
Formal Analysis of Privacy Requirements Specifications  
for Multi-Tier Applications 

Travis D. Breaux 
Institute for Software Research 

Carnegie Mellon University 
Pittsburgh, United States 

breaux@cs.cmu.edu 

Ashwini Rao 
Institute for Software Research 

Carnegie Mellon University 
Pittsburgh, United States 

arao@cmu.edu
 

Abstract— Companies require data from multiple sources to 
develop new information systems, such as social networking, e-
commerce and location-based services. Systems rely on 
complex, multi-stakeholder data supply-chains to deliver value. 
These data supply-chains have complex privacy requirements: 
privacy policies affecting multiple stakeholders (e.g. user, 
developer, company, government) regulate the collection, use 
and sharing of data over multiple jurisdictions (e.g. California, 
United States, Europe). Increasingly, regulators expect 
companies to ensure consistency between company privacy 
policies and company data practices. To address this problem, 
we propose a methodology to map policy requirements in 
natural language to a formal representation in Description 
Logic. Using the formal representation, we reason about 
conflicting requirements within a single policy and among 
multiple policies in a data supply chain. Further, we enable 
tracing data flows within the supply-chain. We derive our 
methodology from an exploratory case study of Facebook 
platform policy. We demonstrate the feasibility of our 
approach in an evaluation involving Facebook, Zynga and 
AOL-Advertising policies. Our results identify three conflicts 
that exist between Facebook and Zynga policies, and one 
conflict within the AOL Advertising policy.      

Keywords-privacy; requirements; standardization; description 
logic; formal analysis  

I.  INTRODUCTION  
Increasingly, web and mobile information systems are 

leveraging user data collected from multiple sources without 
a clear understanding of data provenance or the privacy 
requirements that should follow this data. These emerging 
systems are based on multi-tier platforms in which the “tiers” 
may be owned and operated by different parties, such as 
cellular and wireless network providers, mobile and desktop 
operating system manufacturers, and mobile or web 
application developers. In addition, user services developed 
on these tiers are abstracted into platforms to be extensible 
by other developers, such as Google Maps, Facebook and 
LinkedIn. Application marketplaces, such as Amazon 
Appstore, Google Play and iTunes, have emerged to provide 
small developers increased access to customers, thus 
lowering the barrier to entry and increasing the risk of 
misusing personal information by inexperienced developers 
or small companies. Thus, platform and application 
developers bear increased, shared responsibility to protect 
user data as they integrate into these multi-tier ecosystems. 

In Canada, Europe and the United States, privacy policies 
have served as contracts between users and their service 

providers and, in the U.S., these policies are often the sole 
means to enforce accountability [9]. In particular, Google has 
been found to re-purpose user data across their services in 
ways that violated earlier versions of their privacy policy 
[11], and Facebook’s third-party apps were found to transfer 
Facebook user data to advertisers in violation of Facebook’s 
Platform Policies [20]. The challenge for these companies is 
ensuring that software developer intentions at different tiers 
are consistent with privacy requirements across the entire 
ecosystem. To this end, we conducted a case study to 
formalize a subset of privacy-relevant requirements from 
these policies. We believe such formalism could be used to 
verify that privacy requirements are consistent across this 
ecosystem: “app” developers could express their intentions, 
formally, and then check whether these intentions conflict 
with the requirements of third parties. Furthermore, platform 
developers could verify that their platform policy 
requirements are consistent with app developer requirements. 

Contributions: Our main contributions are as follows: 
(1) we systematically identify a subset of privacy-relevant 
requirements from privacy policies using a case study 
method; (2) we formalize data requirements subset in a 
privacy requirements specification language expressed using 
Description Logic (DL); the language supports modeling 
actors, data and data use purpose hierarchies within data 
requirements; (3) we model requirements conflict checking 
using DL concept satisfiability, while ensuring decidability 
and computational bounds; and (4) we model tracing of data 
flows within a privacy policy.  

The remainder of the paper is organized as follows: in 
Section II, we introduce a running example based on our 
case study; in Section III, we introduce our formal language 
that we derived from our exploratory case study; in Section 
IV, we report our method for deriving the language; in 
Section V, we report our extended case study findings to 
evaluate the language across three privacy-related policies; 
in Section VI, we consider threats to validity; in Section VII, 
we review related work; and in Section VIII, we conclude 
with discussion and summary. 

II. RUNNING EXAMPLE 
We illustrate the problem and motivate our approach 

using a running example: in Figure 1, we present privacy 
policy excerpts from the Facebook Platform Policy that 
governs Zynga, the company that produces the depicted 
Farmville game. The colored arrows trace from the visual 
elements that the user sees in their web browser on the right-



hand side to governing policy excerpts on the left-hand side. 
The black dotted lines along the left-hand side show how 
data flows across these application layers. Zynga has a third-
party relationship with Advertising.com, a subsidiary of 
AOL Advertising that serves the online ad, “Buying Razors 
Sucks” in this game. Zynga also produces a version of this 
game for the Android and iPhone mobile devices, which 
would be available through the Google Play and iTunes 
marketplaces, which have their own platform developer 
policies that are not depicted, here.  

 
Figure 1.  Privacy policy excerpts and data flows mapped to web content 

that the user sees in their browser 

As the platform provider, Facebook manages basic user 
account information, including user IDs, friend lists, and 
other data that may be made available to Zynga under the 
Facebook’s platform policy. The Facebook policy excerpt in 
Figure 1 prohibits the developer (Zynga) from transferring 
any data to advertisers, regardless of whether users consent 
to the transfer. Zynga’s privacy policy also prohibits such 
transfers, unless the user consents (an apparent conflict). 
Furthermore, AOL Advertising (the advertiser) retains the 
right to use collected information to better target advertising 
to users across multiple platforms, for which Farmville is just 
one example. Because this ad is placed by Zynga, AOL 
Advertising is a third-party advertiser and Facebook expects 
Zynga to ensure that AOL adheres to the rules governing 
access to Facebook’s user data. At the time of this writing, 
Farmville was the top Facebook App with over 41.8 million 
active users per month1 and Facebook reports over 9 million 
apps2 exist for their platform, in general. Thus, this simple 
scenario has many potential variations.  

In Figure 2, we illustrate a data supply chain between a 
user, Facebook, Zynga and AOL. The arrows denote data 
flows among the four actors, and the policies regulate these 
flows. Under the Facebook privacy policy, Facebook is 
permitted to collect and use the user’s age and gender. 
Facebook may transfer that information to its developers’ 
apps, such as Farmville developed by Zynga. However, the 
Facebook platform policy prohibits Zynga from transfering 
any Facebook user information, including aggregate data, to 
an advertiser, such as AOL. For a user, it is clear that she has 
privacy policy agreements with Facebook and Zynga, 
because these are first-party services. However, it’s unlikely 
the user is aware of AOL’s privacy agreement or that data 

                                                             
1 See http://www.appdata.com on January 12, 2013 

2 Facebook SEC Amendment No. 4 to Form S-1, April 23, 2012 

flows to AOL. To identify the advertiser supplying the ad in 
Figure 1, “buying razors sucks,” we had to collect TCP/IP 
network traffic using a traffic analyzer (Wireshark). The 
network traffic revealed the domain r1.ace.advertising.com 
as the server serving the ad into Farmville. Upon visiting the 
r1.ace.advertising.com website, the link to their privacy 
policy at http://www.advertising.com/privacy_policy.php 
contains an error message. Scrolling to the bottom of the 
webpage, the user can then click a "privacy" hyperlink to 
visit AOL’s privacy policy that describes Advertising.com’s 
privacy practices at http://advertising.aol.com/privacy. 

This example illustrates how different parties reuse 
content from other parties to build more complex systems, 
and how developers need tools to ensure consistency 
between privacy requirements across different parties. 
However, at present, policies expressed in natural language 
remain disconnected and hence software can freely deviate 
from the coordination required and expected across these 
different parties. To address this problem we propose to 
develop a formal language as an interlingua to describe 
requirements that map natural language policy to formal 
statements that can eventually be traced to software.  

 
Figure 2.  Example data supply chain through Facebook, Zynga  

and AOL Advertising 

III. APPROACH 
We aim to improve privacy by introducing a privacy 

requirements specification that serves to align multi-party 
expectations across multi-tier applications. This specification 
would express a critical subset of policy statements in a 
formalism that we can check for requirements conflicts. This 
includes conflicts within a party’s specification, and conflicts 
between two or more specifications of different parties. We 
base our approach on semantic parameterization, wherein 
natural language requirements phrases are mapped to actions 
and roles in Description Logic (DL) [8]. This format was 
validated using 100 privacy policy goals [6] and over 300 
data requirements governing health information [7]. We now 
introduce DL, followed by our precise definition of the 
privacy requirements specification. 

A. Introduction to Description Logic 
Description Logic (DL) is a subset of first-order logic 

for expressing knowledge. A DL knowledge base KB is 
comprised of intensional knowledge, which consists of 
concepts and roles (terminology) in the TBox, and 
extensional knowledge, which consists of properties, objects 
and individuals (assertions) in the ABox [4]. In this paper, 
we use the DL family ALC, which includes logical 

AOL Advertising uses the 
information collected on Network 
Participating Sites to better target 
advertisements to people across 
different websites 

Zynga: We do not actively share 
personal information with third 
party advertisers for their direct 
marketing purposes unless you 
give us your consent 

Facebook: You will not directly 
or indirectly transfer any data 
you receive from us to any ad 
network, even if a user consents 
to such transfer 
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constructors for union, intersection, negation, and full 
existential qualifiers over roles. The reasoning tasks of 
concept satisfiability, concept subsumption and ABox 
consistency in ALC are PSPACE-complete [4]. 

Reasoning in DL begins with an interpretation 𝔗 that 
consists of a nonempty set Δ𝔗 , called the domain of 
interpretation, and the interpretation function .𝔗 that maps 
concepts and roles to subsets as follows: every atomic 
concept C is assigned a subset 𝐶𝔗 ⊆ Δ𝔗 and every role 𝑅 is 
assigned the subset 𝑅𝔗 ⊆ Δ𝔗×Δ𝔗. For each a, b ∈ R𝔗, b is 
called the filler. Description Logic defines two special 
concepts: ⊤  (top) with the interpretation ⊤𝔗 =   Δ𝔗 and ⊥ 
(bottom) with interpretation ⊥𝔗=⊘ . In addition to 
constructors for union, intersection and negation, DL 
provides a constructor to constrain role values, written R.C, 
which means the filler for the role R belongs to the concept 
C. The interpretation function is extended to concept 
definitions in the DL family ALC as follows, where C and D 
are concepts, R is a role in the TBox and a and b are 
individuals in the ABox: 

  

(¬C)𝔗 =   ∆𝔗 ∖   C𝔗  
(C ⊓ D )𝔗 =   C𝔗 ∩ D𝔗      
(C ⊔ D )𝔗 =   C𝔗 ∪ D𝔗      
(∀R.C)𝔗 = 𝑎   ∈ ∆𝔗     ∀b. a, b ∈ R𝔗 → 𝑏 ∈ C𝔗}  
(∃R.C)𝔗 = 𝑎   ∈ ∆𝔗     ∃b. a, b ∈ R𝔗 ∧ 𝑏 ∈ C𝔗} 

 

Description Logic includes axioms for subsumption, 
disjointness and equivalence with respect to a TBox. 
Subsumption is used to describe individuals using 
generalities, and we say a concept C subsumes a concept D, 
written 𝑇 ⊨ 𝐷 ⊑ 𝐶, if D𝔗 ⊆ C𝔗  for all interpretations 𝔗 that 
satisfy the TBox T. The concept C is disjoint from a concept 
D, written 𝑇 ⊨ 𝐷 ⊓ 𝐶 →⊥ , if D𝔗 ∩ C𝔗 =⊘   for all 
interpretations 𝔗 that satisfy the TBox T. The concept C is 
equivalent to a concept D, written 𝑇 ⊨ C ≡ D , if C𝔗 =
D𝔗  for all interpretations 𝔗 that satisfy the TBox T. 

B. Privacy Requirements Specifications 
We define a privacy requirements specification to be a 

DL knowledgebase KB. The universe of discourse consists 
of concepts in the TBox T, including the set Req of data 
requirements, the set Actor of actors with whom data is 
shared, the set Action of actions that are performed on the 
data, the set Datum of data elements on which actions are 
performed, and the set Purpose of purposes for which data 
may be acted upon. The following definitions precisely 
define the specification. The concepts for actor, datum and 
purpose can be organized into a hierarchy using DL 
subsumption. Figure 3 illustrates three hierarchies from our 
case study for datum, purposes and actors: inner bullets 
indicate when a concept is subsumed by the outer bullet 
concept (e.g., information subsumes public-information 
under Datum). 

 
Figure 3.  Example datum, purpose and actor hierarchy from Zynga 

privacy policy expressable in Description Logic; inner bullet concepts are 
subsumed by (contained within) outer-bullet concepts; red text denotes 

branches that were inferred to structure orphaned concepts 

Definition 1. Each action concept 𝑎 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛 has assigned 
roles that relate the action to actors, data elements and 
purposes. We begin with three default actions: COLLECT, 
which describes any act by a first party to access, collect, 
obtain, receive or acquire data from another party; 
TRANSFER, which describes any act by a first party to 
transfer, move, send or relocate data to another party; and 
USE, which describes any act by a first party to use data in 
any way for their own purpose. In the future, we may extend 
these actions, e.g., with aggregation, analysis, storage, and 
so on, as needed. Actions are further described by DL roles 
in the set of Roles as follows: 
• hasObject.Datum denotes a binary relationship between an 

action and the data element on which the action is 
performed; 

• hasSource.Actor denotes a binary relationship between an 
action and the source actor from whom the data was 
collected; 

• hasPurpose.Purpose denotes a binary relationship between 
an action and the purpose for which the action is 
performed; and 

• hasTarget.Actor denotes a binary relationship between a 
TRANSFER and the target actor to whom data was 
transferred 

Each action has role hasObject, hasSource and hasPurpose, 
but only the TRANSFER action has the role hasTarget. The 
hasObject and hasSource roles are to trace data elements 
from any action back to the original source from which that 
data was collected, as we discuss in Section III.B.2. 
Definition 2. A requirement is a DL equivalence axiom 
𝑟 ∈ 𝑅𝑒𝑞  that is comprised of the DL intersection of an 
action concept 𝑎 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛  and a role expression that 
consists of the DL intersection of roles ∃𝑅! ⊓ … ∃𝑅! ∈
𝑅𝑜𝑙𝑒𝑠. Consider requirement 𝑝! for 𝑖𝑝_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ∈ 𝐷𝑎𝑡𝑢𝑚, 
𝑎𝑛𝑦𝑜𝑛𝑒 ∈ 𝐴𝑐𝑡𝑜𝑟  and 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑛𝑔_𝑎𝑑 ∈ 𝑃𝑢𝑟𝑝𝑜𝑠𝑒  in the 
TBox T, such that it is true that: 
 

(1) 𝑇 ⊨ 𝑝! ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡. 𝑖𝑝_𝑎𝑑𝑑𝑟𝑒𝑠𝑠   ⊓  
                            ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒. 
                            ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒.𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑛𝑔_𝑎𝑑 

 

Figure 4 illustrates two requirements wherein concepts in 
the Actor, Datum and Purpose hierarchies (circles) are 

Purpose 
•  payment-processing 
•  communicating-with-user 

•  notifying-game-activity 
•  customer-support 

•  technical-support 
•  … 

•  delivering-advertisement 
•  marketing-zynga 
•  marketing-third-party 
•  target-advertising 

…  

Datum 
•  information 

•  public-information 
•  zynga-user-id 
•  user-name 
•  … 

•  personal-information 
•  billing-information 
•  user-age 
•  … 

•  technical-information 
•  ip-address 

… 

Actor 
•  zynga 

•  zynga-inc 
•  affiliate 

•  subsidiary 
•  joint-venture 
•  … 

•  service-provider 
•  google-analytics 

•  third-party-advertiser 
•  user 
… 



linked to each requirement via roles (colored arrows): p5 
describes the act to collect IP addresses from anyone for a 
range of advertising-related purposes; and r7 describes the 
collecting IP addresses from advertisers for any purpose. 

In addition, each requirement is contained within exactly 
one modality, which is a concept in the TBox T as follows: 
Permission contains all actions that an actor is permitted to 
perform; Obligation contains all actions that an actor is 
required to perform; and Prohibition contains all actions 
that an actor is prohibited from performing. Consistent with 
the axioms of Deontic Logic [13], it is true that 𝑇 ⊨
𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛 ⊑ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛, wherein each required action is 
necessarily permitted. Thus, if our transfer requirement 𝑟! is 
required such that 𝑇 ⊨ 𝑝! ⊑ 𝑂𝑏𝑙𝑖𝑔𝑎𝑡𝑖𝑜𝑛, then it is also true 
that 𝑇 ⊨ 𝑝! ⊑ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛. Using this formulation, we can 
compare the interpretations of two requirements based on 
the role fillers to precisely infer any conflicts, a topic 
considered next in Section III.B.1. 

1) Requirements Conflicts  
Our formalism enables conflict detection between what 

is permitted and what is prohibited. A conflict in predicate 
logic is expressed as 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑥 ∧ 𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛(𝑥) ↔
𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑥), in which x is a DL individual in the ABox A. 
To implement these techniques, we compute an extension of 
the TBox that itemizes individual interpretations of the 
actors, data and purposes. 

 

 
Figure 4.  Diagram to illustrate itemized interpretations 

The itemized interpretations allow us to identify conflicts 
within the intersection of complex descriptions that cannot 
be identified using DL intersection, alone. In Figure 4, the 
requirement  p5 is a permission, whereas the requirement  r7 
is a prohibition. We cannot infer a direct subsumption 
relationship between these two requirements, because each 
requirement contains an interpretation that exists outside the 
other (e.g., Zynga is a permitted source for collecting IP 
addresses, and payment processing is a prohibited purpose). 
However, there is a conflict between these two 
requirements: it is both permitted and prohibited for a third-
party to collect IP addresses for advertising-related 
purposes. To detect these conflicts, we define an extended 
specification 𝐾𝐵! = 𝑇! ∪ 𝐴! that consists of an extended 
TBox 𝑇! = 𝑇 ∪ 𝐸 containing the original terminology T and 
axioms 𝑒 ∈ 𝐸 that itemize interpretations for requirements 
𝑟 ∈ 𝑇 , such that 𝑇! ⊨ 𝑒 ⊑ 𝑟 . The ABox 𝐴!  contains 
individuals assigned to these interpretations.  

Definition 3. The extension is a set of axioms E that itemize 
the interpretations for each requirement. An itemized 
interpretation of an arbitrary description X is written 
(𝑋)𝔗 =    (𝐶)𝔗\  (𝐷)𝔗   for a concept C that subsumes a 
concept D. By itemizing interpretations in a requirement’s 
role fillers, we can precisely realize a specific conflicting 
interpretation across a permission and a prohibition. 

For each requirement written in the form 𝑟 ≡ 𝑎 ⊓
∃𝑅!.𝐹! ⊓ ∃𝑅!.𝐹! ⊓ …   ⊓ ∃𝑅!.𝐹! in the TBox T, such that 
𝑎 ∈ {𝐶𝑂𝐿𝐿𝐸𝐶𝑇,𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅,𝑈𝑆𝐸}  and 𝑅!…𝑅! ∈ 𝑅𝑜𝑙𝑒𝑠 , 
we derive an itemized interpretation 𝑒 in the TBox 𝑇!that is 
written in the form 𝑒 ≡ 𝑎 ⊓ ∃𝑅!.𝐻! ⊓ ∃𝑅!.𝐻! ⊓ …   ⊓
∃𝑅!.𝐻!  by replacing each role filler 𝐹! with a new role filler 
𝐻!, which is computed to exclude all sub-concepts 𝐺! ⊏ 𝐹! 
in the TBox T as follows: (𝐻!)𝔗 = (𝐹!)𝔗\ (𝐺!)𝔗  |  (𝐺!)𝔗 ⊂
(𝐹!)𝔗 for an interpretation 𝔗 that satisfies the TBox 𝑇. To 
realize the itemized interpretation and later report the 
conflict to an analyst, we assign a unique individual 𝑥 to the 
assertion 𝑒(𝑥) ∈ 𝐴!. 
Definition 4. A conflict is an interpretation that is both 
permitted and required and that satisfies the TBox 𝑇!, such 
that it is true that 𝑇! ⊨ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 ≡ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ⊓
𝑃𝑟𝑜ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛. For an individual 𝑥 in the extended ABox 𝐴!, 
each conflict is realized with respect to two or more 
conflicting requirements 𝑟! , 𝑟! ∈ 𝑅𝑒𝑞, such that it is true that 
𝐴! ⊨ 𝑟! 𝑥 ∧ 𝑟! 𝑥 ∧ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑥  for 𝑖 ≠ 𝑗  and an 
interpretation 𝔗 that satisfies the ABox 𝐴!. If there exists no 
individual 𝑥 ∈ 𝐴! such that 𝐴! ⊨ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑥 , then a 
privacy specification KB is conflict-free. 

   

2) Tracing Data Flows Within a Single Specification 
Conflict-free privacy requirements specifications 

describe permitted collections, transfers and uses of 
personal information. Using these specifications, we can 
trace any data element from collection requirements to 
requirements that permit the use or transfer of that data. This 
is important because organizations often need to ensure that 
policies covering collected data are implemented across 
their organization. Moreover, the actions to use and transfer 
data may be performed by separate information systems 
from those where the data is collected, and thus we can use 
these specifications to discover which systems data is 
required or permitted to flow to. To trace data across a 
specification, we introduce the following definitions. 
Definition 5. A trace is a subset of requirements pairs 
𝑟!, 𝑟! ∈ 𝑅𝑒𝑞  ×  𝑅𝑒𝑞  that map from a permitted source 

action 𝑟! to a permitted target action 𝑟! for an interpretation 
𝔗 that satisfies the TBox 𝑇 . For example, we can trace 
permitted data collections (source action) to permitted data 
uses and data transfers (target actions) when the role values 
for the source actor, datum and purpose entail a shared 
interpretation. For each requirement written in the form 
𝑟! ≡ 𝑎 ⊓ ∃𝑅!,!.𝐹!,! ⊓ ∃𝑅!,!.𝐹!,! ⊓ …   ⊓ ∃𝑅!,!.𝐹!,!  in the 
TBox 𝑇 , such that 𝑎 ∈ {𝐶𝑂𝐿𝐿𝐸𝐶𝑇,𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅,𝑈𝑆𝐸} and 
𝑅!,!…𝑅!,! ∈ 𝑅𝑜𝑙𝑒𝑠 , we compare role fillers 𝐹!,!…𝐹!,! 

Purpose Datum 
Actor 

Delivering advertisement 

Payment processing 
Marketing third-party 
Target advertising 

ip-address 

Zynga 

Third-party 
advertiser 

Permitted Collection = p5 r7 = Prohibited Collection 



between the source and target permissions to yield one of 
four exclusive Modes as follows: 
• U: Underflow, occurs when the data target subsumes the 

source, if and only if, 𝑇 ⊨ 𝐹!,! ⊑ 𝐹!,! 
• O: Overflow, occurs when the data source subsumes the 

target, if and only if, 𝑇 ⊨ 𝐹!,! ⊑ 𝐹!,! 
• E: Exact flow, occurs when the data source and target are 

equivalent, if and only if, 𝑇 ⊨ 𝐹!,! ≡ 𝐹!,! 
• N: No flow, otherwise 

Figure 5 presents an example data flow trace from our 
case study. The collection requirements AOL-16 and AOL-
14 trace to the transfer requirement AOL-48. The transfer 
requirement does not specify a purpose, which we interpret 
to mean “any purpose.” Thus, the collection purposes 
“business purposes” and “contacting you to discuss our 
products and services” are more specific than the transfer 
purpose “any purpose,” which the red links illustrate as 
underflows. The data elements in AOL-16 are similarly 
more specific than the transfer data elements.  

 

 
Figure 5.  Example data flow trace: red lines represent underflows 

 and black lines represent exact flows. 

Below, the collection requirement p1 in formula (3) 
encodes part of AOL-16 in Figure 5, and p2 in formula (4) 
encodes the corresponding transfer requirement for AOL-
48. In formula (2), we declare contact information to be 
subsumed by personally identifiable information (PII), such 
that it is true that: 
 

(2) 𝑇 ⊨ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑖𝑛𝑓𝑜 ⊑ 𝑃𝐼𝐼 
(3)     𝑇 ⊨ 𝑝! ≡ 𝐶𝑂𝐿𝐿𝐸𝐶𝑇 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡. 𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝑖𝑛𝑓𝑜  

⊓ ∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒. 𝑠𝑖𝑡𝑒_𝑣𝑖𝑠𝑖𝑡𝑜𝑟  
⊓ ∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒. 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠_𝑝𝑢𝑟𝑝𝑜𝑠𝑒𝑠 

(4) 𝑇 ⊨ 𝑝! ≡ 𝑇𝑅𝐴𝑁𝑆𝐹𝐸𝑅 ⊓ ∃ℎ𝑎𝑠𝑂𝑏𝑗𝑒𝑐𝑡.𝑃𝐼𝐼 ⊓
∃ℎ𝑎𝑠𝑆𝑜𝑢𝑟𝑐𝑒.𝐴𝑐𝑡𝑜𝑟   ⊓
∃ℎ𝑎𝑠𝑇𝑎𝑟𝑔𝑒𝑡. 𝑘𝑒𝑦_𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑠   ⊓
∃ℎ𝑎𝑠𝑃𝑢𝑟𝑝𝑜𝑠𝑒.𝑃𝑢𝑟𝑝𝑜𝑠𝑒 

 

Based on the subsumption axiom entailed in formula (2), we 
can map the trace (𝑝!, 𝑝!)⟶ (𝑈,𝑈,𝑈)  onto the three 
Modes for the roles hasObject, hasSource and hasPurpose, 
respectively. In general, tracing data flows allows an analyst 
to visualize dependencies between collection, use and 
transfer requirements. In this paper, we only formalize 
traces within a single policy. In future work, we will present 
tracing data flows across multiple policies in a data supply 
chain. This cross-policy tracing extends our notion of a 
trace, but requires a shared lexicon or dictionary to unify 

terminology across two or more policies. In our evaluation, 
we present select findings from cross-policy tracing. 

IV. EXPLORATORY CASE STUDY 
We conducted a formative, exploratory case study using 

the Facebook Platform Policy by systematically identifying 
relevant policy statements that we could formalize into the 
privacy requirements specification language. We mapped 
each statement into one of the two categories: policy 
statements and data requirements. The policy statements 
category includes statements that describe an action outside 
the scope of the application such as “You must not violate 
any law or the rights of any individual or entity.” It also 
includes non-data requirements that describe requirements 
of the app not directly dealing with the handling of data, for 
example, “You will include your privacy policy URL in the 
App Dashboard.” The data requirements category includes 
statements that describe specific actions performed on data 
such as “You must not include functionality that proxies, 
requests or collects Facebook usernames or passwords.” 
After the formative study, we developed our formal language 
to express privacy requirements and further validated this 
language in summative study on the two additional policies 
from Zynga and AOL using this same process. We were 
particularly interested in boundary cases that describe the 
limitations of our proposed language. 

Figure 6 presents an example data requirement from the 
Zynga privacy policy (Z-92). The number, Z-92, within 
parenthesis denotes that it is statement number 92 within the 
policy. In step 1, we identify the action using phrase 
heuristics (e.g., “provide” indicates a TRANSFER action), 
the modality permission from the modal keyword “will,” the 
datum “information,” the target to whom the data is 
transferred “third party companies” and the purpose “to 
perform services on our behalf…” Purposes and other values 
may appear in comma-separate lists, which we interpret as 
disjunctions. In Figure 6, this purpose includes examples, 
which we separately translate into a purpose hierarchy 
similar to that shown in Figure 3. While this policy statement 
refers to “your information,” it is unclear where this 
information was collected. User data can be collected from 
the user, data brokers or advertisers. 

 
Figure 6.  Steps to map data requirement from natural language to DL; 

step 1 shows data requirement in Zynga privacy policy; step 2 shows 
requirement expressed in language syntax; step 3 shows satement 

expressed in DL semantics 

AOL-14: Collect personally identifiable  
information for contacting you to  
discuss our products and services 

AOL-16: Collect name, contact 
information, payment method from 

site visitor for business purposes 

AOL-48: Transfer personally identifiable 
information to key partners 

AOL$16'

AOL$48'

AOL$14'

hasSource 
hasPurpose 
hasObject 

Legend: 

P TRANSFER information TO third-party-companies FOR performing-services 

Transfer keyword 
Modal phrase “will” indicates an assumed permission 

Datum Target 
Purposes 

Step 1: Annotate policy text 

Step 2: Write expression in specification language (P = Permission) 

Step 3: Compile language into Description Logic (OWL) 
p2 ≡ TRANSFER ⊓ ∃hasObject.information ⊓  

 ∃hasTarget.third-party-companies ⊓ ∃hasPurpose.performing-services 
p2 ⊑ Permission 

We will provide your information to third party companies to perform 

services on our behalf, including payment processing, data analysis, e-

mail delivery, hosting services, customer service and to assist us in our 

marketing efforts. 



After we identify the values to assign to the roles, in step 
2 we write these values into a privacy requirements 
specification language that uses an SQL-like syntax and our 
DL semantics described in Section III. The letter “P” 
indicates that this is a permission, followed by the action 
verb, the object, and keywords to indicate the source 
(“FROM”), target (“TO”) and the purpose (“FOR”). Once 
translated into the language, we use a tool to parse the 
language and generate OWL DL that we reason over using 
open source DL theorem provers (e.g., HermiT and Fact++). 

During the case study, we traced all the keywords to 
indicate when an action was a collection, use or transfer; 
these appear in Table II. Among the keywords, many overlap 
across actions (e.g., access, use, share) while others are more 
exclusive (e.g., collect, disclose, transfer). The reason for this 
ambiguity is due to policies that include multiple viewpoints: 
a policy may describe access to a user’s data by the app, 
which is a collection, or it may describe a third-party’s 
access, which assumes a transfer. In these cases, the analyst 
should identify the viewpoint to correctly formalize the 
policy statement and consider reviewing their formalization 
for keywords that are known to be ambiguous. 

TABLE I.  PHRASE HEURISTICS USED TO INDICATE WHEN A STATEMENT 
WAS A COLLECTION, USE OR TRANSFER REQUIREMENT 

DL Action Action keywords 
COLLECT Access, assign, collect, collected, collection, collects, 

give you, import, keep, observes, provide, receive, 
record, request, share, use 

USE Access, accessed, communicate, delivering, include, 
matches, send, use, used, uses, using, utilized 

TRANSFER Access, disclose, disclosed, disclosure, give, in 
partnership with, include, make public, on behalf of, 
provide, see, share, shared, transfer, use, used with, 
utilized by 

V. EXTENDED EVALUATION 
We evaluated our approach by extending our exploratory 

case study, and implementing a tool-based performance 
simulation. As a problem domain, we chose the Facebook 
Platform as our starting point, because Facebook has 
received significant attention from privacy advocates and 
Facebook apps are frequently available on mobile device 
platforms, which provides a second context to study this 
problem in future work. From here, we chose the Farmville 
application, which at the time of our study, was the most 
used Facebook app with over 40.8 million active users per 
month. We analyzed the following three policies: 

• Facebook Platform Policy, last revised 12 Dec 2012, 
which governs app developer practices in Facebook 

• Zynga Privacy Policy, last updated 30 Sep 2011, which 
governs the user’s privacy while they play Farmville  and 
use other Zynga applications 

• AOL Advertising, last updated 4 May 2011, which 
governs advertising distributed through Farmville and 
other websites and applications  

In Table III, we illustrate the scope of this evaluation, 
including the total number of statements in the policies (S), 
the number of data requirements (D), which we break-down 
into the number of permissions (P), obligations (O), and 

prohibitions (R), including which among these requirements 
concern collection (C), use (U) and transfer (T) of data. 
Between 32-55% of these policies described data 
requirements with generally few obligations. The Zynga and 
AOL policies describe their own practices and focus more on 
permissible data practices, whereas the Facebook policy 
describes developer practices and focuses more on 
prohibitions. We now discuss findings from our formal 
analysis that includes conflicts and opportunities to extend 
our approach, or limitations of the current work. 

TABLE II.  NUMBER OF TYPES OF STATEMENTS FORMALIZED  

Policy S D 
Modality Action 

P O R C U T 
Facebook 105 39 15 4 25 6 15 14 

Zynga 195 64 58 1 8 22 8 15 
AOL 74 41 43 0 4 12 15 10 

A. Example conflicts identified using the language 
We found conflicts between Facebook and Zynga, and 

one conflict within the AOL policy, which we now discuss. 
1) Conflicts between Facebook and Zynga  
     The Facebook Platform policy governs the data practices 
of Farmville, which is also governed by the developer 
Zynga’s privacy policy. To conduct this conflict analysis, 
we performed an ontological alignment between terms in 
both policies that we formalized in DL using equivalence 
and subsumption. Using our formalization, we detected a 
conflict between these policies regarding the sharing of 
aggregate or anonymous data. Facebook requirement FB-43 
prohibits a developer from transferring any user data 
obtained from Facebook to an ad network, whereas Zynga 
requirement Z-107 permits sharing aggregate data received 
from any source with anyone: 
FB-43: R TRANSFER user-data FROM facebook TO ad-network 

FOR anything  

Z-107: P TRANSFER aggregate-information,anonymous-
information FROM anyone TO anyone 

The Zynga permission is inferred from an exclusion, which 
states “Our collection, use, and disclosure of anonymous or 
aggregated information are not subject to any of the 
restrictions in this Privacy Policy.” The Zynga definition of 
aggregate-information means non-personally identifiable 
information, which may include Facebook user data, such as 
gender, Zip code and birthdate, which are often viewed as 
not individually identifiable despite evidence to the contrary 
[21]. Under Facebook, the concept user-data is defined to 
include aggregate and anonymous data as follows: “By any 
data we mean all data obtained through the use of the 
Facebook Platform (API, Social Plugins, etc.), including 
aggregate, anonymous or derivative data,” which we 
encoded in the datum concept hierarchy. 

The second conflict appears where Zynga permits the 
transfer of unique user IDs to third party advertisers that 
advertise on Zynga Offer Wall. The purposes for sharing 
user IDs are crediting user accounts and preventing fraud. 
However, this sharing violates Facebook requirement FB-



43, above. The Zynga requirement Z-113 describes the 
permission involved in this conflict: the Zynga user-id, 
which Zynga defines as either a unique Zynga user ID or the 
social networking service user ID, can thus be a data 
element within the Facebook user-data, which includes the 
Facebook user ID.  
Z-113: P TRANSFER unique-id,user-id TO offer-wall-

provider FOR crediting-user-account,preventing-
fraud 

Finally, the Facebook and Zynga policies conflict on 
sharing data for the purposes of merger and acquisition by a 
third-party. In case of merger or acquisition, Facebook 
allows a developer to continue using the data within the app, 
but prohibits the transferring of data outside the app. Zynga 
does not put restrictions on data transfer, including personal 
data, for the purpose of merger of acquisition. The Facebook 
statement “If you are acquired by or merge with a third 
party, you can continue to use user data within your 
application, but you cannot transfer data outside your 
application” (FB-50) and the Zynga statement “In the event 
that Zynga undergoes a business transition, such as a 
merger, acquisition… We may transfer all of your 
information, including personal information, to the 
successor organization in such transition” (Z-115) map to 
these two requirements (information includes user data):	  
FB-50: R TRANSFER user-data FROM facebook TO third-party 

FOR merger,acquisition 

Z-115: P TRANSFER information FOR merger,acquisition 

2) Conflict within AOL Advertising 
The AOL privacy policy contains an apparent conflict 

regarding collection and use of personally identifiable 
information. Unlike the Facebook and Zynga policies, the 
AOL policy describes data practices from multiple 
stakeholder viewpoints, simultaneously, including that of 
their affiliate Advertising.com. The conflict appears from the 
AOL Advertising viewpoint in a statement, “Personal 
information such as name, address and phone number is 
never accessed for [targeted advertising]” (AOL-27). The 
policy also states, “Advertisers utilizing Advertising.com 
Sponsored Listings technology may provide personally-
identifiable information to Advertising.com Sponsored 
Listings, which may then be combined with information 
about purchasing patterns of Advertising.com Sponsored 
Listings’ products and services, ... and all other information 
provided by the advertiser” (AOL-46). In addition, the 
following statement declares that this information may be 
used for targeted advertising: “this information is used to 
improve the applications provided to advertisers, improve the 
relevancy of ad serving and any other use deemed helpful to 
Advertising.com Sponsored Listings” (AOL-47). Note that 
the advertiser may be collecting the personally identifiable 
information from the user. The conflicting statements are:  
AOL-27: R USE personally-identifiable-information FROM 

registration-environment FOR target-ads-that-are 
most-appropriate-for-site-visitor 

AOL-46: P COLLECT personally-identifiable-information FROM 
anyone FOR improving-the-applications-provided-to-

advertisers, improving-the-relevancy-of-ad-
serving, anything  

B. Opportunities for extending the language 
Among the data requirements that we identified, we were 

unable to formalize requirements that describe actions 
outside the scope of collection, use and transfer as defined in 
Definition 1. The un-encoded requirements include how data 
is merged and stored and the policy implications of consent. 
We now discuss these three categories of requirement. 

1) Merging data from different sources 
The three policies in our study contain 12 requirements 

that describe how data is linked, combined or aggregated 
from multiple sources. For example, the Zynga privacy 
policy states “some of the cookies [that] the service places on 
your computer are linked to your user ID number(s)” (Z-57) 
and “[information from other sources] will be combined with 
other information we collect” (Z-83), and “additionally, we 
may keep statistics regarding toolbar use on an aggregated 
basis” (Z-62). In each of these three examples, data is linked, 
combined or aggregated with different implications. Linking 
data enables companies to derive inferences from 
correlations (i.e., statistical analyses) and to re-identify 
otherwise anonymized data. Combining data with other data 
raises the question: what purpose governs the combined data, 
and how long should the combined data be retained (the 
minimum or maximum period of the previously separate data 
sets?) Finally, aggregate data decreases the level of detail 
that an organization has on users. For example, knowing how 
many users are aged between 21 and 25 years old is different 
than knowing the specific birth dates of each user. Thus, 
aggregation requirements may indicate improved user 
privacy, but they also limit the types of linking and 
combining that can occur later, if needed. 

2) Storing and deleting information  
We observed 15 data storage requirements and 8 data 

deletion requirements in our study. The act of storing, 
retaining, and deleting data has temporal implications: once 
data is stored, it exists to be acted upon for the duration of 
storage; when data is deleted, it is no longer available for 
use, transfer, etc. For example, the AOL Advertising privacy 
policy states that, “log files, including detailed clickstream 
data used to create behavioral segments, are retained… for 
no longer than 2 years” (AOL-31). While DL is suited for 
reasoning about subsumption, different temporal logics exist 
to reasoning about time. We are looking into extensions to 
DL for temporal reasoning [17] that can be used to express 
these remaining privacy requirements. 

3) Managing the implications of consent  
In our analysis, 14 consent requirements were observed 

that require an organization to permit or prohibit a data 
action unless a user provides consent to perform that action. 
We observed two different approaches: opt-in requirements 
default to data user prohibitions in our language, but can be 
flipped to permissions when a user provides their consent; 
opt-out requirements default to data user permissions, but 
can be flipped to prohibitions when a user chooses to revoke 
consent. For example, the Facebook Platform Policy contains 
the opt-in statement, “for all other data obtained through the 



use of the Facebook API, you must obtain explicit consent 
from the user who provided the data to us before using it for 
any purpose other than displaying it back to the user on your 
application” (FB-42). In contrast, the Zynga Privacy Policy 
contains the opt-out statement, “when we offer [user] 
profiles, we will also offer functionality that allows you to 
opt-out of public indexing of your public profile 
information” (Z-30). Because opt-in and opt-out statements 
can change the interpretation of how data may be used and 
transferred based on the choices of the user, these statements 
can introduce conflicts into a previously conflict-free policy 
after the user has made their choice. We plan to further 
explore how to reason about consent in future work.   

C. Challenges due to formats and writing styles 
We observe different formats and phrasing that affect our 

approach, which we now discuss.  
Embedded policies: A policy may contain hyperlinks to 

other policies. For completeness, it is important to analyze 
these links to assess whether the linked content contains 
relevant data requirements. The additional data requirements 
may reveal further inconsistent statements within a policy or 
across multiple policies. In our case study, the Facebook, 
Zynga and AOL Advertising policies each had 19, 16 and 
five links, respectively. The links serve different purposes, 
including linking to policies on special topics such as 
advertising policies (Facebook) or user rights and 
responsibilities (Zynga). These special topic policies were 
hosted by the same company and include additional data 
requirements, sometimes from a different stakeholder 
viewpoint. In addition, policies may link to third-party 
policies, such as conduit.com (Zynga), or to additional data 
definitions or specific examples of data requirements 
(Facebook). Other links, such as “contact us” (AOL) and 
“change email preferences” (Zynga), do not lead to 
additional data requirements. Due to the large number of 
links that may arise across multiple websites, this problem 
suggests a need for additional automation using natural 
language processing techniques to identify relevant policies.   

Separate collection, use and sharing sections: A policy 
may describe data collection, purpose for collection, and data 
sharing requirements in different sections. At the surface, 
this format makes extracting formal specifications easier, 
because each statement is relatively independent. However, 
the format can de-couple the collection requirements from 
use and transfer requirements through the use of ambiguity 
(e.g., using different terms or omitting sources, targets and 
purposes). The Zynga Privacy Policy separately describes 
the information types collected (see “Information We 
Collect”) from the purposes for use (see “How We Use the 
Information We Collect”). This separation yields a many-to-
many mapping between information types and purposes, 
because the analyst must reasonably assume that any data 
type maps to any purpose. In Figure 7, we present the data 
flow tracing for the hasObject role: the Zynga policy shows 
numerous requirements (nodes) with multiple cross-traces 
among collections to transfers due to the many-to-many 
mapping. Contrast the Zynga policy with the AOL 
Advertising policy, in which requirements have an 

observably smaller valiancy or edge count. Many-to-many 
tracing is likely an indicator of a less privacy protective 
policy, because it affords companies more opportunities to 
use data in difficult to comprehend or unforeseeable ways. 

 
Figure 7.  Data flow traces inferred from the Zynga policy (left) and AOL 

policy (right): arrows point from collections to transfers, red lines show 
underflows, blue lines show overflows and black lines show exact flows 
(see Definition 5). The Zynga policy defines broad transfer rights as seen 

by the three nodes with multiple incoming arrows. 

Ambiguous and vague terms: Policies may contain vague 
or ambiguously worded purposes. For example, the Zynga 
privacy policy contains a statement, “in some cases, we will 
associate this information with your user ID number for our 
internal use” (Z-74). The purpose, “internal use” is vague, 
and an analyst can interpret this to mean any action 
performed by the actor, excluding perhaps transfers. Other 
examples include “operate our business” (AOL-51) and 
“data analysis” (Z-92). Further, policies may not define data 
items precisely. For example, the Zynga Privacy Policy 
describes “personal information,” but does not define what 
this category includes, whereas other policies will refine this 
term into sub-categories. In such cases, the analyst may need 
to infer their own subsumption relationships that do not map 
to specific phrases or statements within the original policy to 
test for potential conflicts. 

Multi-stakeholder viewpoints: A single policy can assign 
data requirements to multiple stakeholder viewpoints. For 
example, AOL Advertising describes data practices for sites 
operated by AOL Advertising, affiliates and subsidiaries as 
“AOL Advertising Sites” and on sites operated by publishers 
that participate in the AOL advertising network as “Network 
Participant Sites.” Our approach encodes policies in the first-
person viewpoint of a single stakeholder, thus policies such 
as AOL’s Advertising policy can be decomposed into 
separate policies. In future work, we plan to study ways to 
analyze data requirements across multiple policies. 

D. Simulation results 
We conducted a performance simulation to evaluate the 

computational practicality of using our language to reason 
about data requirements. While we reduce conflict detection 
to DL satisfiability, which is PSPACE-complete for a-cyclic 
TBoxes and the DL family ALC in which we express our 
language, we recognize that this bound does ensure that our 
language is practical for requirements specifications of 

Zynga AOL 



reasonable size. Therefore, we implemented a prototype 
parser and compiler for our language using three popular 
theorem provers: the Pellet OWL2 Reasoner v2.3.0 
developed by Clark and Parsia; the Fact++ Reasoner v1.5.2 
developed by Dmitry Tsarkov and Ian Horrocks, and the 
HermIT Reasoner v1.3.4 by the Knowledge Representation 
and Reasoning Group at the University of Oxford. 

We generated 32 privacy requirements specifications 
with actor, datum and purpose hierarchies comprised of 
binary trees with 23 concepts; this yields specifications with 
up to 1280 itemized interpretations. We conducted several 
preliminary runs and determined that concept tree height had 
no effect on performance. Of the three reasoners, the Pellet 
Reasoner did not respond within 30 minutes when realizing a 
policy of only four requirements. Thus, we only discuss 
results from the Fact++ and HermiT reasoners.  

Figure 8 presents the performance time of the Fact++ and 
HermiT reasoners with respect to the specification size: the 
32 runs are sorted along the x-axis from the fewest to the 
most requirements (from 3 to 72); the y-axis describes the 
response time in tenths of a second (red) and number of 
requirements (blue). As the number of requirements 
increases to 73, we see the Fact++ reasoner response time 
remains constant, whereas the HermiT response times appear 
to increase slightly (Pearson’s R = 0.533). To understand this 
increase, we present Figure 9 that compares the Fact++ and 
HermiT reasoners by number of conflicts: the 32 runs are 
sorted along the x-axis from fewest to the most requirements 
(from 3 to 73); the y-axis describes the response time in 
tenths of a second (red) and the number of conflicts (blue).  

  
Figure 8.  Performance time of Fact++ and HermiT reasoners on privacy 

requirements specifications with respect to number of requirements 

Figure 9 shows, and we confirmed, that the response time 
of the HermiT reasoner is linear in the number of conflicts 
(Pearson’s R = 0.966). The performance of a thereom prover 
depends on what type of inferences that prover is optimized 
to perform: Pellet produces a non-deterministic choice when 
handling general concept inclusion (GCI) axioms [16], 
which we rely on in our formalism; however, Fact++ and 
HermiT are not limited in this way. From this simulation, we 
believe the language is computationally practical for policies 
within the order of 100 requirements; however, we need to 
do more work on usable interfaces to the logic.  

  
Figure 9.  Performance time of Fact++ and HermiT reasoners on privacy 

requirements specifications with respect to number of conflicts 

VI. THREATS TO VALIDITY 
Here we discuss the generalizability of our mapping 

methodology. To address construct validity, we maintained a 
project workbook that contains mappings of natural language 
statements to our language syntax and notes about shortfalls 
and boundary cases in our interpretation. We report on 
several of these shortfalls in Section V.B. as limitations of 
our approach. While mapping statements to our formalism, 
we often required context outside a given statement to 
identify the action, source, target and purposes. To compare 
formalized statements from two policies, we also need to 
align the lexicons, which requires us to assume answers to 
such questions as, “is customer service equivalent to 
customer support, or does prevent crime include the concept 
of preventing fraud? We documented these assumptions in 
separate files to allow us to revise our findings as new 
information became available. In our case study, we found 
that a given purpose might be described using different 
descriptions. We plan to conduct human subject studies to 
understand the limitations of this lexical alignment. If 
disagreement exists, then our approach may be used to show 
analysts the consequences of two separate interpretations. 

VII. RELATED WORK 
We now discuss related work in requirements 

engineering (RE) and formal methods. In RE, Antón et al. 
analyzed over 40 privacy policies using goal mining, which 
is a method to extract goals from texts [1, 2]. Results include 
a clear need to standardize privacy policies and evidence to 
support a frame-based representation consisting of actors, 
actions, and constraints. Breaux et al. later extended this 
representation with notions of rights, obligations and 
permissions in a case study [6] and then formalized this 
extension in Description Logic [8]. Since, Young introduced 
a method for mining commitments, privileges and rights 
from privacy policies to identify requirements [24]. 
Commitments describe pledges that one actor will perform 
an action and these commitments are frequently found 
throughout privacy policies. Wan and Singh formalized 
commitments in an agent-based system, but had not applied 
this formalism to privacy policy [23]. In this paper, we 
describe a method to formalize specific data-related 
commitments, privileges and rights in privacy policies to 
logically reason about potential conflicts. 

Formal and semi-methods have long been applied to 
privacy policy and privacy law as an application area. Early 
work on semi-formal privacy policy languages includes the 
Platform for Privacy Preferences (P3P), a website XML-
based policy language aimed to align web browser user 
privacy preferences with website practices [10]. While P3P 
has experienced wide spread adoption, the P3P is a 
declarative language and website operators often make 
mistakes in how they configure these policies [15]. The 
EPAL is another declarative language that can be used to 
express data policies with constraints on purpose [19]. 
Unlike declarative languages, languages with a formal 
semantics can be used to reason about specification errors 
and inform website operators and other parties who depend 
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on these policies about why a policy is erroneous, e.g., by 
presenting analysts with conflicting policies for resolution. 

Several researchers have since formalized privacy-
relevant regulations, including the HIPAA Privacy Rule [5, 
18] and the Privacy Act [12]. Barth et al. encoded regulations 
as messages passed between actors using norms (e.g., 
permitted and prohibited actions), which is similar to Aucher 
et al. [3]. May encoded privacy regulations in Promela and 
used the Spin model checker to identify potential conflicts 
[18]. These prior approaches are limited in that they cannot 
express the hierarchical nature of actor roles, data 
composition, and purposes needed to describe privacy 
policies. Alternatively, others have used the Web Ontology 
Language (OWL) to formalize policies using permissions, 
obligations and prohibitions and to address this issue of 
concept hierarchies [14, 22]. The full OWL, which these 
prior approaches each use to express their formalization, is 
known to be undecidable. Work by Uszok et al., however, 
use algorithms to identify conflicts as opposed to theorem 
proving; an approach that may be decidable, but which is 
difficult to reproduce and generalize as the algorithms are 
not explicitly published. In this paper, we extend this prior 
work by reducing conflict detection to DL satisfiability, 
which is known to be PSPACE-complete for the ALC family 
of DL, and we believe our conflict detection technique is 
generalizable to a larger class of requirements than those 
found in privacy policies. 

VIII. DISCUSSION AND CONCLUSIONS 
In this paper, we presented a formal language to encode 

data requirements from natural language privacy policies so 
that an analyst can reason about these policies by checking 
for conflicts and tracing permissible and prohibited data 
flows within the policies. We applied the language to real-
world policies from Facebook, Zynga and AOL Advertising 
in a case study. The study demonstrates how to identify 
conflicts, which an analyst can then resolve by modifying 
their policy and/or their privacy practices. We also discuss 
limitations of the data requirements specification language 
and opportunities for improving the language. Finally, we 
conducted a simulation to demonstrate the computational 
complexity of identifying conflicts in policies of similar 
size. As software increasingly leverages platforms and third-
party services, we believe developers need lightweight 
formalisms and tools such as this to check their intentions 
against policies in the larger ecosystem. This is especially 
true as developers work with compositions of services in 
which they are not aware of all the third parties in their data 
flow. In future work, we plan to consider multi-stakeholder 
interactions across more complex service compositions.  
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