
Formal Analysis of Privacy Requirements Specifications
for Multi-Tier Applications

Travis D. Breaux
Institute for Software Research

Carnegie Mellon University
Pittsburgh, United States

breaux@cs.cmu.edu

Ashwini Rao
Institute for Software Research

Carnegie Mellon University
Pittsburgh, United States

arao@cmu.edu

Abstract— Companies require data from multiple sources to
develop new information systems, such as social networking, e-
commerce and location-based services. Systems rely on
complex, multi-stakeholder data supply-chains to deliver value.
These data supply-chains have complex privacy requirements:
privacy policies affecting multiple stakeholders (e.g. user,
developer, company, government) regulate the collection, use
and sharing of data over multiple jurisdictions (e.g. California,
United States, Europe). Increasingly, regulators expect
companies to ensure consistency between company privacy
policies and company data practices. To address this problem,
we propose a methodology to map policy requirements in
natural language to a formal representation in Description
Logic. Using the formal representation, we reason about
conflicting requirements within a single policy and among
multiple policies in a data supply chain. Further, we enable
tracing data flows within the supply-chain. We derive our
methodology from an exploratory case study of Facebook
platform policy. We demonstrate the feasibility of our
approach in an evaluation involving Facebook, Zynga and
AOL-Advertising policies. Our results identify three conflicts
that exist between Facebook and Zynga policies, and one
conflict within the AOL Advertising policy.

Keywords-privacy; requirements; standardization; description
logic; formal analysis

I. INTRODUCTION
Increasingly, web and mobile information systems are

leveraging user data collected from multiple sources without
a clear understanding of data provenance or the privacy
requirements that should follow this data. These emerging
systems are based on multi-tier platforms in which the “tiers”
may be owned and operated by different parties, such as
cellular and wireless network providers, mobile and desktop
operating system manufacturers, and mobile or web
application developers. In addition, user services developed
on these tiers are abstracted into platforms to be extensible
by other developers, such as Google Maps, Facebook and
LinkedIn. Application marketplaces, such as Amazon
Appstore, Google Play and iTunes, have emerged to provide
small developers increased access to customers, thus
lowering the barrier to entry and increasing the risk of
misusing personal information by inexperienced developers
or small companies. Thus, platform and application
developers bear increased, shared responsibility to protect
user data as they integrate into these multi-tier ecosystems.

In Canada, Europe and the United States, privacy policies
have served as contracts between users and their service

providers and, in the U.S., these policies are often the sole
means to enforce accountability [9]. In particular, Google has
been found to re-purpose user data across their services in
ways that violated earlier versions of their privacy policy
[11], and Facebook’s third-party apps were found to transfer
Facebook user data to advertisers in violation of Facebook’s
Platform Policies [20]. The challenge for these companies is
ensuring that software developer intentions at different tiers
are consistent with privacy requirements across the entire
ecosystem. To this end, we conducted a case study to
formalize a subset of privacy-relevant requirements from
these policies. We believe such formalism could be used to
verify that privacy requirements are consistent across this
ecosystem: “app” developers could express their intentions,
formally, and then check whether these intentions conflict
with the requirements of third parties. Furthermore, platform
developers could verify that their platform policy
requirements are consistent with app developer requirements.

Contributions: Our main contributions are as follows:
(1) we systematically identify a subset of privacy-relevant
requirements from privacy policies using a case study
method; (2) we formalize data requirements subset in a
privacy requirements specification language expressed using
Description Logic (DL); the language supports modeling
actors, data and data use purpose hierarchies within data
requirements; (3) we model requirements conflict checking
using DL concept satisfiability, while ensuring decidability
and computational bounds; and (4) we model tracing of data
flows within a privacy policy.

The remainder of the paper is organized as follows: in
Section II, we introduce a running example based on our
case study; in Section III, we introduce our formal language
that we derived from our exploratory case study; in Section
IV, we report our method for deriving the language; in
Section V, we report our extended case study findings to
evaluate the language across three privacy-related policies;
in Section VI, we consider threats to validity; in Section VII,
we review related work; and in Section VIII, we conclude
with discussion and summary.

II. RUNNING EXAMPLE
We illustrate the problem and motivate our approach

using a running example: in Figure 1, we present privacy
policy excerpts from the Facebook Platform Policy that
governs Zynga, the company that produces the depicted
Farmville game. The colored arrows trace from the visual
elements that the user sees in their web browser on the right-

hand side to governing policy excerpts on the left-hand side.
The black dotted lines along the left-hand side show how
data flows across these application layers. Zynga has a third-
party relationship with Advertising.com, a subsidiary of
AOL Advertising that serves the online ad, “Buying Razors
Sucks” in this game. Zynga also produces a version of this
game for the Android and iPhone mobile devices, which
would be available through the Google Play and iTunes
marketplaces, which have their own platform developer
policies that are not depicted, here.

Figure 1. Privacy policy excerpts and data flows mapped to web content

that the user sees in their browser

As the platform provider, Facebook manages basic user
account information, including user IDs, friend lists, and
other data that may be made available to Zynga under the
Facebook’s platform policy. The Facebook policy excerpt in
Figure 1 prohibits the developer (Zynga) from transferring
any data to advertisers, regardless of whether users consent
to the transfer. Zynga’s privacy policy also prohibits such
transfers, unless the user consents (an apparent conflict).
Furthermore, AOL Advertising (the advertiser) retains the
right to use collected information to better target advertising
to users across multiple platforms, for which Farmville is just
one example. Because this ad is placed by Zynga, AOL
Advertising is a third-party advertiser and Facebook expects
Zynga to ensure that AOL adheres to the rules governing
access to Facebook’s user data. At the time of this writing,
Farmville was the top Facebook App with over 41.8 million
active users per month1 and Facebook reports over 9 million
apps2 exist for their platform, in general. Thus, this simple
scenario has many potential variations.

In Figure 2, we illustrate a data supply chain between a
user, Facebook, Zynga and AOL. The arrows denote data
flows among the four actors, and the policies regulate these
flows. Under the Facebook privacy policy, Facebook is
permitted to collect and use the user’s age and gender.
Facebook may transfer that information to its developers’
apps, such as Farmville developed by Zynga. However, the
Facebook platform policy prohibits Zynga from transfering
any Facebook user information, including aggregate data, to
an advertiser, such as AOL. For a user, it is clear that she has
privacy policy agreements with Facebook and Zynga,
because these are first-party services. However, it’s unlikely
the user is aware of AOL’s privacy agreement or that data

1 See http://www.appdata.com on January 12, 2013

2 Facebook SEC Amendment No. 4 to Form S-1, April 23, 2012

flows to AOL. To identify the advertiser supplying the ad in
Figure 1, “buying razors sucks,” we had to collect TCP/IP
network traffic using a traffic analyzer (Wireshark). The
network traffic revealed the domain r1.ace.advertising.com
as the server serving the ad into Farmville. Upon visiting the
r1.ace.advertising.com website, the link to their privacy
policy at http://www.advertising.com/privacy_policy.php
contains an error message. Scrolling to the bottom of the
webpage, the user can then click a "privacy" hyperlink to
visit AOL’s privacy policy that describes Advertising.com’s
privacy practices at http://advertising.aol.com/privacy.

This example illustrates how different parties reuse
content from other parties to build more complex systems,
and how developers need tools to ensure consistency
between privacy requirements across different parties.
However, at present, policies expressed in natural language
remain disconnected and hence software can freely deviate
from the coordination required and expected across these
different parties. To address this problem we propose to
develop a formal language as an interlingua to describe
requirements that map natural language policy to formal
statements that can eventually be traced to software.

Figure 2. Example data supply chain through Facebook, Zynga

and AOL Advertising

III. APPROACH
We aim to improve privacy by introducing a privacy

requirements specification that serves to align multi-party
expectations across multi-tier applications. This specification
would express a critical subset of policy statements in a
formalism that we can check for requirements conflicts. This
includes conflicts within a party’s specification, and conflicts
between two or more specifications of different parties. We
base our approach on semantic parameterization, wherein
natural language requirements phrases are mapped to actions
and roles in Description Logic (DL) [8]. This format was
validated using 100 privacy policy goals [6] and over 300
data requirements governing health information [7]. We now
introduce DL, followed by our precise definition of the
privacy requirements specification.

A. Introduction to Description Logic
Description Logic (DL) is a subset of first-order logic

for expressing knowledge. A DL knowledge base KB is
comprised of intensional knowledge, which consists of
concepts and roles (terminology) in the TBox, and
extensional knowledge, which consists of properties, objects
and individuals (assertions) in the ABox [4]. In this paper,
we use the DL family ALC, which includes logical

AOL Advertising uses the
information collected on Network
Participating Sites to better target
advertisements to people across
different websites

Zynga: We do not actively share
personal information with third
party advertisers for their direct
marketing purposes unless you
give us your consent

Facebook: You will not directly
or indirectly transfer any data
you receive from us to any ad
network, even if a user consents
to such transfer

Key: Data flow Content owner

Facebook(
Privacy(
Policy(

AOL(
Privacy(
Policy(

Facebook(
Pla2orm(
Policy(

Zynga(
Privacy(
Policy(

User

Facebook AOL Zynga

permit collection/use of
age, gender;
permit transfer of age,
gender to Zynga

permit use age, gender;
prohibit transfer of Facebook
user info (including aggregate)
to AOL

permit collection/use of
age, gender from Facebook;
permit transfer of
aggregate data to AOL

permit collection/
use of age, gender
from Zynga

Actor

Data flow

Policy

Legend:'

Third(
par;es(

constructors for union, intersection, negation, and full
existential qualifiers over roles. The reasoning tasks of
concept satisfiability, concept subsumption and ABox
consistency in ALC are PSPACE-complete [4].

Reasoning in DL begins with an interpretation 𝔗 that
consists of a nonempty set Δ𝔗 , called the domain of
interpretation, and the interpretation function .𝔗 that maps
concepts and roles to subsets as follows: every atomic
concept C is assigned a subset 𝐶𝔗 ⊆ Δ𝔗 and every role 𝑅 is
assigned the subset 𝑅𝔗 ⊆ Δ𝔗×Δ𝔗. For each a, b ∈ R𝔗, b is
called the filler. Description Logic defines two special
concepts: ⊤ (top) with the interpretation ⊤𝔗 = Δ𝔗 and ⊥
(bottom) with interpretation ⊥𝔗=⊘ . In addition to
constructors for union, intersection and negation, DL
provides a constructor to constrain role values, written R.C,
which means the filler for the role R belongs to the concept
C. The interpretation function is extended to concept
definitions in the DL family ALC as follows, where C and D
are concepts, R is a role in the TBox and a and b are
individuals in the ABox:

(¬C)𝔗 = ∆𝔗 ∖ C𝔗
(C ⊓ D)𝔗 = C𝔗 ∩ D𝔗
(C ⊔ D)𝔗 = C𝔗 ∪ D𝔗
(∀R.C)𝔗 = 𝑎 ∈ ∆𝔗 ∀b. a, b ∈ R𝔗 → 𝑏 ∈ C𝔗}
(∃R.C)𝔗 = 𝑎 ∈ ∆𝔗 ∃b. a, b ∈ R𝔗 ∧ 𝑏 ∈ C𝔗}

Description Logic includes axioms for subsumption,
disjointness and equivalence with respect to a TBox.
Subsumption is used to describe individuals using
generalities, and we say a concept C subsumes a concept D,
written 𝑇 ⊨ 𝐷 ⊑ 𝐶, if D𝔗 ⊆ C𝔗 for all interpretations 𝔗 that
satisfy the TBox T. The concept C is disjoint from a concept
D, written 𝑇 ⊨ 𝐷 ⊓ 𝐶 →⊥ , if D𝔗 ∩ C𝔗 =⊘ for all
interpretations 𝔗 that satisfy the TBox T. The concept C is
equivalent to a concept D, written 𝑇 ⊨ C ≡ D , if C𝔗 =
D𝔗 for all interpretations 𝔗 that satisfy the TBox T.

B. Privacy Requirements Specifications
We define a privacy requirements specification to be a

DL knowledgebase KB. The universe of discourse consists
of concepts in the TBox T, including the set Req of data
requirements, the set Actor of actors with whom data is
shared, the set Action of actions that are performed on the
data, the set Datum of data elements on which actions are
performed, and the set Purpose of purposes for which data
may be acted upon. The following definitions precisely
define the specification. The concepts for actor, datum and
purpose can be organized into a hierarchy using DL
subsumption. Figure 3 illustrates three hierarchies from our
case study for datum, purposes and actors: inner bullets
indicate when a concept is subsumed by the outer bullet
concept (e.g., information subsumes public-information
under Datum).

Figure 3. Example datum, purpose and actor hierarchy from Zynga

privacy policy expressable in Description Logic; inner bullet concepts are
subsumed by (contained within) outer-bullet concepts; red text denotes

branches that were inferred to structure orphaned concepts

Definition 1. Each action concept 𝑎 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛 has assigned
roles that relate the action to actors, data elements and
purposes. We begin with three default actions: COLLECT,
which describes any act by a first party to access, collect,
obtain, receive or acquire data from another party;
TRANSFER, which describes any act by a first party to
transfer, move, send or relocate data to another party; and
USE, which describes any act by a first party to use data in
any way for their own purpose. In the future, we may extend
these actions, e.g., with aggregation, analysis, storage, and
so on, as needed. Actions are further described by DL roles
in the set of Roles as follows:
• hasObject.Datum denotes a binary relationship between an

action and the data element on which the action is
performed;

• hasSource.Actor denotes a binary relationship between an
action and the source actor from whom the data was
collected;

• hasPurpose.Purpose denotes a binary relationship between
an action and the purpose for which the action is
performed; and

• hasTarget.Actor denotes a binary relationship between a
TRANSFER and the target actor to whom data was
transferred

Each action has role hasObject, hasSource and hasPurpose,
but only the TRANSFER action has the role hasTarget. The
hasObject and hasSource roles are to trace data elements
from any action back to the original source from which that
data was collected, as we discuss in Section III.B.2.
Definition 2. A requirement is a DL equivalence axiom
𝑟 ∈ 𝑅𝑒𝑞 that is comprised of the DL intersection of an
action concept 𝑎 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛 and a role expression that
consists of the DL intersection of roles ∃𝑅! ⊓ … ∃𝑅! ∈
𝑅𝑜𝑙𝑒𝑠. Consider requirement 𝑝! for 𝑖𝑝_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ∈ 𝐷𝑎𝑡𝑢𝑚,
𝑎𝑛𝑦𝑜𝑛𝑒 ∈ 𝐴𝑐𝑡𝑜𝑟 and 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑛𝑔_𝑎𝑑 ∈ 𝑃𝑢𝑟𝑝𝑜𝑠𝑒 in the
TBox T, such that it is true that:

(1) 𝑇 ⊨ 𝑝! ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡. 𝑖𝑝_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ⊓
 ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.
 ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒.𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑛𝑔_𝑎𝑑

Figure 4 illustrates two requirements wherein concepts in
the Actor, Datum and Purpose hierarchies (circles) are

Purpose
•  payment-processing
•  communicating-with-user

•  notifying-game-activity
•  customer-support

•  technical-support
•  …

•  delivering-advertisement
•  marketing-zynga
•  marketing-third-party
•  target-advertising

…

Datum
•  information

•  public-information
•  zynga-user-id
•  user-name
•  …

•  personal-information
•  billing-information
•  user-age
•  …

•  technical-information
•  ip-address

…

Actor
•  zynga

•  zynga-inc
•  affiliate

•  subsidiary
•  joint-venture
•  …

•  service-provider
•  google-analytics

•  third-party-advertiser
•  user
…

linked to each requirement via roles (colored arrows): p5
describes the act to collect IP addresses from anyone for a
range of advertising-related purposes; and r7 describes the
collecting IP addresses from advertisers for any purpose.

In addition, each requirement is contained within exactly
one modality, which is a concept in the TBox T as follows:
Permission contains all actions that an actor is permitted to
perform; Obligation contains all actions that an actor is
required to perform; and Prohibition contains all actions
that an actor is prohibited from performing. Consistent with
the axioms of Deontic Logic [13], it is true that 𝑇 ⊨
𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛 ⊑ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛, wherein each required action is
necessarily permitted. Thus, if our transfer requirement 𝑟! is
required such that 𝑇 ⊨ 𝑝! ⊑ 𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛, then it is also true
that 𝑇 ⊨ 𝑝! ⊑ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛. Using this formulation, we can
compare the interpretations of two requirements based on
the role fillers to precisely infer any conflicts, a topic
considered next in Section III.B.1.

1) Requirements Conflicts
Our formalism enables conflict detection between what

is permitted and what is prohibited. A conflict in predicate
logic is expressed as 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑥 ∧ 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑥) ↔
𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑥), in which x is a DL individual in the ABox A.
To implement these techniques, we compute an extension of
the TBox that itemizes individual interpretations of the
actors, data and purposes.

Figure 4. Diagram to illustrate itemized interpretations

The itemized interpretations allow us to identify conflicts
within the intersection of complex descriptions that cannot
be identified using DL intersection, alone. In Figure 4, the
requirement p5 is a permission, whereas the requirement r7
is a prohibition. We cannot infer a direct subsumption
relationship between these two requirements, because each
requirement contains an interpretation that exists outside the
other (e.g., Zynga is a permitted source for collecting IP
addresses, and payment processing is a prohibited purpose).
However, there is a conflict between these two
requirements: it is both permitted and prohibited for a third-
party to collect IP addresses for advertising-related
purposes. To detect these conflicts, we define an extended
specification 𝐾𝐵! = 𝑇! ∪ 𝐴! that consists of an extended
TBox 𝑇! = 𝑇 ∪ 𝐸 containing the original terminology T and
axioms 𝑒 ∈ 𝐸 that itemize interpretations for requirements
𝑟 ∈ 𝑇 , such that 𝑇! ⊨ 𝑒 ⊑ 𝑟 . The ABox 𝐴! contains
individuals assigned to these interpretations.

Definition 3. The extension is a set of axioms E that itemize
the interpretations for each requirement. An itemized
interpretation of an arbitrary description X is written
(𝑋)𝔗 = (𝐶)𝔗\ (𝐷)𝔗 for a concept C that subsumes a
concept D. By itemizing interpretations in a requirement’s
role fillers, we can precisely realize a specific conflicting
interpretation across a permission and a prohibition.

For each requirement written in the form 𝑟 ≡ 𝑎 ⊓
∃𝑅!.𝐹! ⊓ ∃𝑅!.𝐹! ⊓ … ⊓ ∃𝑅!.𝐹! in the TBox T, such that
𝑎 ∈ {𝐶𝑂𝐿𝐿𝐸𝐶𝑇,𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅,𝑈𝑆𝐸} and 𝑅!…𝑅! ∈ 𝑅𝑜𝑙𝑒𝑠 ,
we derive an itemized interpretation 𝑒 in the TBox 𝑇!that is
written in the form 𝑒 ≡ 𝑎 ⊓ ∃𝑅!.𝐻! ⊓ ∃𝑅!.𝐻! ⊓ … ⊓
∃𝑅!.𝐻! by replacing each role filler 𝐹! with a new role filler
𝐻!, which is computed to exclude all sub-concepts 𝐺! ⊏ 𝐹!
in the TBox T as follows: (𝐻!)𝔗 = (𝐹!)𝔗\ (𝐺!)𝔗 | (𝐺!)𝔗 ⊂
(𝐹!)𝔗 for an interpretation 𝔗 that satisfies the TBox 𝑇. To
realize the itemized interpretation and later report the
conflict to an analyst, we assign a unique individual 𝑥 to the
assertion 𝑒(𝑥) ∈ 𝐴!.
Definition 4. A conflict is an interpretation that is both
permitted and required and that satisfies the TBox 𝑇!, such
that it is true that 𝑇! ⊨ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ≡ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ⊓
𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛. For an individual 𝑥 in the extended ABox 𝐴!,
each conflict is realized with respect to two or more
conflicting requirements 𝑟! , 𝑟! ∈ 𝑅𝑒𝑞, such that it is true that
𝐴! ⊨ 𝑟! 𝑥 ∧ 𝑟! 𝑥 ∧ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑥 for 𝑖 ≠ 𝑗 and an
interpretation 𝔗 that satisfies the ABox 𝐴!. If there exists no
individual 𝑥 ∈ 𝐴! such that 𝐴! ⊨ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑥 , then a
privacy specification KB is conflict-free.

2) Tracing Data Flows Within a Single Specification
Conflict-free privacy requirements specifications

describe permitted collections, transfers and uses of
personal information. Using these specifications, we can
trace any data element from collection requirements to
requirements that permit the use or transfer of that data. This
is important because organizations often need to ensure that
policies covering collected data are implemented across
their organization. Moreover, the actions to use and transfer
data may be performed by separate information systems
from those where the data is collected, and thus we can use
these specifications to discover which systems data is
required or permitted to flow to. To trace data across a
specification, we introduce the following definitions.
Definition 5. A trace is a subset of requirements pairs
𝑟!, 𝑟! ∈ 𝑅𝑒𝑞 × 𝑅𝑒𝑞 that map from a permitted source

action 𝑟! to a permitted target action 𝑟! for an interpretation
𝔗 that satisfies the TBox 𝑇 . For example, we can trace
permitted data collections (source action) to permitted data
uses and data transfers (target actions) when the role values
for the source actor, datum and purpose entail a shared
interpretation. For each requirement written in the form
𝑟! ≡ 𝑎 ⊓ ∃𝑅!,!.𝐹!,! ⊓ ∃𝑅!,!.𝐹!,! ⊓ … ⊓ ∃𝑅!,!.𝐹!,! in the
TBox 𝑇 , such that 𝑎 ∈ {𝐶𝑂𝐿𝐿𝐸𝐶𝑇,𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅,𝑈𝑆𝐸} and
𝑅!,!…𝑅!,! ∈ 𝑅𝑜𝑙𝑒𝑠 , we compare role fillers 𝐹!,!…𝐹!,!

Purpose Datum
Actor

Delivering advertisement

Payment processing
Marketing third-party
Target advertising

ip-address

Zynga

Third-party
advertiser

Permitted Collection = p5 r7 = Prohibited Collection

between the source and target permissions to yield one of
four exclusive Modes as follows:
• U: Underflow, occurs when the data target subsumes the

source, if and only if, 𝑇 ⊨ 𝐹!,! ⊑ 𝐹!,!
• O: Overflow, occurs when the data source subsumes the

target, if and only if, 𝑇 ⊨ 𝐹!,! ⊑ 𝐹!,!
• E: Exact flow, occurs when the data source and target are

equivalent, if and only if, 𝑇 ⊨ 𝐹!,! ≡ 𝐹!,!
• N: No flow, otherwise

Figure 5 presents an example data flow trace from our
case study. The collection requirements AOL-16 and AOL-
14 trace to the transfer requirement AOL-48. The transfer
requirement does not specify a purpose, which we interpret
to mean “any purpose.” Thus, the collection purposes
“business purposes” and “contacting you to discuss our
products and services” are more specific than the transfer
purpose “any purpose,” which the red links illustrate as
underflows. The data elements in AOL-16 are similarly
more specific than the transfer data elements.

Figure 5. Example data flow trace: red lines represent underflows

 and black lines represent exact flows.

Below, the collection requirement p1 in formula (3)
encodes part of AOL-16 in Figure 5, and p2 in formula (4)
encodes the corresponding transfer requirement for AOL-
48. In formula (2), we declare contact information to be
subsumed by personally identifiable information (PII), such
that it is true that:

(2) 𝑇 ⊨ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑖𝑛𝑓𝑜 ⊑ 𝑃𝐼𝐼
(3) 𝑇 ⊨ 𝑝! ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡. 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑖𝑛𝑓𝑜

⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒. 𝑠𝑖𝑡𝑒_𝑣𝑖𝑠𝑖𝑡𝑜𝑟
⊓ ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒. 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠_𝑝𝑢𝑟𝑝𝑜𝑠𝑒𝑠

(4) 𝑇 ⊨ 𝑝! ≡ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡.𝑃𝐼𝐼 ⊓
∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.𝐴𝑐𝑡𝑜𝑟 ⊓
∃ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡. 𝑘𝑒𝑦_𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠 ⊓
∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒.𝑃𝑢𝑟𝑝𝑜𝑠𝑒

Based on the subsumption axiom entailed in formula (2), we
can map the trace (𝑝!, 𝑝!)⟶ (𝑈,𝑈,𝑈) onto the three
Modes for the roles hasObject, hasSource and hasPurpose,
respectively. In general, tracing data flows allows an analyst
to visualize dependencies between collection, use and
transfer requirements. In this paper, we only formalize
traces within a single policy. In future work, we will present
tracing data flows across multiple policies in a data supply
chain. This cross-policy tracing extends our notion of a
trace, but requires a shared lexicon or dictionary to unify

terminology across two or more policies. In our evaluation,
we present select findings from cross-policy tracing.

IV. EXPLORATORY CASE STUDY
We conducted a formative, exploratory case study using

the Facebook Platform Policy by systematically identifying
relevant policy statements that we could formalize into the
privacy requirements specification language. We mapped
each statement into one of the two categories: policy
statements and data requirements. The policy statements
category includes statements that describe an action outside
the scope of the application such as “You must not violate
any law or the rights of any individual or entity.” It also
includes non-data requirements that describe requirements
of the app not directly dealing with the handling of data, for
example, “You will include your privacy policy URL in the
App Dashboard.” The data requirements category includes
statements that describe specific actions performed on data
such as “You must not include functionality that proxies,
requests or collects Facebook usernames or passwords.”
After the formative study, we developed our formal language
to express privacy requirements and further validated this
language in summative study on the two additional policies
from Zynga and AOL using this same process. We were
particularly interested in boundary cases that describe the
limitations of our proposed language.

Figure 6 presents an example data requirement from the
Zynga privacy policy (Z-92). The number, Z-92, within
parenthesis denotes that it is statement number 92 within the
policy. In step 1, we identify the action using phrase
heuristics (e.g., “provide” indicates a TRANSFER action),
the modality permission from the modal keyword “will,” the
datum “information,” the target to whom the data is
transferred “third party companies” and the purpose “to
perform services on our behalf…” Purposes and other values
may appear in comma-separate lists, which we interpret as
disjunctions. In Figure 6, this purpose includes examples,
which we separately translate into a purpose hierarchy
similar to that shown in Figure 3. While this policy statement
refers to “your information,” it is unclear where this
information was collected. User data can be collected from
the user, data brokers or advertisers.

Figure 6. Steps to map data requirement from natural language to DL;

step 1 shows data requirement in Zynga privacy policy; step 2 shows
requirement expressed in language syntax; step 3 shows satement

expressed in DL semantics

AOL-14: Collect personally identifiable
information for contacting you to
discuss our products and services

AOL-16: Collect name, contact
information, payment method from

site visitor for business purposes

AOL-48: Transfer personally identifiable
information to key partners

AOL$16'

AOL$48'

AOL$14'

hasSource
hasPurpose
hasObject

Legend:

P TRANSFER information TO third-party-companies FOR performing-services

Transfer keyword
Modal phrase “will” indicates an assumed permission

Datum Target
Purposes

Step 1: Annotate policy text

Step 2: Write expression in specification language (P = Permission)

Step 3: Compile language into Description Logic (OWL)
p2 ≡ TRANSFER ⊓ ∃hasObject.information ⊓

 ∃hasTarget.third-party-companies ⊓ ∃hasPurpose.performing-services
p2 ⊑ Permission

We will provide your information to third party companies to perform

services on our behalf, including payment processing, data analysis, e-

mail delivery, hosting services, customer service and to assist us in our

marketing efforts.

After we identify the values to assign to the roles, in step
2 we write these values into a privacy requirements
specification language that uses an SQL-like syntax and our
DL semantics described in Section III. The letter “P”
indicates that this is a permission, followed by the action
verb, the object, and keywords to indicate the source
(“FROM”), target (“TO”) and the purpose (“FOR”). Once
translated into the language, we use a tool to parse the
language and generate OWL DL that we reason over using
open source DL theorem provers (e.g., HermiT and Fact++).

During the case study, we traced all the keywords to
indicate when an action was a collection, use or transfer;
these appear in Table II. Among the keywords, many overlap
across actions (e.g., access, use, share) while others are more
exclusive (e.g., collect, disclose, transfer). The reason for this
ambiguity is due to policies that include multiple viewpoints:
a policy may describe access to a user’s data by the app,
which is a collection, or it may describe a third-party’s
access, which assumes a transfer. In these cases, the analyst
should identify the viewpoint to correctly formalize the
policy statement and consider reviewing their formalization
for keywords that are known to be ambiguous.

TABLE I. PHRASE HEURISTICS USED TO INDICATE WHEN A STATEMENT
WAS A COLLECTION, USE OR TRANSFER REQUIREMENT

DL Action Action keywords
COLLECT Access, assign, collect, collected, collection, collects,

give you, import, keep, observes, provide, receive,
record, request, share, use

USE Access, accessed, communicate, delivering, include,
matches, send, use, used, uses, using, utilized

TRANSFER Access, disclose, disclosed, disclosure, give, in
partnership with, include, make public, on behalf of,
provide, see, share, shared, transfer, use, used with,
utilized by

V. EXTENDED EVALUATION
We evaluated our approach by extending our exploratory

case study, and implementing a tool-based performance
simulation. As a problem domain, we chose the Facebook
Platform as our starting point, because Facebook has
received significant attention from privacy advocates and
Facebook apps are frequently available on mobile device
platforms, which provides a second context to study this
problem in future work. From here, we chose the Farmville
application, which at the time of our study, was the most
used Facebook app with over 40.8 million active users per
month. We analyzed the following three policies:

• Facebook Platform Policy, last revised 12 Dec 2012,
which governs app developer practices in Facebook

• Zynga Privacy Policy, last updated 30 Sep 2011, which
governs the user’s privacy while they play Farmville and
use other Zynga applications

• AOL Advertising, last updated 4 May 2011, which
governs advertising distributed through Farmville and
other websites and applications

In Table III, we illustrate the scope of this evaluation,
including the total number of statements in the policies (S),
the number of data requirements (D), which we break-down
into the number of permissions (P), obligations (O), and

prohibitions (R), including which among these requirements
concern collection (C), use (U) and transfer (T) of data.
Between 32-55% of these policies described data
requirements with generally few obligations. The Zynga and
AOL policies describe their own practices and focus more on
permissible data practices, whereas the Facebook policy
describes developer practices and focuses more on
prohibitions. We now discuss findings from our formal
analysis that includes conflicts and opportunities to extend
our approach, or limitations of the current work.

TABLE II. NUMBER OF TYPES OF STATEMENTS FORMALIZED

Policy S D
Modality Action

P O R C U T
Facebook 105 39 15 4 25 6 15 14

Zynga 195 64 58 1 8 22 8 15
AOL 74 41 43 0 4 12 15 10

A. Example conflicts identified using the language
We found conflicts between Facebook and Zynga, and

one conflict within the AOL policy, which we now discuss.
1) Conflicts between Facebook and Zynga
 The Facebook Platform policy governs the data practices
of Farmville, which is also governed by the developer
Zynga’s privacy policy. To conduct this conflict analysis,
we performed an ontological alignment between terms in
both policies that we formalized in DL using equivalence
and subsumption. Using our formalization, we detected a
conflict between these policies regarding the sharing of
aggregate or anonymous data. Facebook requirement FB-43
prohibits a developer from transferring any user data
obtained from Facebook to an ad network, whereas Zynga
requirement Z-107 permits sharing aggregate data received
from any source with anyone:
FB-43: R TRANSFER user-data FROM facebook TO ad-network

FOR anything

Z-107: P TRANSFER aggregate-information,anonymous-
information FROM anyone TO anyone

The Zynga permission is inferred from an exclusion, which
states “Our collection, use, and disclosure of anonymous or
aggregated information are not subject to any of the
restrictions in this Privacy Policy.” The Zynga definition of
aggregate-information means non-personally identifiable
information, which may include Facebook user data, such as
gender, Zip code and birthdate, which are often viewed as
not individually identifiable despite evidence to the contrary
[21]. Under Facebook, the concept user-data is defined to
include aggregate and anonymous data as follows: “By any
data we mean all data obtained through the use of the
Facebook Platform (API, Social Plugins, etc.), including
aggregate, anonymous or derivative data,” which we
encoded in the datum concept hierarchy.

The second conflict appears where Zynga permits the
transfer of unique user IDs to third party advertisers that
advertise on Zynga Offer Wall. The purposes for sharing
user IDs are crediting user accounts and preventing fraud.
However, this sharing violates Facebook requirement FB-

43, above. The Zynga requirement Z-113 describes the
permission involved in this conflict: the Zynga user-id,
which Zynga defines as either a unique Zynga user ID or the
social networking service user ID, can thus be a data
element within the Facebook user-data, which includes the
Facebook user ID.
Z-113: P TRANSFER unique-id,user-id TO offer-wall-

provider FOR crediting-user-account,preventing-
fraud

Finally, the Facebook and Zynga policies conflict on
sharing data for the purposes of merger and acquisition by a
third-party. In case of merger or acquisition, Facebook
allows a developer to continue using the data within the app,
but prohibits the transferring of data outside the app. Zynga
does not put restrictions on data transfer, including personal
data, for the purpose of merger of acquisition. The Facebook
statement “If you are acquired by or merge with a third
party, you can continue to use user data within your
application, but you cannot transfer data outside your
application” (FB-50) and the Zynga statement “In the event
that Zynga undergoes a business transition, such as a
merger, acquisition… We may transfer all of your
information, including personal information, to the
successor organization in such transition” (Z-115) map to
these two requirements (information includes user data):	
FB-50: R TRANSFER user-data FROM facebook TO third-party

FOR merger,acquisition

Z-115: P TRANSFER information FOR merger,acquisition

2) Conflict within AOL Advertising
The AOL privacy policy contains an apparent conflict

regarding collection and use of personally identifiable
information. Unlike the Facebook and Zynga policies, the
AOL policy describes data practices from multiple
stakeholder viewpoints, simultaneously, including that of
their affiliate Advertising.com. The conflict appears from the
AOL Advertising viewpoint in a statement, “Personal
information such as name, address and phone number is
never accessed for [targeted advertising]” (AOL-27). The
policy also states, “Advertisers utilizing Advertising.com
Sponsored Listings technology may provide personally-
identifiable information to Advertising.com Sponsored
Listings, which may then be combined with information
about purchasing patterns of Advertising.com Sponsored
Listings’ products and services, ... and all other information
provided by the advertiser” (AOL-46). In addition, the
following statement declares that this information may be
used for targeted advertising: “this information is used to
improve the applications provided to advertisers, improve the
relevancy of ad serving and any other use deemed helpful to
Advertising.com Sponsored Listings” (AOL-47). Note that
the advertiser may be collecting the personally identifiable
information from the user. The conflicting statements are:
AOL-27: R USE personally-identifiable-information FROM

registration-environment FOR target-ads-that-are
most-appropriate-for-site-visitor

AOL-46: P COLLECT personally-identifiable-information FROM
anyone FOR improving-the-applications-provided-to-

advertisers, improving-the-relevancy-of-ad-
serving, anything

B. Opportunities for extending the language
Among the data requirements that we identified, we were

unable to formalize requirements that describe actions
outside the scope of collection, use and transfer as defined in
Definition 1. The un-encoded requirements include how data
is merged and stored and the policy implications of consent.
We now discuss these three categories of requirement.

1) Merging data from different sources
The three policies in our study contain 12 requirements

that describe how data is linked, combined or aggregated
from multiple sources. For example, the Zynga privacy
policy states “some of the cookies [that] the service places on
your computer are linked to your user ID number(s)” (Z-57)
and “[information from other sources] will be combined with
other information we collect” (Z-83), and “additionally, we
may keep statistics regarding toolbar use on an aggregated
basis” (Z-62). In each of these three examples, data is linked,
combined or aggregated with different implications. Linking
data enables companies to derive inferences from
correlations (i.e., statistical analyses) and to re-identify
otherwise anonymized data. Combining data with other data
raises the question: what purpose governs the combined data,
and how long should the combined data be retained (the
minimum or maximum period of the previously separate data
sets?) Finally, aggregate data decreases the level of detail
that an organization has on users. For example, knowing how
many users are aged between 21 and 25 years old is different
than knowing the specific birth dates of each user. Thus,
aggregation requirements may indicate improved user
privacy, but they also limit the types of linking and
combining that can occur later, if needed.

2) Storing and deleting information
We observed 15 data storage requirements and 8 data

deletion requirements in our study. The act of storing,
retaining, and deleting data has temporal implications: once
data is stored, it exists to be acted upon for the duration of
storage; when data is deleted, it is no longer available for
use, transfer, etc. For example, the AOL Advertising privacy
policy states that, “log files, including detailed clickstream
data used to create behavioral segments, are retained… for
no longer than 2 years” (AOL-31). While DL is suited for
reasoning about subsumption, different temporal logics exist
to reasoning about time. We are looking into extensions to
DL for temporal reasoning [17] that can be used to express
these remaining privacy requirements.

3) Managing the implications of consent
In our analysis, 14 consent requirements were observed

that require an organization to permit or prohibit a data
action unless a user provides consent to perform that action.
We observed two different approaches: opt-in requirements
default to data user prohibitions in our language, but can be
flipped to permissions when a user provides their consent;
opt-out requirements default to data user permissions, but
can be flipped to prohibitions when a user chooses to revoke
consent. For example, the Facebook Platform Policy contains
the opt-in statement, “for all other data obtained through the

use of the Facebook API, you must obtain explicit consent
from the user who provided the data to us before using it for
any purpose other than displaying it back to the user on your
application” (FB-42). In contrast, the Zynga Privacy Policy
contains the opt-out statement, “when we offer [user]
profiles, we will also offer functionality that allows you to
opt-out of public indexing of your public profile
information” (Z-30). Because opt-in and opt-out statements
can change the interpretation of how data may be used and
transferred based on the choices of the user, these statements
can introduce conflicts into a previously conflict-free policy
after the user has made their choice. We plan to further
explore how to reason about consent in future work.

C. Challenges due to formats and writing styles
We observe different formats and phrasing that affect our

approach, which we now discuss.
Embedded policies: A policy may contain hyperlinks to

other policies. For completeness, it is important to analyze
these links to assess whether the linked content contains
relevant data requirements. The additional data requirements
may reveal further inconsistent statements within a policy or
across multiple policies. In our case study, the Facebook,
Zynga and AOL Advertising policies each had 19, 16 and
five links, respectively. The links serve different purposes,
including linking to policies on special topics such as
advertising policies (Facebook) or user rights and
responsibilities (Zynga). These special topic policies were
hosted by the same company and include additional data
requirements, sometimes from a different stakeholder
viewpoint. In addition, policies may link to third-party
policies, such as conduit.com (Zynga), or to additional data
definitions or specific examples of data requirements
(Facebook). Other links, such as “contact us” (AOL) and
“change email preferences” (Zynga), do not lead to
additional data requirements. Due to the large number of
links that may arise across multiple websites, this problem
suggests a need for additional automation using natural
language processing techniques to identify relevant policies.

Separate collection, use and sharing sections: A policy
may describe data collection, purpose for collection, and data
sharing requirements in different sections. At the surface,
this format makes extracting formal specifications easier,
because each statement is relatively independent. However,
the format can de-couple the collection requirements from
use and transfer requirements through the use of ambiguity
(e.g., using different terms or omitting sources, targets and
purposes). The Zynga Privacy Policy separately describes
the information types collected (see “Information We
Collect”) from the purposes for use (see “How We Use the
Information We Collect”). This separation yields a many-to-
many mapping between information types and purposes,
because the analyst must reasonably assume that any data
type maps to any purpose. In Figure 7, we present the data
flow tracing for the hasObject role: the Zynga policy shows
numerous requirements (nodes) with multiple cross-traces
among collections to transfers due to the many-to-many
mapping. Contrast the Zynga policy with the AOL
Advertising policy, in which requirements have an

observably smaller valiancy or edge count. Many-to-many
tracing is likely an indicator of a less privacy protective
policy, because it affords companies more opportunities to
use data in difficult to comprehend or unforeseeable ways.

Figure 7. Data flow traces inferred from the Zynga policy (left) and AOL

policy (right): arrows point from collections to transfers, red lines show
underflows, blue lines show overflows and black lines show exact flows
(see Definition 5). The Zynga policy defines broad transfer rights as seen

by the three nodes with multiple incoming arrows.

Ambiguous and vague terms: Policies may contain vague
or ambiguously worded purposes. For example, the Zynga
privacy policy contains a statement, “in some cases, we will
associate this information with your user ID number for our
internal use” (Z-74). The purpose, “internal use” is vague,
and an analyst can interpret this to mean any action
performed by the actor, excluding perhaps transfers. Other
examples include “operate our business” (AOL-51) and
“data analysis” (Z-92). Further, policies may not define data
items precisely. For example, the Zynga Privacy Policy
describes “personal information,” but does not define what
this category includes, whereas other policies will refine this
term into sub-categories. In such cases, the analyst may need
to infer their own subsumption relationships that do not map
to specific phrases or statements within the original policy to
test for potential conflicts.

Multi-stakeholder viewpoints: A single policy can assign
data requirements to multiple stakeholder viewpoints. For
example, AOL Advertising describes data practices for sites
operated by AOL Advertising, affiliates and subsidiaries as
“AOL Advertising Sites” and on sites operated by publishers
that participate in the AOL advertising network as “Network
Participant Sites.” Our approach encodes policies in the first-
person viewpoint of a single stakeholder, thus policies such
as AOL’s Advertising policy can be decomposed into
separate policies. In future work, we plan to study ways to
analyze data requirements across multiple policies.

D. Simulation results
We conducted a performance simulation to evaluate the

computational practicality of using our language to reason
about data requirements. While we reduce conflict detection
to DL satisfiability, which is PSPACE-complete for a-cyclic
TBoxes and the DL family ALC in which we express our
language, we recognize that this bound does ensure that our
language is practical for requirements specifications of

Zynga AOL

reasonable size. Therefore, we implemented a prototype
parser and compiler for our language using three popular
theorem provers: the Pellet OWL2 Reasoner v2.3.0
developed by Clark and Parsia; the Fact++ Reasoner v1.5.2
developed by Dmitry Tsarkov and Ian Horrocks, and the
HermIT Reasoner v1.3.4 by the Knowledge Representation
and Reasoning Group at the University of Oxford.

We generated 32 privacy requirements specifications
with actor, datum and purpose hierarchies comprised of
binary trees with 23 concepts; this yields specifications with
up to 1280 itemized interpretations. We conducted several
preliminary runs and determined that concept tree height had
no effect on performance. Of the three reasoners, the Pellet
Reasoner did not respond within 30 minutes when realizing a
policy of only four requirements. Thus, we only discuss
results from the Fact++ and HermiT reasoners.

Figure 8 presents the performance time of the Fact++ and
HermiT reasoners with respect to the specification size: the
32 runs are sorted along the x-axis from the fewest to the
most requirements (from 3 to 72); the y-axis describes the
response time in tenths of a second (red) and number of
requirements (blue). As the number of requirements
increases to 73, we see the Fact++ reasoner response time
remains constant, whereas the HermiT response times appear
to increase slightly (Pearson’s R = 0.533). To understand this
increase, we present Figure 9 that compares the Fact++ and
HermiT reasoners by number of conflicts: the 32 runs are
sorted along the x-axis from fewest to the most requirements
(from 3 to 73); the y-axis describes the response time in
tenths of a second (red) and the number of conflicts (blue).

Figure 8. Performance time of Fact++ and HermiT reasoners on privacy

requirements specifications with respect to number of requirements

Figure 9 shows, and we confirmed, that the response time
of the HermiT reasoner is linear in the number of conflicts
(Pearson’s R = 0.966). The performance of a thereom prover
depends on what type of inferences that prover is optimized
to perform: Pellet produces a non-deterministic choice when
handling general concept inclusion (GCI) axioms [16],
which we rely on in our formalism; however, Fact++ and
HermiT are not limited in this way. From this simulation, we
believe the language is computationally practical for policies
within the order of 100 requirements; however, we need to
do more work on usable interfaces to the logic.

Figure 9. Performance time of Fact++ and HermiT reasoners on privacy

requirements specifications with respect to number of conflicts

VI. THREATS TO VALIDITY
Here we discuss the generalizability of our mapping

methodology. To address construct validity, we maintained a
project workbook that contains mappings of natural language
statements to our language syntax and notes about shortfalls
and boundary cases in our interpretation. We report on
several of these shortfalls in Section V.B. as limitations of
our approach. While mapping statements to our formalism,
we often required context outside a given statement to
identify the action, source, target and purposes. To compare
formalized statements from two policies, we also need to
align the lexicons, which requires us to assume answers to
such questions as, “is customer service equivalent to
customer support, or does prevent crime include the concept
of preventing fraud? We documented these assumptions in
separate files to allow us to revise our findings as new
information became available. In our case study, we found
that a given purpose might be described using different
descriptions. We plan to conduct human subject studies to
understand the limitations of this lexical alignment. If
disagreement exists, then our approach may be used to show
analysts the consequences of two separate interpretations.

VII. RELATED WORK
We now discuss related work in requirements

engineering (RE) and formal methods. In RE, Antón et al.
analyzed over 40 privacy policies using goal mining, which
is a method to extract goals from texts [1, 2]. Results include
a clear need to standardize privacy policies and evidence to
support a frame-based representation consisting of actors,
actions, and constraints. Breaux et al. later extended this
representation with notions of rights, obligations and
permissions in a case study [6] and then formalized this
extension in Description Logic [8]. Since, Young introduced
a method for mining commitments, privileges and rights
from privacy policies to identify requirements [24].
Commitments describe pledges that one actor will perform
an action and these commitments are frequently found
throughout privacy policies. Wan and Singh formalized
commitments in an agent-based system, but had not applied
this formalism to privacy policy [23]. In this paper, we
describe a method to formalize specific data-related
commitments, privileges and rights in privacy policies to
logically reason about potential conflicts.

Formal and semi-methods have long been applied to
privacy policy and privacy law as an application area. Early
work on semi-formal privacy policy languages includes the
Platform for Privacy Preferences (P3P), a website XML-
based policy language aimed to align web browser user
privacy preferences with website practices [10]. While P3P
has experienced wide spread adoption, the P3P is a
declarative language and website operators often make
mistakes in how they configure these policies [15]. The
EPAL is another declarative language that can be used to
express data policies with constraints on purpose [19].
Unlike declarative languages, languages with a formal
semantics can be used to reason about specification errors
and inform website operators and other parties who depend

0"

20"

40"

60"

80"

1" 3" 5" 7" 9" 11" 13" 15" 17" 19" 21" 23" 25" 27" 29" 31"

Performance*v.*Req'ts*(FaCT++)*

Req'ts" Time"(ts)"

0"

50"

100"

150"

1" 3" 5" 7" 9" 11" 13" 15" 17" 19" 21" 23" 25" 27" 29" 31"

Performance*v.*Req'ts*(HermiT)*

Req'ts" Time"(ts)"

0"

20"

40"

60"

1" 3" 5" 7" 9" 11" 13" 15" 17" 19" 21" 23" 25" 27" 29" 31"

Performance*v.*Conflicts*(FaCT++)*

Conflicts" Time"(ts)"

0"

50"

100"

150"

1" 3" 5" 7" 9" 11" 13" 15" 17" 19" 21" 23" 25" 27" 29" 31"

Performance*v.*Conflicts*(HermiT)*

Conflicts" Time"(ts)"

on these policies about why a policy is erroneous, e.g., by
presenting analysts with conflicting policies for resolution.

Several researchers have since formalized privacy-
relevant regulations, including the HIPAA Privacy Rule [5,
18] and the Privacy Act [12]. Barth et al. encoded regulations
as messages passed between actors using norms (e.g.,
permitted and prohibited actions), which is similar to Aucher
et al. [3]. May encoded privacy regulations in Promela and
used the Spin model checker to identify potential conflicts
[18]. These prior approaches are limited in that they cannot
express the hierarchical nature of actor roles, data
composition, and purposes needed to describe privacy
policies. Alternatively, others have used the Web Ontology
Language (OWL) to formalize policies using permissions,
obligations and prohibitions and to address this issue of
concept hierarchies [14, 22]. The full OWL, which these
prior approaches each use to express their formalization, is
known to be undecidable. Work by Uszok et al., however,
use algorithms to identify conflicts as opposed to theorem
proving; an approach that may be decidable, but which is
difficult to reproduce and generalize as the algorithms are
not explicitly published. In this paper, we extend this prior
work by reducing conflict detection to DL satisfiability,
which is known to be PSPACE-complete for the ALC family
of DL, and we believe our conflict detection technique is
generalizable to a larger class of requirements than those
found in privacy policies.

VIII. DISCUSSION AND CONCLUSIONS
In this paper, we presented a formal language to encode

data requirements from natural language privacy policies so
that an analyst can reason about these policies by checking
for conflicts and tracing permissible and prohibited data
flows within the policies. We applied the language to real-
world policies from Facebook, Zynga and AOL Advertising
in a case study. The study demonstrates how to identify
conflicts, which an analyst can then resolve by modifying
their policy and/or their privacy practices. We also discuss
limitations of the data requirements specification language
and opportunities for improving the language. Finally, we
conducted a simulation to demonstrate the computational
complexity of identifying conflicts in policies of similar
size. As software increasingly leverages platforms and third-
party services, we believe developers need lightweight
formalisms and tools such as this to check their intentions
against policies in the larger ecosystem. This is especially
true as developers work with compositions of services in
which they are not aware of all the third parties in their data
flow. In future work, we plan to consider multi-stakeholder
interactions across more complex service compositions.

ACKNOWLEDGMENT
We thank Dave Gordon, Hanan Hibshi and Darya Kurilova
for their early feedback, and the Requirements Engineering
Lab at Carnegie Mellon University.

REFERENCES
[1] A.I. Antón, J.B. Earp, Q. He, W. Stufflebeam, D. Bolchini, C. Jensen,

“Financial privacy policies and the need for standardization,” IEEE
Sec. & Priv., 2(2):36-45, 2004.

[2] A.I. Antón, J.B. Earp, “A requirements taxonomy for reducing web
site privacy vulnerabilities,” Req’ts Engr. J., 9(3):169-185, 2004.

[3] G. Aucher, G. Boella, L. van der Torre. “Privacy policies with modal
logic: a dynamic turn,” LNCS 6181: 196-213, 2010.

[4] F. Baader, D. Calvenese, D. McGuiness (eds.), The Description Logic
Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2003.

[5] A. Barth, A. Datta, J.C. Mitchell, H. Nissenbaum, “Privacy and
Contextual Integrity: Framework and Applications,” IEEE Symp. on
Sec. & Priv., 2006, pp. 184-198.

[6] T.D. Breaux, A.I. Antón, “Analyzing Goal Semantics for Rights,
Permissions, and Obligations.” IEEE Req’ts. Engr. Conf., Paris,
France, pp. 177-186, 2005.

[7] T.D. Breaux, A.I Antón. “Analyzing regulatory rules for privacy and
security requirements.” IEEE Trans. Soft. Engr., Special Issue on
Soft. Engr. for Secure Sys., 34(1):5-20, 2008.

[8] T.D. Breaux, A.I. Antón, J. Doyle, “Semantic parameterization: a
conceptual modeling process for domain descriptions.” ACM Trans.
Soft. Engr. Method., 18(2): Article 5, 2009.

[9] T.D. Breaux, D.L. Baumer, “Legally ‘Reasonable’ Security
Requirements: A 10-year FTC Retrospective.” Computers & Security,
30(4):178-193. 2011.

[10] L. Cranor et al., “Platform for Privacy Preferences (P3P)
Specification,” W3C Working Group Note, 2006,

[11] C.B. Farrell. “FTC Charges Deceptive Privacy Practices in Google's
Rollout of Its Buzz Social Network,” U.S. Federal Trade Comission
News Release, March 30, 2011.

[12] C. Hanson, T. Berners-Lee, L. Kagal, G.J. Sussman, D. Weitzner,
“Data-purpose algebra: modeling data usage policies.” 8th IEEE
Work. Pol. Dist. Sys. & Nets., 2007, pp. 173-177.

[13] J.F. Horty. “Deontic logic as founded in non-monotonic logic.”
Annals of Math. & Art. Intel., 9: 69-91, 1993.

[14] M. Kahmer, M. Gilliot, G. Muller, "Automating Privacy Compliance
with ExPDT." 10th IEEE Conf. E-Com. Tech., pp. 87-94, 2008

[15] P.G. Leon, L.F. Cranor, A.M. McDonald, R. McGuire, “Token
attempt: the misrepresentation of website privacy policies through the
misuse of p3p compact policy tokens,” 9th Workshop on Priv. Elec.
Soc., pp. 93-104, 2010.

[16] Lin, H. T., Sirin, E. (2008). Pellint - A Performance Lint Tool for
Pellet. International Workshop on OWL: Experiences and Directions
(OWL-ED 2008).

[17] C. Lutz, F. Wolter, M. Zakharyashev, “Temporal description logics:
A survey.” 15th IEEE Int’l Symp. Temp. Rep. & Reas., pp. 3-14, 2008

[18] M.J. May, Privacy APIs: Formal Models for Analyzing Legal and
Privacy Requirements, Ph.D. Thesis, U. of Pennsylvania, 2008.

[19] C. Powers, M. Schunter, “Enterprise Policy Authorization Language,”
Version 1.2, W3C Member Submission, Nov. 2003.

[20] E. Steel, G.A. Fowler. “Facebook in privacy breach.” Wall Street
Journal, October 17, 2010.

[21] Sweeney, Latanya. “k-anonymity: a model for protecting privacy.”
Int’l J. of Uncertainty, Fuzziness and Knowledge-Based Sys., 10(5):
557-570, 2002.

[22] A. Uszok, J.M. Bradshaw, J. Lott, M. Breedy, L. Bunch. “New
Developments in Ontology-Based Policy Management: Increasing the
Practicality and Comprehensiveness of KAoS.” IEEE Work. on Pol.
Dist. Sys. & Nets., pp. 145-152, 2008.

[23] F. Wan, M.P. Singh. “Formalizing and achieving multiparty
agreements via commitments.” Auto. Agents & Multi-Agent Sys., pp.
770–777, 2005.

[24] J. Young. “Commitment analysis to operationalize software
requirements from privacy policies.” Req’ts Engr. J., 16:33-46, 2011.

