Supplementary Material

A Proof of Prop. 2

Reflexivity \((v \preceq_G v, \forall v \in V)\) comes from the fact that the identity element \(1_G\) leaves any \(v\) unchanged, and therefore \(v \in Gv \subseteq O_G(v)\). To prove transitivity, it suffices to show that

\[O_G(w) \subseteq O_G(v) \iff w \preceq_G v. \quad (15) \]

The direct statement \((\Rightarrow)\) follows from reflexivity: since \(w \in O_G(w) \subseteq O_G(v)\), this implies \(w \in O_G(v)\). For the converse statement \((\Leftarrow)\), note that \(w \in O_G(v)\) implies that \(w = \sum_i c_i h_i v\) for \(\{h_i\} \subseteq G\) and non-negative scalars \(\{c_i\}\) that sum to one; using the linearity of the action, we then have that \(g w = \sum_i c_i g h_i v \in O_G(v)\) for any \(g \in G\), which implies \(Gw \subseteq O_G(v)\) and \(O_G(w) \subseteq O_G(v)\) (due to convexity of \(O_G(v)\)).

B Proof of Prop. 14

Let us start by noting that, for arbitrary \(h \in G\),

\[\min_{h \in G} \frac{1}{2}\|hw - a\|^2 = \min_{h \in G} \frac{1}{2}\|hw\|^2 - \langle hw, a \rangle + \frac{1}{2}\|a\|^2 \]

\[= \frac{1}{2}\|w\|^2 + \frac{1}{2}\|a\|^2 - m(w, a) \]

\[= \frac{1}{2}\|w - \tilde{a}\|^2, \quad (16) \]

where \(\tilde{a} \in Ga\) is such that \(m(w, a) = \langle w, \tilde{a} \rangle\); the optimal \(h\) satisfies \(\tilde{a} = h^{-1}a\); and the second step is justified by the fact that \(G\) is a subgroup of \(O(d)\), hence its action is norm-preserving. Due to Moreau's decomposition theorem [34], we have that the projection in line \(5\) can be computed via proximal operator associated with \(I_{O_G(w)^\ast} = m_G(\cdot, v)\); namely we have that the (unique) minimizer \(w^*\) in line \(5\) satisfies \(w^* = a - \text{prox}_{m_G(\cdot, v)}(a)\). Evaluating the proximal operator boils down to solving the following problem:

\[\min_{u \in V} \frac{1}{2}\|u - a\|^2 + m_G(u, v) = \min_{u \in K_G(a)} \frac{1}{2}\|u - a\|^2 + m_G(u, g v) \]

\[= \min_{u \in K_G(g v)} \frac{1}{2}\|u - a\|^2 + \langle u, g v \rangle \]

\[= \min_{u \in K_G(g v)} \frac{1}{2}\|u - (a - g v)\|^2 + \text{constant}, \quad (17) \]

where we used Eq. [16] and the fact that \(g v \in K_G(a)\). This leads to the result.

C Proof of Convergence of the Continuation Algorithm

We show that for any \(\epsilon > 0\), the sequence \((L(w_1), L(w_2), \ldots)\) is strictly decreasing. Convergence follows from the fact that this sequence is lower bounded by the unregularized objective value \(\min_w L(w)\), assumed finite. The proof consists of two steps:

1. Showing that, for any \(\epsilon > 0\), \(w\) lies in the interior of \(O_G(v_{t+1})\). This follows from the fact that \(v'_t, w_t\), and their convex combination all belong to the region cone \(K_G(w_t)\); in this region the pre-order induced by \(G\) is a cone ordering w.r.t. the polar cone of \(K_G\), from which we can derive \(w_t \in O_G(\epsilon v'_t + (1 - \alpha)w_t)\), leading to the desired statement.

2. Showing that \((L(w_1), L(w_2), \ldots)\) strictly decreases before the algorithm terminates. This is a simple consequence of the previous fact. Since \(w_t \in O_G(v_{t+1})\), we must have \(L(w_{t+1}) \leq L(w_t)\). If this holds with equality, then \(w_{t+1} = w_t\) is an optimal solution at the \((t+1)\)th iteration, but since it lies in the interior of \(O_G(v_{t+1})\), we have \(\|w_{t+1}\|_{G_{t+1}} < 1\) and the algorithm will terminate. Therefore we must have \(L(w_{t+1}) < L(w_t)\) for the algorithm to proceed.