Rapid Evaluation of Multiple Density Models

Alexander G. Gray
Department of Computer Science
Carnegie Mellon University
agray@cs.cmu.edu

Abstract

When highly-accurate and/or assumption-
free density estimation is needed, nonpara-
metric methods are often called upon - most
notably the popular kernel density estima-
tion (KDE) method. However, the practi-
tioner is instantly faced with the formidable
computational cost of KDE for appreciable
dataset sizes, which becomes even more pro-
hibitive when many models with different
kernel scales (bandwidths) must be evalu-
ated — this is necessary for finding the op-
timal model, among other reasons. In previ-
ous work we presented an algorithm for fast
KDE which addresses large dataset sizes and
large dimensionalities, but assumes only a
single bandwidth. In this paper we present
a generalization of that algorithm allowing
multiple models with different bandwidths
to be computed simultaneously, in substan-
tially less time than either running the single-
bandwidth algorithm for each model inde-
pendently, or running the standard exhaus-
tive method. We show examples of comput-
ing the likelihood curve for 100,000 data and
100 models ranging across 3 orders of magni-
tude in scale, in minutes or seconds.

1 KERNEL DENSITY ESTIMATION

Density estimation. In situations where the density
of a dataset itself (rather than other inferences) is of
importance, such as in exploratory scientific data anal-
ysis, nonparametric methods are used because they
make minimal or no assumptions about the distribu-
tion of the data, while achieving high accuracy — mak-
ing serious density estimation almost synonymous with
nonparametric methods [14, 12]. For example, ker-
nel density estimation (KDE), the most widely used

Andrew W. Moore
Robotics Inst. and Dept. Comp. Sci.
Carnegie Mellon University
awm@cs.cmu.edu

and studied nonparametric density estimation method
and thus our focus here, can be shown to converge to
the true underlying density with probability 1 as more
data are observed, with no distribution assumptions
at all, requiring only mild conditions on the kernel
function and scale [2]. Highly-accurate density esti-
mation is also of use as a core engine in probabilis-
tic learning tasks, from classification to regression to
clustering (though arguably for some problems den-
sity estimation itself may be skipped and the problem
better solved directly, e.g. in discriminative classifica-
tion [16]). Unfortunately, the inherent flexibility which
yields these benefits comes at a very high computa-
tional cost, which is our primary focus in this paper.

Kernel density estimation. The task is to estimate
the density p(z,) for each point z, in a query (test)
dataset X g (having size Ng), from which we can also
compute the overall log-likelihood of the dataset EQ =
Zévfl logp(z,). The 'model’ is the training dataset
X7 (having size N7) itself, in addition to a local kernel
function K (-) centered upon each training datum, and
its scale parameter h (the ’bandwidth’). The density
estimate at the ¢** test point Z, s

Nt

pe) =3 n (B2

t=1
where D is the dimensionality of the data and Vpj is
the volume encompassed by K (-). For good estimates,
the exact form of K (-)! turns out to be relatively unim-
portant, while the correct choice of h is critical [14, 12].

!Common choices are the spherical, Gaussian, or
Epanechnikov kernels; our method works efficiently
with any such standard kernel. The spherical kernel
(K(gq,gt) =1if ||£q —z,|| < h, otherwise 0) is simplest.

: - D
The Epanechnikov kernel (K (z,,z,) = 22 (1 — llz, —

2V'ph
z,)|?) if llz, — 2./l < h, otherwise 0, where V'pn is the
volume of the sphere in D dimensions) has the property
of asymptotically-optimal estimation efficiency among all
possible kernels [3]. The latter two are examples of ker-
nels with compact, or bounded extent, a property we can
exploit computationally.

Computational Cost. The first difficulty is that
evaluating a density naively (by summing over each
training point for each of the query points) is
O(NgN7) (or simply O(N?); for most of this paper
it will turn out that X5 = X+, so for notational con-
venience we may also use N = Ng = N7). While
univariate methods [13, 4] have been proposed to ad-
dressed this, [7] showed for the first time an algorithm
yielding orders of magnitude in speedup over the de-
fault exhaustive method in the general multivariate
case. High-accuracy KDE was demonstrated across
dataset sizes ranging up to 3 million and dimensional-
ities up to 784, but the method was designed to com-
pute a density for only one bandwidth. Consequently,
computing B different densities with different band-
widths requires B independent computations. When
B is large, say 100 or 1000, the total cost may over-
whelm the efficiency gains of the individual computa-
tions. This is the issue we are addressing in this paper.

Overview. In the next section we’ll review the rea-
sons multiple density models need to be computed.
After briefly reviewing the single-bandwith algorithm
of [7], we’ll present the multi-bandwidth generalization
of the algorithm. Finally we will present the results of
a performance study of the multi-bandwidth method.

2 THE PRACTICAL NEED TO
COMPUTE MULTIPLE MODELS

Several common tasks demand the computation of
models for the same data but B different bandwidths.

Scoring models for selection. As mentioned, the
central issue of estimating a density optimally with
KDE is selecting the optimal bandwidth h*. Across
statistical learning, model selection in current practice
often amounts to evaluating a set of learned models
(representing a finite set of parameter settings chosen
from the set of all possible parameters) under a score
function and a dataset (where the score may corre-
spond to, for example, a Bayesian posterior, structural
risk minimization, maximum entropy, maximum like-
lihood, least-squares, and so on).

Scoring models for combination. An alternative
to strict model selection is model combination, in which
the estimates of multiple learned models (again corre-
sponding to some finite set of chosen parameter set-
tings) are combined to form a final estimate, weighted
by their score. Examples include Bayesian model com-
bination and stacking. This methodology has been the
focus of considerable attention in the learning litera-
ture in recent years, mainly for the task of classifica-
tion — however, the same principle applies to density
estimation, as noted by [15].

Cross-validation scoring for KDE. The two most
widely-used scoring methods for bandwidth selection
in KDE are derived from different motivations but
both end up being a form of leave-one-out cross-
validation. Likelihood cross-validation [8] is derived
by minimization of the Kullback-Liebler information

[p(z) log)dm yielding the score

= 3, L loge(z)

where the —t subscript denotes an estimate using
all Np points except the t**. Least-squares cross-
validation [11] minimizes an integrated squared error
criterion fﬁz — 2 [pp, yielding the score

CV(h) = m;ﬁ—t(ﬂ» (3)

where the density estimate uses the derived kernel
K*(-) = K() * K(-) — 2K(-). Our algorithm is de-
signed to allow both procedures. The computational
implementation of either scoring procedure estimates
the density for each of the N points of the dataset us-
ing the other N — 1 points; this is done for each of the
B bandwidths under consideration, yielding the cost
O(BN?) by naive computation.

Exploratory visualization. It is often useful in
exploratory data analysis to visualize the curve rep-
resenting the score as a function of the bandwidth.
Figure 1 shows an example of the kind of curve we
would like to be able to generate quickly. Shown are
the cross-validated likelihood scores for 1000 band-
widths ranging from 0.0001 to 0.1, along with the opti-
mal bandwidth h* (about .00774), for the astrophysics
dataset described later in the empirical results.

x10° Log-likelihood as function of bandwidth
T T

Likelihood cross-validation score

Bandwidth (log scale)

Figure 1: Example of bandwidth analysis.

3 PREVIOUS ALGORITHM:
SINGLE-BANDWIDTH METHOD

Space-partitioning with ball-trees. First we par-
tition the training set X - hierarchically using a space-
partitioning tree. This allows us to pass a query point
z, down the tree, possibly ignoring or approximat-
ing entire chunks of the training data if they are far
enough away to have provably small contribution to
the density at z,, based on the stored boundaries of
the sub-regions. Here we use ball-trees, which can be
built efficiently and with high quality using the anchors
hierarchy algorithm [9], and have been demonstrated
to be effective in up to thousands of dimensions in [9]).
Note that the tree need only be built on a dataset once,
and does not need rebuilding for KDE evaluations us-
ing different bandwidths or for different queries. Thus
its initial build cost (which is in the seconds typically)
is amortized over all subsequent KDE computations.

Higher-order divide-and-conquer and dual-tree
traversal. The first application of the principle of
higher-order divide-and-conquer is that we will also
build a space-partitioning tree for X o (which is the
same tree if X+ = X). This allows us to now com-
pare chunks of the query set with chunks of the train-
ing set, for added speed advantage. However, this
necessitates generalizing the familiar tree traversal to
dual-tree traversal. In the base case of the recursion,
in which a leaf node of X5 is compared with a leaf
node of X, the individual data points in the nodes
@ and T are examined exhaustively. Through pruning
at higher levels in the tree, we hope to minimize the
number of leaf-leaf comparisons that are made. Pseu-

docode for the algorithm is shown 2.

Exclusion and inclusion. For each node-pair @) and
T encountered during the traversal, using the bound-
ary of the data X, in @ (having size Ng) and the
boundary of the data X in 7' (having size Nr), we
can easily compute lower and upper bounds on the
distance between any pair of query point and train-
ing point. Using this we can compute bounds on the
mass contribution of X, to the density at every query
point in X,. If the maximum density contribution

2For simplification, the algorithm shown does not ex-
plicitly add the centroid mass to the estimate, but simply
tightens the lower and upper bounds; at the end of the
computation, the estimate ﬁ(gq) is based on the midpoint
between !, and ug. In the pseudocode continue has the
same meaning as in C, skipping all subsequent code and
sending execution directly to the next while loop itera-
tion; similarly break escapes the inner-most enclosing loop
as in C; also a += b means a = a + b. ppmgs 18 the maxi-
mum possible value of the priority function. If a node is a
leaf, its left or right child is defined to be itself. The win-
now() function removes bandwidths meeting the specified
condition.

of T is zero within the floating precision of the ma-
chine, it can be pruned from the search (i.e. we do
not need to recurse on its children). Note that ex-
clusion does not necessarily introduce any error: in
the case of a finite-extent kernel (such as the spherical
or optimal-efficiency Epanechnikov kernel), exclusion
when the minimum distance is greater than the kernel
extent preserves the result exactly. A similar prop-
erty holds for inclusion with the spherical kernel. The
opposite of exclusion is also possible: we can prune a
node when its minimum possible mass contribution is
1 within machine-precision.

Dualtree(P h)
while lempty(P),
{Q,T,dl, du,p} = minpriority(P).
v = level(Q).
if % < €, return.
if p < Pmax,
dl! = Nt Kp(maxdist(Q,T)
du' = Nt Kp(mindist(Q, T)
dl = dl', du = du' — Np.
if 'l‘jé;:l‘,'l' <8,
foreach z_ € Q, lg +=dl, ug += du.
L, -=Nqglog(lg), Uy -= Nglog(ug).
lg +=dl, ug += du.
L, += Nglog(lg), U, += Nglog(uqg).
enqueue(P ,{Q, T, dl, du,priority(Q, T)+Pmasz })-

continue.

).
).

else,

dl = —dl, du = —du.

foreach z, € Q, lg +=dl, ug += du.

L, -=Nglog(lg), Uy -= Nglog(ug).

lg +=dl, ug += du.

L, += Nqlog(lg), Uy += Nglog(uq).
if leaf(Q) and leaf(T'), Dualtree_base(Q,T).
enqueue(P,Q left T left,dl, du,priority(Q,T)).
(P,Q left T right,di, du,priority(Q, T)).
(P,Q right T left,dl, du,priority(Q, T)).
enqueue(P,Q right, T right,dl, du,priority(Q,T)).

enqueue

enqueue

Dualtree_base(Q,T)
foreach z_ € Q,
foreach z, € T,
¢ = Knlle, — 2,0, Ly += ¢, ug += c.
ug -= Np.
L, -= Nglog(lg), U, -= Nglog(ug).
lg = mingegly, ug = Mmaxgeqguqg — Nr.
Ly, += Nglog(lg), Uy += Nglog(uq).

Dual-tree algorithm, single-bandwidth.

Constant-mass centroid approximation. If the
percentage difference between these bounds is smaller
than some predetermined small §, we can prune the
node by approximating its mass contribution by its
centroid Bops i.e. we add NTK’L(ET)' Exclusion and
inclusion are actually both special cases of this more
general pruning rule.

Guaranteed local and global bounds. We can
maintain lower and upper bounds {, and uy on the
density at each point z,, as well as global bounds L,
and U, on the overall log-likelihood of the density esti-
mate based on the local bounds available at level v in
the tree. We begin with maximally pessimistic bounds
and tighten them as we recurse and observe training
points at increasingly finer granularity (we start by
agnostically setting the lower bound to assume that
no training points contribute any mass, and the upper
bound to assume that all training points contribute
maximum mass). We can stop the algorithm when-
ever we detect that % < €, corresponding to a
user-set accuracy tolerance.

Priority search and reversibility. By controlling
the search with a priority queue P (we use a Fibonacci
heap), we can undo approximations made with the
constant-mass pruning rule which as long as the € tol-
erance has not been reached and there are still nodes
on the queue. The simple priority function we use is
based on the minimum distance between node bound-
aries.

4 GENERALIZED ALGORITHM:
MULTI-BANDWIDTH METHOD

Higher-order divide-and-conquer and multiple
bandwidths. We now generalize the algorithm to in-
clude a range of bandwidths indexed by b;, and bp;
during consideration of each node-pair, which is recur-
sively narrowed as search progresses toward the leaves.
This corresponds to a second application of the prin-
ciple of higher-order divide-and-conquer.

Vector generalizations of bounds. All the bounds,
lg,ug)lg,ug,L, and U,, generalize from the scalar
quantities of the single-bandwidth algorithm to vec-
tor quantities, containing bounds for each bandwidth.

Base case: sharing distance computations. In
the base case, we reuse each distance computation
dg: for each of the bp; — by, + 1 bandwidths that re-
main upon reaching the base case, just as the naive
exhaustive algorithm can do if modified for the multi-
bandwidth problem.

Multi-Dualtree(P,H)

while lempty(P),
{Q,T,dl, du,p, b, bri} = minpriority(P).
v = level(Q).

b_ b
if Vb € [bio, bril, % < €, return.
v
. jub_rb
else {bi,, bri} = winnow(bi,, bi, W < 8).
v

if p < Pmax,
dmax = maxdist(Q,T), dyj, = mindist(Q,T).
foreach b € [bi,, bpi],
h = lookup(H,b).
dl' = NrKp(dmax), du’ = Ny Ky (d
di® = di’, du® = du’ — Np.

|du’'—ai’| <
15 pail ’
ltg+di’l

foreach z, € Q, llq’ += di®, ug += du®.
L% -=Nglog(ly), Ul -= Nglog(up).
15 += di®, ul += du®.

L% += Nqlog(ly), U 4= Nglog(u).

, lau’y—di’ |
if Vb € [bio, buil, iEran <%

enqueue(P {Q, T, dl, du,priority(Q, T)+Pmaz, bio, bri})-

continue.

min)-

if

ldu'y—di’]

else {by,, bpi} = winnow(by,, bsi, —5
b 4ai’
| Q bl

< 9).
else,
dl = —dl, du = —du.
foreach b € [bi,, bpi],
foreach z, € Q, llq’ += di®, ug += du®.
L% -=Nglog(ly), UL -= Nglog(up).
1 +=di*, ul += du®.
LY += Nqlog(1y), Uy += Nalog(ud).
if leaf(Q) and leaf(T), Multi-Dualtree base(Q,T).
enqueue(P,{Q .left T .left dl, du,priority (Q, T'), bi,, bri}).
enqueue(P,{Q.left T .right,dl, du,priority(Q, T'), bi,, bail}).
enqueue(P,{Q.right T .left dl, du,priority(Q, T'), bi,, bail}).
enqueue(P,{Q right, T .right,dl, du,priority(Q, T'), bi,, bail}).

Multi-Dualtree base(Q, T, by, , by;i)
foreach z, € Q,
foreach z, € T,
dgr = |lz, -z,
foreach b € [bi,, bri]
h = lookup(H,b), ¢ = Kn(dgt).
if ¢ == 0.0, break.
else lz +=c, ug +=c.
foreach b € [bi,, bail, ug -= Nr.
foreach b € [bi,, bail,

L% -= Nglog(ly), US -= Nglog(ud).
b
a

LY += Naqlog(ly), Uy += Nalog(ug).

llc’2 = mingeq! ug = maxgeq ug — Nr.

Dual-tree algorithm, multi-bandwidth.

Exclusion and inclusion: exploitation of nest-
ing. We compute the kernel evaluations for each band-
width from highest to lowest, using the nesting prop-
erty that if a bandwidth A is excludable, so are all
bandwidths A’ < h. In the finite-extent kernel case, we
can also quickly perform an exclusion once we locate
the smallest bandwidth still containing d4;; this can be
performed with binary search if B is very large. This
also applies to inclusion in the spherical kernel case, in
reverse. (This special case is not shown in the pseu-
docode.) Otherwise, the constant-mass approximation
criterion can be tested for each bandwidth.

Recursive range-narrowing. After bounds updat-
ing and propagation for the appropriate sub-ranges, we
narrow the range of bandwidths which still need to be
considered and recurse. Note that with this procedure
there is no loss of information nor pruning opportunity,
with respect to the single-bandwidth algorithm.

5 PERFORMANCE

Empirical study. In our empirical study, we mea-
sure seconds of actual runtime of the multi-bandwidth
scheme, independent single-bandwidth computations
and the exhaustive method, on an Alpha-processor-
based desktop workstation which is not as fast as the
most recent Pentium-Pro-based workstations but has
14Gb of RAM. For brevity we report only likelihood
cross-validation scoring, though performance is very
similar for least-squares cross-validation scoring. The
approximation parameter is set in all cases so that the
maximum possible error in the overall log-likelihood
was no more than 1078, i.e. one one-millionth of one
percent away from the true value. The default kernel
function used is the asymptotically-optimal Epanech-
nikov kernel. (Runtimes for the spherical kernel are
very nearly identical, and very close to a factor of 2
greater for the infinite-extent Gaussian kernel.)

Datasets. Most experiments are on a segment of the
Sloan Digital Sky Survey—a data collection of cur-
rent scientific interest, and the active subject of ongo-
ing nonparametric density estimation studies. It con-
tains spatial coordinates in the first two dimensions -
the dataset containing these attributes is called RA-
Dec. The Sloan data includes an additional 20 color
attributes from various instruments, which we test in
a separate dataset called Colors. We also test a 5-
dimensional biological screening dataset called BIO5.

Scaling with number of bandwidths, near opti-
mum. We first examine the case in which the band-
widths fall on a scale ranging over one order of magni-
tude roughly centered around the optimum bandwidth
h*.

RA-Dec, N = 100K, & € [0.001,0.01]
B Multi Indep Naive Speedup
Time Single Time Over
Time Naive
1 1.4 1.4 1204 889
10 7 25 3631 518
100 39 201 26859 671
1000 465 2170 374098 805

Scaling behavior with number of bandwidths
2500 T T

T T T
— Multi-bandwidth algorithm
< Single-bandwidths run independently

2000 -

1500 -

1000

CPU time (seconds)
\

500 -

L L L L L L L L
100 200 300 400 500 600 700 800 900 1000
Number of bandwidths

Figure 2: Simultaneous vs. separate computations.

Scaling behavior with number of bandwidths

= Naive algorithm
—%— Multi-bandwidth algorithm P 4

CPU time (seconds, log scale)
5
T

. .
10! 10° 10
Number of bandwidths (log scale)

Figure 3: Comparison to naive exhaustive method.

Though the theoretical complexity of the scaling of the
multi-bandwidth algorithm is O(B), the log-log plot of
the growth in actual CPU time shows a superlinearity.
Though relatively mild in the range of B we are typi-
cally interested in (100 models is probably a reasonable
number for most purposes), it is curious that the naive
exhaustive method displays the same superlinearity.

This appears to be a side-effect of a limitation of the
multi-bandwidth algorithm — it has a large memory
footprint necessitated by the fact that it must store B
entire densities (actually bounds on them), each of size
O(N). For the largest number of bandwidths, the large
RAM of our test workstation was taxed near its limit,
limiting the size of dataset that can be processed. Fur-
ther, far below the point of swapping, the surprising
effect of hardware cache-locality issues becomes signif-
icantly evident. Note that the naive multi-bandwidth

method also shares this limitation. One advantage
of independent single-bandwidth computations is that
this memory consumption can be avoided if necessary.

Scaling with number of bandwidths, far from
optimum. We next create difficulty for the algorithm
by making it evaluate densities over a much broader
range, covering 3 orders of magnitude. In this case we
expect less sharing to be possible between the simul-
taneous computations.

RA-Dec, N = 100K, € [0.0001,0.1]
B Tree Multi Naive Speedup
Build Time Time Over
Time Naive
1 5 1.4 1204 889
10 5 110 3631 33
100 7 545 26859 49
1000 10 6240 374098 60

Scaling behavior with number of bandwidths

= Naive algorithm
—%— Multi-bandwidth algorithm ¥

CPU time (seconds, log scale)
5
T

. .
10! 10° 10
Number of bandwidths (log scale)

Figure 4: Performance far from optimal bandwidth.

We indeed observe a large degradation in the perfor-
mance of the multi-bandwidth algorithm in this case.
Over an order of magnitude of computational advan-
tage is lost (note that the first data point in the plot
of 4 is misleading).

Other datasets. To determine whether the scaling
is relatively independent of the exact structure of the
data, we test datasets other than the RA-Dec dataset,
chosen to be significantly different kinds of measure-
ments and in different dimensionalities.

N = 100K, near A®
B RA-Dec BIO5 Colors Naive
(2-d) (5-d) (20-d) Time
1 1.4 14 20 1204
10 7 90 105 3631
100 39 449 413 26859
1000 465 5341 6675 374098

Indeed, the datasets appear to share a common scaling
behavior. (Note that the naive time for RA-Dec only is
shown; the naive time for the other datasets is nearly
identical.)

Scaling behavior with number of bandwidths

10* T T
- Colors dataset b

—+— RA-Dec dataset -
O - BIOS5 dataset 7

H
S
T

CPU time (seconds, log scale)
=
5

. .
10! 10° 10
Number of bandwidths (log scale)

Figure 5: Scaling across datasets.

6 CONCLUSION AND FUTURE
WORK

Multi-bandwidth algorithm for KDE. For the
problem of multi-model multivariate kernel den-
sity estimation, we believe there exist no algo-
rithms (for finite kernels) which are faster, nor any
approximate algorithms (for all kernels) that are
faster while providing hard-guarantees of high ac-
curacy. The code 1is available for download at

http://www.cs.cmu.edu/ agray.

Optimal bandwidth determination. Though
the multi-bandwidth algorithm we presented can be
used for finding the single optimum bandwidth for a
dataset, we believe there exist opportunites to per-
form such a computation even more frugally. We plan
to develop these ideas in future work.

Multi-recursion and generalized N-body prob-
lems. This algorithm represents a new extension
along a continuing line of research in statistical algo-
rithms [1, 10, 9, 5, 7]. The multi-bandwidth method
is additionally an instance of a new algorithmic de-
sign principle we refer to as higher-order divide-and-
conquer, or multi-recursion [6], which is appropriate
for a wide range of problems which includes what
we call generalized N-body problems: those involv-
ing distances or potentials between points in a multi-
dimensional space. Future work will continue to apply
this principle to problems in statistical learning.

Acknowledgments

The authors would like to thank Larry Wasserman of
the CMU Statistics Dept. for helpful discussions re-
garding current statistical practice in density estima-
tion. This work is supported by the NASA Graduate
Research Fellowship.

References

[1]

[10]

[11]

K. Deng and A. W. Moore. Multiresolution
Instance-based Learning. In Proceedings of the
Twelfth International Joint Conference on Artifi-
ctal Intelligence, pages 1233-1239, San Francisco,

1995. Morgan Kaufmann.

L. Devroye and L. Gyorfi. Nonparametric Density
Estimation: The L, View. Wiley, 1985.

V. A. Epanechnikov. Nonparametric Estimation
of a Multidimensional Probability Density. The-
ory of Probability and its Applications, 14:153—
158, 1969.

J. Fan and J. Marron. Fast Implementations
of Nonparametric Curve Estimators. Journal of
Computational and Graphical Statistics, 3:35-56,
1994.

A. Gray and A. W. Moore. N-Body Problems in
Statistical Learning. In T. K. Leen, T. G. Di-
etterich, and V. Tresp, editors, Advances in Neu-
ral Information Processing Systems 13 (December

2000). MIT Press, 2001.

A. G. Gray. Higher-Order Divide-and-Conquer
and Generalized N-Body Problems: Algorithmic
Advances in Statistical Learning, Computational
Geometry, and Numerical Methods. PhD. The-
sis, Carnegie Mellon University, Computer Sci-
ence Department, forthcoming.

A. G. Gray and A. W. Moore. Nonparamet-
ric Density Estimation: Toward Computational
Tractability. submitted to NIPS 2002, available

from http://www.cs.cmu.edu/~agray/kde.ps,
2002.

J. D. F. Habbema, J. Hermans, and K. van der
Broek. A Stepwise Discrimination Program Us-
ing Density Estimation. In G. Bruckman, editor,
Computational Statistics, pages 100-110. Physica
Verlag, 1974.

A. W. Moore. The Anchors Hierarchy: Using the
Triangle Inequality to Survive High-Dimensional
Data. In Twelfth Conference on Uncertainty in
Artificial Intelligence. AAAT Press, 2000.

A. W. Moore and M. S. Lee. Cached Sufficient
Statistics for Efficient Machine Learning with
Large Datasets. Journal of Artificial Intelligence
Research, 8, March 1998.

M. Rudemo. Empirical Choice of Histograms and
Kernel Density Estimators. Scandinavian Journal

of Statistics, 9:65-78, 1982.

[12]

[13]

[16]

D. W. Scott. Multivariate Density Estimation.
Wiley, 1992.
B. Silverman. Kernel Density Estimation using

the Fast Fourier Transform. Journal of the Royal
Statistical Society Series C: Applied Statistics, 33,
1982.

B. W. Silverman. Density Estimation for Statis-
tics and Data Analysis. Chapman and Hall/CRC,
1986.

P. Smyth and D. Wolpert. Linearly Combining
Density Estimators via Stacking. Machine Learn-

ing, 36:59-83, 1999.

V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer-Verlag, 1995.

