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Abstract

Recognition using appearance features is confounded by
phenomena that cause images of the same object to look dif-
ferent, or images of different objects to look the same. This
may occur because the same object looks different from dif-
ferent viewing directions, or because two generally differ-
ent objects have views from which they look similar. In this
paper, we introduce the idea of discriminative aspect, a set
of latent variables that encode these phenomena. Changes
in view direction are one cause of changes in discrimina-
tive aspect, but others include changes in texture or light-
ing. However, images are not labelled with relevant dis-
criminative aspect parameters. We describe a method to
improve discrimination by inferring and then using latent
discriminative aspect parameters. We apply our method to
two parallel problems: object category recognition and hu-
man activity recognition. In each case, appearance features
are powerful given appropriate training data, but tradition-
ally fail badly under large changes in view. Our method
can recognize an object quite reliably in a view for which it
possesses no training example. Our method also reweights
features to discount accidental similarities in appearance.
We demonstrate that our method produces a significant im-
provement on the state of the art for both object and activity
recognition.

1. Introduction

Appearance features have been very successful in both
object and activity recognition. However, in each case,
there are problems with aspect — the same thing can look
very different in different aspects. We propose to shift the
point of view of the aspect issue from geometrical aspect
(or view) to discriminative aspect. Most multiview object
recognition methods in existing literature treat aspect as a
geometrical phenomenon. These models describe the geo-
metrical relationship between an object and the camera. For

example, the camera location in the room might be a rough
proxy for aspect. However, we believe this notion of aspect
is not well suited for recognition tasks. First, it imposes
the unnatural constraint that objects in different classes be
aligned into corresponding pairs of views. This is unnatural
because the front of a car looks different to the front of a
bicycle. Worse, the appearance change from the side to the
front of a car is not comparable with that from side to front
of a bicycle. Second, the geometrical notion of aspect does
not identify changes that affect discrimination. We prefer a
notion of aspect that is explicitly discriminative, even at the
cost of geometric precision.

Our model of discrimination is mapping an appearance
feature to a hash code. This is a very general model. The
mapping could be achieved with many different methods.
An ideal mapping would assign all instances of a given class
to one bucket. Discriminative aspect parameterizes two im-
portant nuisance effects. Sometimes images that should be
mapped to the same bucket are not, for example, because
there was a large change in the viewing direction. Some-
times images that should be mapped to different buckets are
not, for examples, because quite different objects happen to
share many appearance features. An explicit representation
of discriminative aspect will allow the recognizer to focus
on features that are more discriminative for this case.

Generally, we expect images of the same object from
different viewing directions to have different discriminative
aspects. We expect images of different objects that have
roughly the same appearance to have similar discriminative
aspects. For example, a frontal view of a car and a side
view of a computer mouse are similar in rough appearance
space. They both share a strong curved contour across the
top. If they share the same discriminative aspect the model
can uncover the more detailed features in which they differ.

If each image was labeled with a discriminative aspect,
we could use this information in a straightforward way. We
would weight the feature vector by discriminative aspect pa-
rameters so as to emphasize some feature differences. For
example, we weight the appearance features of the side view



of the mouse and the frontal view of the car the same. This
naturally suggests a bilinear model [12] which allows us
to simultaneously learn appearance models and the under-
lying latent discriminative aspect. However, we don’t know
the discriminative aspects for training or testing objects. So,
the discriminative aspect representation is inherently latent.

In this work, our contributions are a) introducing the no-
tion of discriminative aspect b) showing the advantages of
discriminative aspect over geometric aspect ¢) using a latent
continuous variable to model the aspect rather than the tra-
ditional discrete camera index d) and supporting this novel
model with considerable performance gains over the state of
the art in two main problems of computer vision that suffer
from the aspect issue, object recognition and human activity
recognition.

Aspect involves a rich collection of geometric and pho-
tometric phenomena: objects can change appearance be-
cause one sees a different outline, because occlusion rela-
tions change, and because changes in viewing direction af-
fect apparent color and texture. A core problem is to build a
recognizer that can be trained from some aspects, and will
work successfully on new aspects: we refer to this property
as transfer across aspect.

Aspect in object recognition: There are three main
strategies for handling aspect. One might attempt to build a
comprehensive representation of aspectual phenomena
(an aspect graph; review in [3], critique in [7], summary of
results in [11]). This strategy usually results in unmanage-
ably complex representations and has largely fallen into dis-
use. One might attempt to represent an object using aspect-
enriched models. In the extreme, rather than build a “car”
recognizer, one might build “frontal-car”, “lateral-car” and
“overhead-car” recognizers then drop the aspect label af-
ter classification. Usually, these multiple classes are com-
pacted into a single model, assembled from local patches
(which might have quite simple behavior), tied together
by observation [25], with geometric reasoning [14], with
statistical reasoning [18, 20], or with a combination [24].
This strategy is expensive in data. However, one may in-
terpolate missing aspects [4], or interpolate models corre-
sponding to missing aspects [23]. An important difficulty
with this strategy is that it treats categories one-by-one.
We do not expect to see many aspects of a new object to
be able to recognize it. This is because objects tend to
share aspectual properties, so that, for example, relations
between “frontal-car” “lateral-car” and “overhead-car” rec-
ognizers should be similar to relations between “frontal-
box”, “lateral-box” and “overhead-box” recognizers. For
example, the different objects (“bicycle”, “car”, “mouse”,
“toaster”, “cellphone”, “head”, “iron”, “monitor”, “shoe”
and “stapler”) in the aspect dataset of [24] are aligned fo one
another, which wouldn’t be possible if there wasn’t at least
a rough consensus between human observers that there is
something comparable between the aspects of a mouse and
the aspects of a car. Finally, one might attempt to build as-
pect invariant features (e.g. [10]). In its most direct form,
this strategy usually applies only to quite specialized cases.

However, there are several constructions of aspect robust
features for human activity.

Activity recognition: Recognizing human activity is a
core computer vision problem. Reviews appear in [9, 13].
There are rich applications in surveillance, automated in-
terpretation of video, and search. There are two important
threads: first, one might recognize activities using discrim-
inative methods applied to image features either computed
by segmenting the body (for example [!]), or from charac-
teristic motion fields (for example [19]). Second, one might
build generative models from image data (for example, [8]),
or motion capture data (for example, [10]).

Aspect and activity: Procedures that infer a 3D configu-
ration of the body can be relatively robust to viewpoint [ 16],
but require one to infer that 3D representation (there are real
difficulties here; review in [9]). The alternative is to use
an appearance feature, and try to make it aspect invariant.
Despite the considerable complexities of aspect phenomena
related to human figure, versions of this approach have been
quite successful for activity recognition. Junejo ef al. give
a direct construction of features that are robust to aspect
changes [17]. An alternative is to use a two-stage strategy,
where the first stage uses an estimate of aspect together with
image features to produce a new set of aspect independent
features. One then classifies using these feaures. Farhadi
et al. use this approach to transfer word-spotters across as-
pect for ASL [5]. Farhadi and Kamali use this approach to
recognize activities from a novel aspect, using a quantized
aspect representation [6].

We differ from [5], [6], since a) we use a discrimina-
tive rather than geometric notion of aspect b) we treat as-
pect as a latent variable and learn it simultaneously with
the appearance model c) our latent discriminative model of
aspect allows us to encode the interactions between aspect
and the appearance rather than learning the appearance for
fixed viewing directions d) and therefore we aren’t limited
to transferring object models only between single pairs of
aspects as in [6] ) Our notion of discriminative aspect has
more intuitive semantics compared to the aspect indicators
in [6] and [5]. Compare Figure 4 with Figure 5.

We compare our results with the state of the art recog-
nition systems for novel aspects in both object recognition
and human activity recognition. The results show a signif-
icant gain in adopting the discriminative continuous aspect
model.

2. Latent Model of Aspect

After presenting a learner with many objects under many
viewing directions, we want to recognize on viewing di-
rections for which we haven’t observed a particular object.
Given enough training instances we can model the shared
aspectual behavior between visually similar objects. This
enables us to recognize an object in viewpoints for which
we have no training examples for that particular object. We
can do this using a hash code that shares a values for an ob-
ject class under different views and also discriminates be-



tween different objects under any viewpoints.

2.1. Hashing with Discriminative Aspect

Suppose we possess the labels of discriminative aspect v
for the corresponding appearance features x. If we sim-
ply form a new feature by appending v to x, we cannot
use the interactions between aspect and appearance. How-
ever, a bilinear form allows the aspect vector v to influence
the appearance feature x by reweighting individual compo-
nents. This yields a classifier of the form sign(vt Az + b)
which is linear in the classifier matrix A. This simple bi-
linear model predicts hash codes using a reweighted set of
features. While we use a bilinear SVM formulation in this
paper, our framework can utilize any other classifier, such
as decision trees.

Unfortunately, the discriminative aspect labels are not
available. We encode the aspect with a latent model. Due to
the close interaction between discriminative aspect and ap-
pearance we can use the geometric aspect as a rough prior
for the discriminative aspect.

We want to learn to predict hash codes using (z, v) pairs.
For this we need training labels to define the bits of the code.
These codes should be similar for objects within a class and
discriminative across classes. Each code is a clustering of
object classes. To obtain discriminative codes, we randomly
search the large space of possible hash codes. We generate
thousands of random hash bits and choose the most discrim-
inative ones. These selected bits are used as training labels
for learning aspect invariant hash codes.

2.2. Latent Bilinear Model

We now have the following situation: for each training
image we have an object label, and can search for good hash
codes. We have a poor estimate of v for each training data
item, supplied by the view label on the image. Learning
involves simultaneously refining the estimate of v, and cou-
pling this to appearance features to predict hash codes.

There is one v per image indexed by i, and the ;" bit of
the hash code is predicted using the matrix of linear classi-
fiers A;. We use a Regularization + Loss minimization
framework. We penalize ||4;||? to avoid getting big A’s. We
allow discriminative aspects to vary from the given geomet-
ric aspect, while at the same time controlling this deviation.
We do so by penalizing ||[v; —v,,(;||* where v,,(;) is the aver-
age discriminative aspect of the examples of 7’s correspond-
ing view. This imposes a prior on the discriminative aspect
parameters requiring that, in the absence of other informa-
tion, discriminative aspect should mirror the view. We write
1 for the index to examples, j for the index to hash code bits,
¢ for the slack variable, and s, (i) € {—1, 1} for the training
label of the 5" bit of the hash code for the i*" image. Then

we have
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We have not found a need to regularize || v,,, ||%. We conjec-
ture that the Loss term will not let v, (;) get big. We solve
this optimization in primal, because it is straightforward to
do so, and because improving the primal when we are not at
the extremal point will also improve the the actual risk [2].
Therefore, we must minimize:
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where h is the hinge loss. Notice that many observations
share a variable here: while each image has its own v;, these
v;’s are coupled by the v,,(¢) term; and each image partici-
pates in computing many different hash code bits. Similarly,
each hash code bit uses the same A ; for multiple images and
aspects.

Optimization: We alternate between minimizing over
Aj; and v; for fixed v,, and updating v,, with a mean. The
objective function is not differentiable due to the hinge loss,
but can be approximated to arbitrary precision by a piece-
wise polynomial function. We apply limited memory BFGS
[22] to the resulting problem.

Initialization: We need good initializations for v; and
A;. We believe that a very rough representation of appear-
ance provides a decent starting point for v. Therefore, we
use projections of the appearance features to the first few
principal directions. The central aspect v,, is initialized by
taking the average of v;’s of all images belonging to the
same geometrical aspect. We fix v; and solve the optimiza-
tion problem above to get an initial estimate of A;.

2.3. Recognition with Discriminative Aspect

Once we obtain the final v;’s (for training images) and
A;’s from the optimization explained in the previous sec-
tion, we can start recognizing objects. For that we need to
have a good estimate of v; for test frames.

We expect objects that roughly share similar appearance
to also share discriminative aspect parameters. Thus, we
infer a v for each test image using the average v from the
nearest training neighbors in the appearance feature space.
These nearest neighbors may not all belong to the same ob-
ject class. This means that we can in fact share aspectual
behavior across classes.

Once we have v;, we can compute the hash values for
each test example. We can now apply a classifier to pre-
dict object classes using hash codes. Since these hash codes
are aspect invariant, we can recognize objects in aspects
for which we haven’t seen them before. We use nearest
neighbors in the hash space, with examples coming from
any available fraining aspects.



Improving discriminative aspects from object class
hypotheses: The estimated v for a test example may be
noisy. However, after predicting the hash code, we can cor-
rect our noisy estimate of v. By fixing the predicted hash
code and the learned A, we can run the optimization 1 over
v using the noisy estimate as the initial value.

2.4. Evaluations

We have tested our methods in two major problems
in computer vision, object recognition and human activity
recognition. We show that we recognize objects in views
for which we have no training example of those objects.
We compare our performance against similar methods and
methods that require observing examples of all of the ob-
jects in all the views, in both object and human activity
recognition literatures.

3. Results: Object Recognition

We can recognize objects in views for which we haven’t
observed those objects using models trained on different
views. We apply our techniques to a recently released 3D
object dataset. To be able to compare with [24] and [23], we
run our experiments under the same conditions as in these
two papers.

Object Recognition Dataset: The 3D object dataset
from Savarese and Fei-Fei [24] is well suited to demonstrate
our methods. The dataset contains geometric aspects varied
over azimuth, elevation, and scale. Each angle and scale
is aligned across objects to their corresponding canonical
orientations. For example, each image of a forward facing
shoe is aligned with each forward facing car figure 1.

Object Recognition Features: We generate a 72 dimen-
sional histogram feature. To encode characteristic appear-
ance information, we include a bag of words feature for
texture, shape, edges, and color over keypoints inside the
masks. Texture descriptors are computed for each pixel,
and quantized to the nearest 256 kmeans centers. The tex-
ture descriptor is extracted with a texton filterbank. Shape
is encoded with an HOG spatial pyramid, using 8x8 blocks,
a 4 pixel step size and 2 scales per octave. Edges are found
using a standard canny edge detector and their orientations
are quantized into 8 unsigned bins . Finally, color descrip-
tors are quantized to the nearest 128 kmeans centers. The
color descriptor consists of the LAB values. By concatenat-
ing the silhouette and appearance features, we obtain a final
1465 dimensional feature for each instance.

Protocol: There are 8 different angles, 3 different
heights, and 3 different scales. Because of the limitations
in the number of objects in the dataset, we choose to follow
the strategy of leaving out objects in views. This means that
we never observe a single example of the held out object
category in the target view, the view in which we want to
recognize that object.

Procedure: We need to allocate codes for objects. To
produce the hash code we generate 1000 random code bits
and choose the 40 most discriminative bits. Ideally these

Figure 1. Object view data examples, taken from the dataset of
Saverese and Fei-Fei [24]. Notice that there are distinct instances
of distinct categories at aspects that are, rather roughly, aligned to
one another (i.e. the “front” of the bike corresponds to the “front”
of the iron). This demonstrates the notion of geometric aspect.
Aligning objects based on their geometric aspect is unnatural, be-
cause, for example the front of the bike is dissimilar to the front of
the iron. Even worse, the appearance changes between the front
and side of the bike significantly differs from that of the iron.

codes should be the same for same objects and different for
different objects in any aspect. We get an estimate of the
discriminative aspect vector v by using PCA on the appear-
ance feature. We pick the first 3 principal components to
form an initial v. We then fix v’s and use the optimization 1
to get an initial estimate of A’s. Now we run the optimiza-
tion 1 alternating between optimizing for v, A and updating
v, using v. Having obtained the final v’s and A’s, we can
now do the inference by finding out the v of a test example.
For each test example we look for the 3 nearest neighbors
in the appearance feature space and use their average v as a
initial aspect vector for the test image. We then compute the
hash codes for the test image. Finally, we predict the object
class using the 3 nearest neighbors in the hash code space.

Discriminative Aspect inference in testing: We must
produce an aspect estimate to be able to evaluate features for
test images, and we do so with the three nearest neighbors.
The nearest neighbor estimation of v for test examples is
expected to be noisy. However, since the aspectual behavior
pools correctly across objects, the nearest neighbors are a
good guide to the aspect even if they are not a particularly
good guide to the object identity Figure 3.

Results and Comparisons: The task is to recognize
objects in aspects for which we observe no examples of
that object. We adapt the same experimental settings as
[24, 23]. Figure 2 compares our performance with that
of [24, 23]. Our average accuracy is 78.16% comparing
to 64.78%, and 46.80% of Savarese et al.”08 and 07. We
even outperform [24] when they observe all the classes in
all the aspects (where they get 75.7% performance). We
adopted this dataset and the experimental settings from [24]



Nearest Neighbors in “v) Test Set

Figure 3. Test aspect labels are inferred using nearest neighbors.
These labels are accurate, too. This figure shows four test exam-
ple and their three nearest neighbors in the the v space. Now we
do not know the class of the test image (that’s why we’re trying
to estimate v), so the nearest neighbors may not even be of the
same class. However, they are at the same discriminative aspect.
This means that discriminative aspect estimates are pooled across
comparable classes — any boxy object can serve as a cue for the
aspect of another. This is a most desirable property.

and [24, 23] as they are standard. However, objects in this
dataset has symmetries. To avoid this issue we evaluate our
method in a better experimental design. we omit all exam-
ples of the test object in all views except one, but observe
all other examples of all other objects in all other views. We
test on another view of the test object. We repeat this and
average the performance over all non-symmetric views of
all objects. In this setting, KNN gets 12.3%, our model gets
68.6%. More, this dataset is not a challenging test set for
object recognition as one may get surprisingly good results
in recognizing objects by looking only at the background
pixels.

Semantics of Discriminative Aspects We have shown
that if we estimate discriminative aspect properly, we can
improve recognition. This latent variable has intuitive se-
mantics. In figure 7 we can see several cases where objects
share discriminative aspectual similarity: a) objects within
a class sharing the same geometric aspect b) objects across
classes sharing geometric aspect c) objects across classes
and across geometric aspects. The underlying property for
each of these cases is that objects sharing discriminative as-
pect also share rough visual appearances.

4. Results: Human Activity Recognition

We can recognize activities in aspects for which we
haven’t observed those activities using models trained on
different aspects. We have tested our method on the IX-
MAS data set (figure 4), where we outperform state of the
art methods in multi-view activity recognition.

Dataset: We picked the IXMAS dataset [260] because
there are 5 different views of activities, sequences are time

Camera 0

Camera 4
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Figure 4. Camera index as an aspect indicator in IXMAS
data: Each row shows frames in a fixed camera from IXMAS
dataset. Although the camera index can be a good proxy for the
aspect, when an actor moves while performing an action the as-
pect changes. For example in the first row, despite the fact that
the actress is in frontal view in the left frame and she is in the left
lateral view in the middle frame and in the right frontal view in the
right frame, all of the frames have the label O as their aspect in [6].
This suggests that by using the camera index as an estimation of
the aspect we will suppress some useful details.

aligned, and silhouette information is also provided. There
are 11 different actions in this dataset performed by 10 dif-
ferent actors three times. Furthermore, we also wanted to
be able to compare our results with [6] and [15] which were
tested on IXMAS.

Features: We employ the activity features in [6]. Their
frame descriptor is a histogram of the silhouette and of the
optic flow. Given the bounding box of the actor and the sil-
houette, the optic flow is computed using Lucas-Kanade al-
gorithm [21]. Features consist of three channels: smoothed
horizontal flow, smoothed vertical flow, and the silhouette.
This results in three 72-dimensional histograms correspond-
ing to each channel. To encode local temporal structure of
the activities we consider stacking features from previous
and next frames. We pick the first 50 principal components
of the descriptors of a window of size 5, centered at the
frame we want to describe. For further frames in both di-
rections, previous and next frames, we pick the first 5 prin-
cipal components of the windows of size 5, centered at the
(i + 5)*" and (i — 5)*" frames. This gives us a 60 dimen-
sional descriptor for each frame. We perform a clustering of
the feature space to form 40 clusters. We represent activities
using histograms of the frames assigned to each cluster. We
assign the action label with the closest histogram of clusters
to the test sequence. We use hamming distance for match-
ing the histograms.

Protocol: We use all five aspects in the IXMAS dataset.
There are 20 different possible transfer scenarios for trans-
ferring from each of these cameras to the other one. Be-
cause of the small number of actions in the dataset, we
choose to follow the strategy of leaving one action out. This
means that we observe all actions in the source aspect and
all but the selected action in the target aspect. Therefore,
we never observe a single example of the selected action in
the target aspect, the aspect in which we want to recognize
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Figure 2. A comparison of three recognition methods for recognition in the presence of strong aspectual phenomena. On the left, the class
confusion matrix for the method of Savarese et al [24], where the recognizer possesses instances of each class at each aspect. In the center,
the class confusion matrix for the work of Savarese et al [23], where the recognizer possesses instances of each class at most aspects,
but must interpolate models to cover some aspects. On the right, the class confusion matrix for our method, where the recognizer has no
example of a test image’s class at the view we want to recognize. Our model of aspect offers a substantial gain.

that activity. To report the final accuracy we average over
all possible combinations of leaving one action out. This
strategy has been used in [6].

Procedure: The training procedure is similar to that of
object recognition.

Discriminative Aspect inference in testing: This pro-
cedure is identical to aspect inference in the object recogni-
tion experiment. The nearest neighbor estimations are again
reasonable Figure 6. While errors in estimating aspect do
occur, if the estimate is not very bad we can still produce
an action label, which is usually the case. This suggests
that action labels could be used to refine aspect estimates
Figure 6.

For example, given a test dataset marked with correct
action labels (but no aspect information), we might be able
to tag each frame with an accurate discriminative aspect (as
we have shown with the training set). Because of the spatial
characteristics of human activity, the discriminative aspect
tends to agree with the geometric aspect figure 6. Aspect
tagging with the degree of accuracy suggested by figure 6 is
hard to achieve any other way, and likely to be valuable in
producing datasets.

Results and Comparisons: Table 1 shows the recogni-
tion performance for all of the possibilities. We compare
the results of recognizing activities learned in one aspect
and tested in another aspect using our model of aspect with
(a) the method in [6] using quantized and geometric aspect
(b) the method in [15] which constructs features robust to
change of aspect using temporal self similarity measures.
All methods are tested under the same conditions. As table
1 shows we strongly outperform both methods by consider-
ing our model of aspect. On average, the quantized method
of [6] gets an accuracy of 60.2%, the self similarity method
of [15] gets an accuracy of 62%, and our model of discrimi-
native aspect gets an accuracy of 76.7%. This clearly shows
that adopting a discriminative model of aspect can improve
classification performance dramatically. As a baseline, one
can simply train in one aspect and test in another aspect.
This is known to perform poorly on this dataset; [6] gets an

Camera 4

Camera 1 Camera 1 Camera 1

Figure 5. Clusters of aspect variable: The v variable inferred in
training using our methods agrees strongly with the camera angle.
This figure shows images for four clusters of v’s inferred for train-
ing examples. Clusters are obtained by K-means. Each column is
a different cluster. Notice that the first three clusters are from the
camera 1. This means that even for frames coming from the same
camera we can find cluster of aspects which are different across
the clusters and similar inside clusters. Column 1 shows frames
from camera 1 which has frontal aspect, column 2 has 3/4 view,
and column 3 has lateral view.

average accuracy of 23%.

Aspect inference in training: We are obliged to infer
the correct value for aspects in learning. One test of merit
is to determine whether the inferred values make sense. We
do so by clustering aspect variables, and comparing clus-
ters to intuition. Figure 5 shows three examples of 4 differ-
ent cluster from different cameras. The first three columns
come from camera 1, and the last one from camera 4. The
v variable inferred in training is strongly coupled to cam-
era angle. Notice that in column 1, frames from camera 0
give a frontal view, in column 2, a 3/4 view, and in col-
umn 3 a lateral view. However our procedure infers v’s that
cluster together these aspects. This means that 3/4, frontal,
and lateral views are each assigned aspect variables that are
similar for different images from the same view direction,
but differ for images from different view directions.



Camera 0 Camera 1 Camera 2 Camera 3 Camera 4

CameraO | 76 | 76 | 84 72 | 78 | 79 61 69 | 79 62 | 70 | 68 30 | 45 | 76
Cameral | 69 | 77 | 72 76 | 78 | 85 64 | 74 | 74 68 | 67 | 70 41 44 | 66
Camera2 | 62 | 66 | 71 67 | 71 82 68 | 74 | 87 67 | 64 | 76 43 | 54 | T2
Camera3 | 63 | 69 | 75 72 | 70 | 75 68 | 63 | 79 73 | 68 | 87 44 | 44 | 76
Camera 4 | 51 39 | 80 55 39 | 73 51 52 | 73 53 34 | 79 51 66 | 80

Table 1. Results: Columns give the result of testing on the camera heading the column (in bold, the target), when trained on the camera given in the row
(normal, the source). There are three cases for each transfer scenario: first, using the method in [6] with quantized aspect (QV). Second, using the self
similarity metrics in [15] (SS). Third using our continuous model of aspect (CV). For example, training on camera 4 and testing on camera 0 gives an
accuracy of 51% if one uses the quantized aspect and 39% if one uses self similarity measures, and 80% if one uses our continuous model of aspect. Notice
that our continuous model of aspect significantly improves the accuracy of activity recognition in novel aspects. Transferring classifiers across aspects itself
is a hard and challenging problem. Average accuracy of 23% clearly shows how challenging this problem is. On average, the quantized method of [6] gets
an accuracy of 60.2%, the self similarity method of [15] gets an accuracy of 62%, and our continuous model of aspect gets an accuracy of 76.7%. Our
discriminative continuous model of aspect outperforms other methods significantly.

Figure 7. The discriminative aspect map: We project the discriminative aspect learned during the training process into a two dimensional
space using multidimensional scaling. This figure shows the tendency of particular objects to share discriminative aspectual behavior.
Sometimes objects from the same class share discriminative aspect (a), for example, the two cell phones in the top right corner are assigned
discriminative aspects that agree with their geometric aspect. This agreement between discriminative and geometric aspect may also occur
across classes (b) when the objects share rough appearance features, such as the shoe and cell phone or toaster and monitor. However, it
is not necessary for discriminative and geometric aspects to agree, such as when objects at different viewpoints share strong rough visual
appearances (c). Examples include the contours of the back of a shoe and the side of a car, or the strong diagonal of the head and car.

5. Conclusion view transfer in object recognition and in activity recogni-
tion. Our maps of discriminative aspect indicate that the pa-
rameters have useful semantics; images from similar views
tend to share discriminative aspects as do images of differ-
ent objects that have strong appearance similarities. This
means that discriminative aspect can reweight features to
take account of likely local confusions, and we conjecture
that this reweighting is the source of the improvements. It is
intriguing to speculate that our methods might be applicable
to any discriminative task, if one could provide a proxy to
drive the initial inference of discriminative aspect.

We have introduced a novel model of aspect. Discrimi-
native aspect represents phenomena that interfere with dis-
crimination, causing images of the same object to look dif-
ferent or images of different objects to look similar. A
significant component of discriminative aspect is produced
by view effects, and we use this fact to infer discrimi-
native aspect parameters for images during training. An-
other important component is similarity in appearance, and
this means that nearest-neighbor estimates are sufficient to
provide useful discriminative aspect information at testing
time. We have shown that using discriminative aspect in-
formation produces substantial improvements over the state This work was supported in part by the National Sci-
of the art on standard datasets for two important problems: ence Foundation under IIS -0803603 and in part by the Of-
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