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1980s: Network Collapse

In the 80s’s, naïve behavior caused the 
network to collapse 

Internet

?

?
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Salvation!

Socially responsible congestion control 
implemented at end-points was given credit for 

saving the Internet

Internet
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Salvation?

Can the network survive with greedy (but 
intelligent) behavior?

Internet
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Why Bother?

� If greed is bad, today’s Internet is stable 
because –
� End-points are consciously social and/or
� It is hard to modify end-hosts to be greedy

� If not, we need no such mechanism
� Can rely on end-point behavior for efficient 

operation

We may need mechanisms to monitor, dissuade 
aggressive behavior
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Outline

� The TCP Game

� Results for the TCP Game

� Mechanisms for Nash Equilibrium
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The TCP Game

� TCP Game
� Flows attempt to maximize application 

throughput

� Flows modify their AIMD parameters (α, β)

� Must still provide reliability

� What happens at Nash Equilibrium?
� No flow can gain in throughput by unilaterally 

changing its parameter choice
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The TCP Game

� Analyze a simplified version of this Game 
for…
� Parameters at the Nash Equilibrium
� Efficiency at the Nash Equilibrium

� Link Goodput and per-flow Loss rate

� Study symmetric Nash Equilibria only
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Factors Affecting the Nash 
Equilibrium

End-points show greed by adjusting factor (3) alone. 
Factors (1), (2) are part of the environment.

(1) End-point’s loss recovery mechanism

� Reno vs. SACK (primitive vs. modern)

� Depends on TCP implementation

(2) Loss assignment at routers

� Bursty loss assignment vs. randomized uniform losses

(3) Congestion control parameters of the flows

� How flows are allowed to vary their parameters

� Under complete control of end-point
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Outline

� The TCP Game

� Results for the TCP Game

� Mechanisms for Nash Equilibrium
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Results – Road-map

� First, consider FIFO droptail buffers
� Most wide-spread in today’s Internet
� Efficiency at Nash Equilibrium for Tahoe, 

Reno, SACK-style loss recovery

� Then, discuss RED buffers briefly
� As above

� Put the results together
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FIFO Droptail Buffering

� Droptail buffers punish bursty
behavior
� Unintentionally so
� Observed by designers of RED AQM
� Flows with bursty transmission incur 

losses proportional to their burstiness
� AIMD flows incur losses in bursts of size ~ α

(AI parameter)



Aditya Akella (aditya@cs.cmu.edu)

Results for FIFO Droptail Buffers –
A Sample

� Greedy flows don’t gain by using large α’s

� Flows observe burst losses

� Reno’s severe reaction (time-outs) kicks in

Reno-style loss recovery
(flows vary αααα, keeping β=0.5β=0.5β=0.5β=0.5)
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Results for FIFO Droptail Buffers –
A Sample

� Greedy flows gain by using β�1

� No burst losses since α=1
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Results for FIFO Droptail Buffers –
A Sample

� Nash Equilibrium is efficient!

� Goodput is high and loss rate is low

� Greedy behavior might work out

� But unfair

� Since β

�

1 (AIAD)
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RED Buffering

� RED buffers “spread” losses uniformly 
across flows
� Identical loss %-age across flows 

irrespective of parameters used
� Greater greed of a few flows causes a 

small increase in overall loss rate
� Bursty flows do not experience burst 

losses, unlike droptail buffers
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Results for RED Buffers –
A Sample

� Aggression is always good

� TCP SACK 

�

high loss rate doesn’t affect goodput

� RED 

�

greater aggression will cause minor increase in 
overall loss rate
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Results for RED Buffers –
A Sample

� Nash Equilibrium is inefficient

� Parameter setting is very aggressive

� Loss rate is high

� Potential congestion collapse!

SACK-style loss recovery
Flows vary α,βα,βα,βα,β together
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Results for the TCP Game –
A Summary 
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Discussion

Question: Does selfish congestion control endanger 
network efficiency?

Common Intuition: Yes, since flows would always 
gain from being more aggressive. 

Our Answer: Not necessarily true!

� In the traditional setting (Reno end-points and droptail
routers), network operates fine despite selfish behavior

� Selfish behavior very detrimental with modern loss 
recovery and queue management schemes
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Outline

� The TCP Game

� Results for the TCP Game

� Mechanisms for Nash Equilibrium
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Mechanisms for Nash Equilibrium

� We need mechanisms to explicitly 
counter aggressive behavior

� Has been a hot topic in the past
� Fair Queuing discourages aggressive behavior

� But needs per-flow state

� RED-PD, AFD etc. explored lighter mechanisms

� Aim to ensure fair bandwidth allocation 

Our requirement is less stringent:

How much preferential dropping is needed to 
ensure a reasonable Nash Equilibrium?
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CHOKe+ -- A Simple, Stateless 
Scheme

� A small modification to RED is enough

2.74%97%3

Loss rateGoodputααααΕΕΕΕ

0.0

0.4

0.8

1.2

1.6

0 20 40 60

αααα1111...α...α...α...αn−−−−1 1 1 1 = 1= 1= 1= 1 αααα1111...α...α...α...αn−−−−1 1 1 1 = 3= 3= 3= 3

Th
ru

p
ut

o
f f

lo
w

 n
 (

M
b

p
s)

ααααn of flow n

� CHOKe+

� Simple, stateless

� Provides just the 
right amount of 
punishment to 
aggressive flows

� Makes marginal 
advantage from 
greed 
insignificant

� E.g. SACK flows 
varying α
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CHOKe+ (Cont.)
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� β�1 at Nash 
Equilibrium in all 
cases

� β < 1 impossible to 
ensure without Fair 
Queuing

� But, CHOKe+ 
encourages β < 1

� Makes aggressive β a 
risky choice

� With SACK flows 
β=0.74 at Nash 
Equilibrium
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Summary

� Greedy congestion control may not 
always lead to inefficient operation
� Traditional Reno host-droptail router 

setting

� Unfortunately, greedy behavior is 
bad in most other situations

� Fortunately, it is possible to ensure a 
desirable Nash Equilibrium via 
simple, stateless mechanisms 
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Back-up

� Back-up
� Back-up

� Back-up
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CHOKe+

� CHOKe would have worked
� But, enforces too high a drop rate
� Underutilization at low levels of multi-

plexing
� CHOKe+ fixes this problem
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The CHOKe+ Algorithm

� For each incoming packet P
� Pick k packets at random from queue
� Let m be # packets from the same flow 

as P
� Let 0 <= γ2 < γ1 <= 1 be constants
� If m > γ1k, P and the m packets are 

dropped
� Else if γ2k <= m < γ1k, drop P and the m

packets only if RED were to drop P
� Else just drop P according to RED
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Why AIMD?

� Analysis is more generic than meets 
the eye
� Conclusions hold for other congestion 

control schemes
� Burstiness is a property of probing

� Widely employed
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Why not Change Loss Recovery?

� Historical evaluation
� Very difficult to change

� Sometimes need bilateral (protocol) 
support

� Needs many implementation changes
� Many design decisions were influenced 

by system requirements


