between the
two methods.

Figures[§ and [9] show the error rates over time for both datasets, along with
a summary of the test set performance in Table

In the classification tasks, we find that the performance of the parametric and
functional networks are roughly equivalent. The functional network performs
slightly worse on the MNIST dataset, while it performs slightly better on the
UCT Letter data set. On the MNIST dataset and its 784 input features, using
unregularized linear least squares for the weak learner results in a severe over-
fitting of the data. It is here that the separation of learning logic from gradient
propagation is most useful, as the regularization can be selected independently of
the global network parameters, by using portions of the gradient being projected
as a validation set; we found this both necessary and efficient for achieving good
results. The UCI Letter dataset has far fewer input features at 16 and benefits
less from the ability to separately regularize modules in the network. Here we
see a small error decrease when using functional instead of parametric gradients.

14

UCI Training and Test Set Accuracy vs Time

§~~
<
\J
3

)
©
19
@ s
g 10" AL
= .-
— o
e
=
w

— Functional Backprop, Test x>$<

== Parametric Backprop, Test

= Functional Backprop, Train

% -X Parametric Backprop, Train

10—2 L L L L L
107 10" 10° 10" 10? 10° 10*

Wallclock Time (log-scale)

Figure 9: UCI Letter training and test set Error for both parameterized and
functional backpropagation run on two-layer networks with 50 hidden units
each.

6 Discussion and Future Work

We believe the combination of functional gradients with modular backpropa-
gation provides significant promise. The separation of learning mechanism and
structural error propagation in our method provides an important opportunity
to keep learning local to an individual module, even in global network optimiza-
tion. The ability to validate and perform model selection on each component
network separately using error information may be crucial to efficiently imple-
ment the divide-and-conquer strategy modular systems are meant to use. Ad-
ditionally, there is experimental indication that functional methods for network
optimization provides a degree of robustness against parametric minima that
occur when using complicated transformation modules like an optimal planner.

In this work, we largely focused on simple, linear weak learners to facilitate
comparison with the parametric approach, although we have additional exten-
sive experiments with non-linear learners. The non-linear methods offer the
promise of greater system performance at a significantly larger computational
expense. Future work will focus on achieving the benefits of these learning
approaches while limiting the computational impact.

Acknowledgments

We would like to thank Daniel Munoz and Abraham Othman for their valuable feed-
back and David Bradley for his help with experimental work. This work is supported
by the ONR MURI grant N00014-09-1-1052 and the Robotics Institute.

15

References

[1]
2]

3]

(4]

[5]

[11]

[12]
[13]

[14]

[15]
[16]

[17]

[18]

A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training
of deep networks. In Advances in Neural Information Processing Systems 19. MIT
Press, 2007.

L. Bottou and P. Gallinari. A framework for the cooperation of learning algo-
rithms. In Advances in Neural Information Processing Systems, pages 781-788,
1991.

D. M. Bradley. Learning in Modular Systems. PhD thesis, The Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, USA, 2009.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In
Proc. of the 13th International Conference on Machine Learning (ICML 1996),
pages 148-156, 1996.

J. H. Friedman. Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 29:1189-1232, 2000.

I. M. Gelfand and S. V. Fomin. Calculus of Variations. Dover Publications,
October 2000.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527-1554, 2006.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels.
IEEE Trans. on Signal Proc., 52(8):2165-2176, 2004.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for
training deep neural networks. Journal of Machine Learning Research, 10:1-40,
2009.

S. Lawrence, C. L. Giles, and S. Fong. Natural language grammatical infer-
ence with recurrent neural networks. IEEE Trans. on Knowl. and Data Eng.,
12(1):126-140, 2000.

Y. LeCun. A theoretical framework for back-propagation. In Proc. of the 1988
Connectionist Models Summer School, pages 21-28, 1988.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proc. of the IEEE, 86(11):2278-2324, 1998.

L. Mason, J. Baxter, P. L. Bartlett, and M. Frean. Functional gradient techniques
for combining hypotheses. In Advances in Large Margin Classifiers. MIT Press,
1999.

N. Ratliff, D. Silver, and J. A. Bagnell. Learning to search: Functional gradient
techniques for imitation learning. Autonomous Robots, 27(1):25-53, July 2009.

D. L. T. Rohde. A connectionist model of sentence comprehension and production.
PhD thesis, Carnegie Mellon University, PA, USA, 2002.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-
tions by error propagation. Computational Models Of Cognition And Perception
Series, pages 318-362, 1986.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA,
2001.

16

[19] Paul John Werbos. The roots of backpropagation: from ordered derivatives to
neural networks and political forecasting. Wiley-Interscience, New York, NY,
USA, 1994.

[20] M. Zucker, J. A. Bagnell, C. Atkeson, and J. Kuffner. An optimization and

learning approach to rough terrain locomotion. In International Conference on
Robotics and Automation, To Appear, 2010.

17

	Introduction
	Euclidean Functional Gradient Descent
	Backpropagation for Functional Gradients
	Forward Propagation
	Backward Propagation
	Functional Gradient Update
	Generalization to Other Network Topologies

	Implementation for a Modular Network
	Single Output Weak Learners
	Online and Stochastic Learning
	Benefits of Modularity

	Experimental Results
	Maximum Margin Planning (MMP)
	Comparison of Parametric and Functional Gradients
	Local Parameter Validation

	Classification

	Discussion and Future Work

