
On the Scaling of Congestion in the Internet Graph∗

Aditya Akella Shuchi Chawla Arvind Kannan Srinivasan Seshan

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA

{aditya,shuchi,srini+}@cs.cmu.edu, arvind@cmu.edu

ABSTRACT
As the Internet grows in size, it becomes crucial to understand how
the speeds of links in the network must improve in order to sustain
the pressure of new end-nodes being added each day. Although the
speeds of links in the core and at the edges improve roughly accord-
ing to Moore’s law, this improvement alone might not be enough.
Indeed, the structure of the Internet graph and routing in the net-
work might necessitate much faster improvements in the speeds of
key links in the network.

In this paper, using a combination of analysis and extensive simu-
lations, we show that the worst congestion in the Internet AS-level
graph in fact scales poorly with the network size (n1+Ω(1), where
n is the number of nodes), when shortest-path routing is used to
route traffic between ASes. We also show, somewhat surprisingly,
that policy-based routing does not exacerbate the maximum con-
gestion when compared to shortest-path routing.

Our results show that it is crucial to identify ways to alleviate this
congestion to avoid some links from being perpetually congested.
To this end, we show that the congestion scaling properties of Internet-
like graphs can be improved dramatically by introducing moderate
amounts of redundancy in the graph in terms of parallel edges be-
tween pairs of adjacent nodes.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]:
Computer-Communication Networks;
C.2.1 [Computer-Communication Networks]:
Network Architecture and Design
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1. INTRODUCTION
The Internet grows in size every day. As time progresses, more
end-hosts are added to the edge of the network. Correspondingly,
to accommodate these new end-hosts, ISPs add more routers and
links. History has shown that the addition of these links maintains
the power law properties of the Internet topology [9]. The addition
of new end-hosts places a greater load on the network as a whole.
Fortunately, the improvement of network technology operates over
the same time period. We expect the network links at the edge
and core of the network to improve by a similar performance factor
as the growth of traffic over time, since they both typically follow
similar Moore’s Law-like technology trends.

Unfortunately, due to the topology of the network and behavior of
Internet routing, the increase in load may be different on differ-
ent links. As a result, it may be necessary for the speed of some
hot-spot links in the network to improve much more quickly than
others. If this is true, then these parts of the network are likely to
eventually become bottlenecks and the network has poor scaling
properties. In such a situation, we would either need to adjust the
routing behavior, remove the power law nature of the topology or
accept that end-to-end network performance will not improve as
rapidly as individual links. If, on the other hand, the worst con-
gestion scales well with the network size then we can expect the
network to continue to operate as it does now.

In this paper, we perform a preliminary study of how the maxi-
mum congestion in the Internet scales with the network size, under
reasonably realistic theoretical models of network evolution and
inter-domain routing. Our analysis focuses on the Internet AS-level
graph. We employ simple combinatorial/probabilistic arguments
to give bounds on the maximum congestion in a model of net-
work evolution based on Preferential Connectivity [7] and a simple
model of traffic in which a unit amount of flow between every pair
of nodes is routed along the shortest path between them.

We complement these analytical results with a large set of detailed
simulations for computing the congestion on the links in the net-
work, based both on real and on synthetically generated AS-level
topologies and synthetic traffic matrices. Through our simulations,
we also investigate the impact of several key factors on the worst
congestion in the network, such as variants of the inter-domain



routing algorithm, alternate traffic matrices, and finally, alternate
macroscopic degree structures of the underlying topology.

Contributions of our work. The key contribution of our paper is
to show that the maximum congestion in Internet-like graphs scales
poorly with the growing size of the graph. Specifically, the maxi-
mum congestion for shortest path routing and uniform traffic ma-
trices is at least as bad as n1+Ω(1) , with the exponent depending
on the exponent of the power law degree distribution of the graph1.
Our simulations show that policy routing in the AS graph results
in roughly the same maximum congestion as shortest path rout-
ing, but certainly not worse. When alternate, non-uniform traffic
models are considered, the congestion scaling properties of power
law graphs worsen substantially. We also show that in terms of
the maximum congestion, power law trees are considerably worse
than power law graphs. In contrast, graphs with exponential degree
distribution have very good congestion properties.

Another key contribution of our paper is the discussion of simple
guidelines that result in a dramatic improvement in the congestion
scaling properties of Internet-like graphs. We show that when par-
allel links are added between adjacent nodes in the network accord-
ing to simple functions of their degrees (e.g., the minimum of the
two degrees), the maximum congestion in the resulting graph scales
linearly.

As an aside, from an analytical point-of-view, ours is the first paper
to analyze properties of Internet-like graphs based on an evolution-
ary graph model, namely, the preferential connectivity model. As
such, it is also of independent interest to the theory community.

Limitations of our work. We would like to mention that our re-
sults may not hold in general for all power law graphs. Our re-
sults (both simulation-based and analytical) are meant for graphs
representing Internet connectivity at the AS level. In particular,
our analytical results hold for Internet-like graphs arising from the
preferential connectivity model. These results, for example, may
not apply to power-law random graphs [3].

Note also that while the preferential connectivity model is known
to yield graphs with a similar degree distribution as the AS-level
graph, it is not clear whether the model accurately captures the
AS-level connectivity dynamics (e.g., economic considerations for
peering). That said, our simulations on measured AS-level graphs
show that our key observations hold for the existing AS graph.
Therefore, if the current dynamics of connectivity between ASes
continues to hold in the future, we can expect our results to hold
for future AS-level graphs too.

Note also that analyzing the router-level graph is much harder com-
pared to analyzing the AS-level graph due to three reasons: (1)
Not much is known about the topology of Internet’s router-level
graph. Most existing maps of the Internet’s router-level topology
are considered incomplete; (2) IP-level routing cannot be modeled
easily using shortest path routing or simple inter-domain policy-
based routing, since this would require knowledge of traffic engi-
neering employed by ASes in the Internet; (3) Finally, some re-

1There is some disagreement about whether a power law correctly
models the degree distribution of the Internet graph. However, it
is widely agreed that the distribution is heavy-tailed. While our
main results (specifically, simulation results) focus on power law
distributions, we believe that they hold equally well for other such
heavy-tailed distributions (e.g. Weibull).

searchers have used power-law graphs resulting from probabilistic
models such as [3, 7] to approximate the router-level connectiv-
ity (see for example [22]). However, recent work has shown that
such models are error-prone since they do not explicitly consider
the technological and economic constraints or trade-offs behind
router interconnections [15]. Graphs arising from such trade-offs
are referred to as Heuristically Optimal Topologies. However, there
are no analytically-tractable models for generating such topologies.
Due to these constraints we leave a thorough analysis of the router-
level interconnection as future work.

Paper organization. The rest of the paper is structured as follows.
We discuss related work in Section 2. In Section 3, we formal-
ize our analytical approach and discuss our simulation set-up. The
analysis is presented in Section 4. Section 5 presents the results
from our simulations. In Section 6, we discuss the implications of
our results on network design. Finally, in Section 7, we conclude
the paper.

2. RELATED WORK
In the past, there have been several research efforts aimed at study-
ing the properties of large-scale, Internet-like graphs. Of these, one
class of studies has proposed various models of graph evolution
that result in a power law degree distribution. Notable examples
include the power law random graph model of Aiello et. al. [3], the
bicriteria optimization model of Fabrikant et. al. [8] and the Pref-
erential Connectivity model of Barabasi and Albert [7, 5]. Another
class of studies in this category [9, 20, 22] is aimed at analyzing the
properties of power law graphs. However, most of these are based
on inferences drawn from measurements of real data. The primary
application of this latter class of studies is to construct realistic gen-
erators [16, 23, 22] for Internet-like graphs. Our theoretical analy-
sis is based on the Preferential Connectivity model of Barabasi and
Albert [7]. Our simulations use topologies generated synthetically
using Inet-3.0 [23].

The problem of characterizing congestion in graphs, and specif-
ically designing routing schemes that minimize congestion, has
been studied widely in approximation and online algorithms. The
worst congestion in a graph is inversely related to the maximum
concurrent flow that can be achieved in the graph while obeying
unit edge capacities. The latter is, in turn, related to a quantity
called the cut ratio of the graph. Aumann et. al. [6] characterize the
relationship between maximum concurrent flow and cut ratio2 and
Okamura et. al. [19] give bounds on the cut ratio for special graphs.
Algorithmic approaches to the problem (see [13, 14] for a survey)
use a multi-commodity flow relaxation of the problem to find a
fractional routing with good congestion properties. Although fairly
good approximation factors have been achieved for the problem,
most of the proposed routing schemes are not distributed, involve
a lot of book-keeping, or involve solving large linear programs,
which makes them impractical from the point of view of routing
on the Internet. Therefore, we choose the approach of analyzing
the congestion achieved from using widely implemented routing
schemes such as shortest path or BGP-policy based routing.

Perhaps the work that bears closest resemblance to ours is that of
Gksanditis et al. [12]. Using arguments from max-flow min-cut
theory, their paper shows that graphs obeying power law degree dis-

2The maximum concurrent flow that can be achieved in a graph is
always within a factor of O(log n) of the cut ratio, where n is the
number of nodes.



tribution have good expansion properties in that, they allow routing
with O(n log2 n) congestion, which is close to the optimal value
of O(n log n) achieved by regular expanders. In addition, based
on simulations run over Inet-generated topologies, the paper con-
cludes that the congestion in power law graphs scales almost as
O(n log2 n), even when shortest path routing is used. The paper
also shows that policy routing results in worse congestion. In a
follow-up paper, Mihail et al. [17] prove similar results on the ex-
pansion properties of power law graphs generated using the Prefer-
ential Connectivity model.

Our work is different from both these papers in several key aspects,
a few of which we identify below. First, the theoretical analysis
in [12] and [17] does not restrict the routing to shortest path and,
in fact, assumes an optimal routing algorithm that minimizes con-
gestion. We show that, in fact when shortest path routing is em-
ployed, power law graphs exhibit poor scaling properties in terms
of congestion. The maximum congestion scales as n1+Ω(1). We
confirm this via detailed simulation experiments. In addition, our
simulations also show that policy routing does not worsen the max-
imum congestion in the network contrary to the conclusion in [12].
The evaluations of policy routing and shortest path routing in [12]
only consider graphs with a small number of nodes, approximately
10,000 nodes for policy routing graphs (due to the dependence
on real AS graphs) and only 23,000 for the shortest path routing
graphs. Our simulations, on the other hand, consider graphs of up
to 50000 nodes. Finally, we also consider the impact of different
traffic workloads and deployments of parallel links on the scaling
properties of the network.

3. METHODOLOGY
We use combinatorial/probabilistic arguments over a simple model
of the network combined with extensive simulations to understand
the congestion properties of Internet-like graphs. In what follows,
we first give a precise formulation of the problem, laying out the
key questions we seek to address via analysis. We also describe
the set-up for the simulations we use to corroborate and extend our
analytical arguments.

3.1 Problem Statement
Let G = (V, E) be an unweighted graph, representing the Internet
AS-level graph, with |V | = n. Let dv denote the total degree of
a vertex v in G. We are given three key aspects pertaining to the
graph G: the degree distribution of the graph, the routing algorithm
used by the nodes in the graph to communicate with each other and
the traffic demand matrix determining the amount of traffic between
pairs of nodes in the graphs. We give precise definitions of these
three aspects, in turn, below.

In our paper we will mostly be concerned with graphs having a
power law degree distribution, defined below.

DEFINITION 1. We say that an unweighted graph G has a power
law degree distribution with exponent α, if for all integers d, the
number of nodes v with dv ≥ d is proportional to d−α.

Similarly, graphs with exponential degree distribution are those in
which the number of nodes v with dv ≥ d is proportional to e−βd,
for all integers d. Henceforth, we will refer to such graphs as power
law graphs and exponential graphs respectively.

Let S denote a routing scheme on the graph with Su,v representing

the path for routing traffic between nodes u and v. We consider two
different routing schemes in this paper:

1. Shortest Path Routing: In this scheme, the route between
nodes u and v is given by the shortest path between the two
nodes in the graph G. When there are multiple shortest paths,
we consider the maximum degree of nodes along the paths
and pick the one with the highest maximum degree. This tie-
breaking rule is reflective of the typical policies employed in
the Internet—higher degree nodes are typically much larger
and much more well-provisioned providers than lower de-
gree nodes and are in general used as the primary connection
by stub networks. In Section 5.3, we consider alternate tie-
breaking schemes such as random choice and favoring lower
degree nodes, and show that the tie-breaking rule does not
effect our results much.

2. Policy Routing: In this scheme, traffic between nodes u
and v is routed according to BGP-policy. We classify edges
as peering edges or customer-provider edges (that is, one of
the ASes is a provider of the other). Typically, ASes in the
Internet only provide transit for traffic destined to their cus-
tomers, if any. This implies that no AS will carry traffic from
its peer to another of its peers or to its provider. Similarly,
no AS will carry traffic from one of its providers to one of
its peers or to its provider. These rules together give rise
to “valley-free” routing, in which each path contains a se-
quence of customer to provider edges, followed by at most
one peering edge, followed by provider to customer edges.
For a detailed description of the mechanism, the reader is
referred to [21].

A traffic vector τ is a vector containing
�
n
2 � non-negative terms,

with the term corresponding to (u, v) signifying the amount of
traffic between the nodes u and v. The congestion on an edge e
due to traffic vector τ and routing scheme S is given by the sum
of the total amount of traffic that uses the edge e: Cτ,S(e) =�

(u,v):e∈Su,v
τ (u, v).

We define the edge congestion due to traffic vector τ and routing
scheme S to be the maximum congestion on any edge in the graph:

EDGE-CONGESTIONτ,S(G) = max
e∈E

Cτ,S(e)

In this paper, we are interested in quantifying the congestion in a
graph with power law degree distribution, for shortest path and pol-
icy routing schemes, due to various different traffic vectors. Specif-
ically, we consider the following three traffic vectors:

1. Any-2-any: This corresponds to the all 1s traffic vector,
with a unit traffic between every pair of nodes.

2. Leaf-2-leaf: In order to define this model, we classify nodes
in the graph as stubs and carriers. Stubs are nodes that do
not have any customers. In other words, consider directing
all customer-provider edges in the graph from the customer
to the provider. Peering edges are considered to be bidirected
edges. Then, vertices with no incoming edges (correspond-
ing to ASes with no customers) are called stubs or leaves in
the graph. In this model, there is a unit of traffic between
every pair of stubs in the graph.
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Figure 1: Accuracy of heuristics: The graph on the left shows the accuracy of our simple stub identification algorithm. The graph
on the right shows the error in the maximum congestion due to our machine-learning based edge-classification algorithm.

3. Clout: This model is motivated by the fact that “well-
placed” sources, that is, sources that have a high degree and
are connected to high degree neighbors, are likely to send
larger amounts of traffic than other sources. Accordingly, in
this case, τ (u, v) = f(du, cu), where u and v are stubs, cu

is the average degree of the neighbors of u and f is an in-
creasing function. As in the previous case, there is no traffic
between nodes that are not stubs. In this paper, we only use
the function τ (u, v) = f(du, cu) = ducu for stubs u, v.

Admittedly, our choice of the models for Internet routing, as well
those for Internet traffic matrices, are somewhat unrealistic. How-
ever, we still use them in our analysis for reasons of simplicity,
analytical tractability and for lack of realistic Internet-wide traffic
traces. We believe that these models can be enriched with support
from appropriate wide-area measurements, and leave this as future
work. Despite these drawbacks, our work is significant, in that,
it is the first such effort to expose a fundamental weakness in the
macroscopic design of the Internet.

3.2 Simulation Set-up
Our simulations serve two purposes: (1) to corroborate our theoret-
ical results, and, (2) to characterize the congestion in more realistic
network models than those considered in our analysis.

Our simulations are run on two different sets of graphs. The first
set of graphs contains maps of the Internet AS topology collected
at 6 month intervals between Nov. 1997 and April 2002, available
at [2]. The number of nodes in any graph in this set is at most
13000, the maximum corresponding to the April 2002 set. The
second set of graphs contains synthetic power law graphs generated
by Inet-3.0 [23]. In this set, we generate graphs of sizes varying
from n = 4000 to 50000 nodes. In all our simulations, for any
metric of interest, for each n, we generate 5 different graphs of n
nodes3 and report the average of the metric on the 5 graphs.

As pointed out in Section 3.1, in order to implement the leaf-2-
leaf and clout models of communication, we need to identify stubs
in the network (note that these might have a degree greater than
1). Additionally, in order to implement policy routing, we need
to classify edges as peering or non-peering edges. In order to do

3By varying the random seed used by the Inet graph generator.

so, for the real AS graphs, we employ the relationship inference
algorithms of Gao [11] to label the edges of the graphs as peering
or customer-provider edges. These algorithms use global BGP ta-
bles [1] to infer relationships between nodes. Then, we use these
relationships to identify stubs (as nodes that are not providers of
any other node). Henceforth, we shall refer to the real AS graphs as
accurately labeled real graphs (ALRs). Labeling edges and identi-
fying stubs in the synthetic graphs of Inet is more tricky since we
do not have the corresponding BGP information. We will refer to
synthetic graphs, labeled using the algorithms described below, as
heuristically labeled synthetic graphs (HLSs). We use different al-
gorithms for classifying nodes (this is key to implementing leaf-to-
leaf communication) and edges (this is key to implementing policy
routing in synthetic graphs). We discuss each in turn below.

Stub identification. Here is how we identify stubs in synthetic
graphs: For any edge e = (v1, v2), we assign v1 to be the provider
of v2 whenever degree(v1) ≥ degree(v2). Notice that we do not
explicitly identify peering edges (although edges between nodes of
identical degree will be bidirectional). We then identify stubs in
graphs labeled as above.

We test the accuracy of this stub-identification algorithm on real
AS graphs by comparing the labels produced by our algorithm to
the true labels of ALRs, and compute the fraction of false positives
and false negatives4 in these. The results (see Figure 1(a)) show
that our simple algorithm has very low error rate. Notice that the
inference algorithms of Gao [11] have some error intrinsically and
hence some of the labels on the ALRs might actually be inaccurate.

Edge classification. Although for the purpose of classifying nodes,
we simply consider all edges in the graph to be customer-provider
edges, this simple scheme is not useful for the purposes of edge
classification – it results in a significant error on the maximum
congestion in real graphs employing policy routing. In order to im-
prove the accuracy of labeling edges, we resort to machine learning
algorithms.

Employing a good machine learning algorithm for the classification
proves to be a tough task, because there is a huge bias towards
4False positives are nodes that are identified as stubs by the algo-
rithm, but are not stubs in the ALR. False negatives are stubs in the
ALR that are not identifies as stubs by the algorithm.



customer-provider edges in the graphs (roughly 95% of the edges
are customer-provider edges). We use the 3-Nearest Neighbor [18]
algorithm for classifying edges as peering or non-peering: each
edge in the unlabeled graph is classified as a peering edge if among
the three edges most similar to it in the labeled graph, at least two
are peering edges. Similarity between edges is judged based on the
degrees of their respective end points and neighboring vertices. We
measure the accuracy of the procedure by applying it to real graphs
and then comparing the classification with true labels.

Our machine learning algorithm gives only 20% accuracy on peer-
ing edges and about 95% accuracy on customer-provider edges.
However, for the purposes of computing the worst congestion in
the graph, this low accuracy of labeling is in fact enough. Indeed,
as shown in Figure 1(b), labeling real graphs using our algorithm
results in an error of less than 10% in the worst congestion (while
employing policy routing) in comparison with the congestion com-
puted on ALRs. More importantly, the growth in congestion is
identical in the two cases.

We also report simulation results for congestion in power law trees
and exponential topologies. A comparison of the former with power
law graphs gives an insight into the significance of density of edges
in the graph. The latter model is interesting because most gener-
ative models for power law topologies result in exponential distri-
butions in the “fringe” cases. Our tree topologies evolve according
to the Preferential Connectivity model [7]. To generate exponential
degree distributions, we modify Inet-3.0 to generate an exponential
degree distribution first and then add edges in Inet’s usual way. For
a given n, the exponent β for the exponential graphs on n nodes
is chosen such that the total number of edges in the exponential
graph is very close to that of the corresponding power law graph
on n nodes5 . Note that due to a lack of real data for exponential
graphs, we do not have a good way of labeling edges and nodes in
them. We do not perform experiments with policy routing or the
leaf-2-leaf and clout traffic models for them.

4. ANALYTICAL RESULTS
In this section, we show that the expected maximum edge conges-
tion in a power law graph grows as Ω(n1+ 1

α ) with n, when we
route a unit flow between all pairs of vertices over the shortest path
between them.

We consider the Preferential Connectivity Generative Model of Barabasi
and Albert [7]. For completeness, we give a brief description of the
model. The Preferential Connectivity model is as follows: We use
a fixed constant parameter k. We start with a complete graph on
k +1 nodes. We call this set of nodes the core of the graph. Let the
graph at time i be denoted Gi. At time step i+1, one node is added
to the network. This node picks k nodes at random and connects to

them. Each vertex v has a probability di
v

Di of getting picked, where
di

v is the degree of the vertex at time i, and Di is the total degree
of all nodes at time i.

At the end of n steps, with k = 3, this process is known to generate
a power law degree distribution. We will use the fact that in a power
law graph with exponent α > 1, the maximum degree node has
degree n1/α.

In order to show a lower bound on the congestion of a power law

5We employ heuristic hill-climbing to estimate the value of the ex-
ponent β that minimizes error in the number of edges.

graph, our plan is roughly as follows. We consider the edge be-
tween the two highest degree nodes in the core—s1 and s2. Call
this edge e∗. For every vertex v in the graph, we consider the short-
est path tree Tv rooted at vertex v. We show that in expectation,
Ω(n) such trees contain the edge e∗. Moreover, in these trees, the
expected number of nodes in the subtree rooted at edge e∗ is at least
Ω(n

1
α ).

This gives us the lower bound in the following way: the routes
taken by each connection are precisely those defined by the above
shortest path trees; thus the congestion on any edge is the sum of
congestions on the edge in these shortest path trees. Now, as de-
scribed above, in Ω(n) shortest path trees, the congestion on edge

e∗ is at least Ω(n
1
α ). Therefore, the total congestion on edge e∗

is at least Ω(n1+ 1
α ). Note that e∗ is not necessarily the most con-

gested edge in the graph, so the maximum congestion could be even
worse than Ω(n1+ 1

α ). We get the following theorem:

THEOREM 1. The expected value of the maximum edge conges-
tion in a power law graph with exponent α grows as Ω(n1+ 1

α ) with
n, when we route a unit flow between all pairs of vertices over the
shortest path between them.

In the following, the distance between two nodes refers to the num-
ber of hops in the shortest path between the two nodes. We make
a few technical assumptions. We assume that 1 < α < 2, and s1

and s2 are the highest degree nodes in the graph. For reasonably
“small” numbers h, we assume that for any node v in the graph,
the number of nodes within distance h of v is less than the number
of nodes within distance h of s1. In other words, s1 is centrally
placed in the graph. Here, “small” refers to distance around s1 that
contains lesser than half the nodes. These assumptions are justi-
fied by experimental evidence and some prior analysis [10] of the
preferential connectivity generative model.

We begin with a technical lemma.

LEMMA 1. Let r be the maximum integer for which at least n
2

vertices lie at a distance r+1 or beyond from s1. Then, Ω(n) nodes
lie within distance r − 1 of every node in the core of the graph. In
particular, for any node in the core, Ω(n) nodes lie at a distance
exactly r − 1 from it.

PROOF. We prove that at least Ω(n) nodes lie within a distance
r− 2 of s1. Then, since all vertices in the core are neighbors of s1,
these Ω(n) nodes lie within a distance r − 1 of any vertex in the
core of the graph. We begin by showing that at least Ω(n) nodes lie
within a distance r of s1, and then extend this to nodes at distance
r − 1 and r − 2. Let level i denote the set of nodes at distance
exactly i from s1.

Remove from the graph all vertices that are at level r +2 or higher.
The remaining graph has at least n

2
vertices, by the definition of

r. Now, assume that there are at least n
10

vertices at level r +

1, otherwise, we already have > 2n
5

nodes in levels 0 through r,
implying that Ω(n) nodes lie within distance r of s1.

Now, let the number of nodes at level r be x. All the nodes in level
r + 1 in the residual graph are connected to nodes in level r. So,



their number is at most the size of the neighbor set of level r. Now,
in the best possible case, the nodes in level r could be the highest
degree nodes in the graph. In this case, the minimum degree of any

node in level r is given by y with ny−α = x. We get y =
�

n
x � 1

α .

Now, the size of the neighborhood of level r is at most the total
degree of nodes in the level. This is given by� n

1
α

y

zαnz−α−1dz =
αn

α − 1 � y1−α − n
1
α
−1 �

=
αn

1
α

α − 1
(x1− 1

α − 1)

This quantity is at least n
10

by our assumption above. Thus we get

that x = βn, where β =
�

1
10

(1 − 1
α
) � α

α−1 . This is a constant
fraction of n.

Now, we can apply the same technique to compute the number of
nodes at level r − 1 and then, r − 2. We get that the number of

nodes at level r − 2 is at least
�
βα(1 − 1

α
) �

α

(α−1)2 n, with β as
given above.

Let r be the distance defined by the above lemma. Let Vr denote the
set of nodes that are within distance r− 1 of every node in the core
of the graph (see Figure 2). By lemma 1, we have |Vr| = Ω(n).
Now, the proof of the theorem has two parts. The first shows that
many trees Tv corresponding to v ∈ Vr contain the edge e∗.
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Figure 2: A pictorial view of the graph and the set Vr

LEMMA 2. The expected number of shortest path trees Tv, cor-
responding to nodes v ∈ Vr , that contain the edge e∗ is Ω(n).

PROOF. Consider the tree Tv for some node v ∈ Vr. This is
essentially a breadth first tree starting from v. If s1 and s2 are at
the same level in the tree, then the edge e∗ is not contained in the
tree. On the other hand, if the nodes are at different depths in this
tree, let s1 be closer to v without loss of generality. In this case,
one shortest path from v to s2 is via s1 and since we break ties

in favor of paths with high degree nodes, Tv will contain this path
via s1. This implies that e∗ is contained in the tree. Thus, trees
containing e∗ correspond to those v that are not equidistant from
s1 and s2. We now show that there are Ω(n) nodes v ∈ Vr that are
not equidistant from s1 and s2. This implies the result.

First, observe that if we pick a random node in the graph, then
conditioned on the fact that this node lies at a distance d − 1, d
or d + 1 from s2, there is at most a constant probability that this
node lies at distance d from s2. This is because using an argument
congruent to that in lemma 1, we can show that the number of nodes
at distance d − 1 from s2 is a constant fraction of the number of
nodes at distance d.

Now, consider the nodes at distance r − 2 from s1. These are at
least Ω(n) in number (lemma 1) and lie in Vr. Given that a node
v is picked from this set, v is at a distance r − 3, r − 2 or r − 1
from s2. By the above argument, the probability that this node lies
at distance r − 2 from s2 is at most a constant. Thus Ω(n) nodes
in this set are not at distance r − 2 from s2 and we are done.

Next we prove that in any tree Tv (v ∈ Vr) containing e∗, e∗ has a
high congestion.

LEMMA 3. Let Tv be a shortest path tree, corresponding to v ∈
Vr , that contains the edge e∗. Then the expected congestion on
edge e∗ in this tree is Ω(n1/α).

PROOF. Without loss of generality, let s1 be closer to v than s2.
We show that the degree of s2 in Tv is Ω(n1/α). This implies the
result. Let level i denote the set of nodes at distance i from v in the
tree.

Let d be the distance between v and s2. All neighbors of s2 lie in
levels ≥ d − 1 in the tree. Note that d ≤ r − 1. Therefore by
our assumption, the number of nodes lying at levels ≥ d + 1 in the
tree is at least the number of nodes at distance r or greater from s1.
This number is at least n

2
, by the definition of r. Let W denote the

set of nodes that lie at levels ≥ d− 1 in the tree, and that arrived in
the graph after step n

4
. Note that there are at least n

4
nodes at level

d + 1 or higher that are in set W . Therefore, a constant fraction of
the nodes in W lie at levels ≥ d + 1 in the tree.

First observe that the probability that a node entering the graph at
time step t attaches to s2 is roughly t

1
α
−1. This probability in-

creases as the graph becomes larger and larger, as this is related.
By removing the first quarter of the nodes entering the graph from
consideration, and using the fact that these nodes are less likely to
attach to s2 than nodes arriving later, we conclude that the number
of neighbors of s2 that arrive after step n/4 is at least 3/4th of the
total degree of s2.

Now all neighbors of s2 lie at levels ≥ d − 1 in the tree. Then,
by the observation in the previous paragraph, we have that at least
3/4th of the neighbors of s2 lie in the set W . Note that when a
node in W entered the graph, the size of the graph varied between
n
4

and n nodes. The probability that this node attached to s2 varied

between n
1
α
−1 and (n

4
)

1
α
−1 < 4n

1
α
−1. Thus each node in W is

roughly equally likely to attach to s2 (within a factor of 4).

Now the degree of s2 in the tree is at least the number of its neigh-
bors in W that lie at levels ≥ d + 1. Using the fact that a constant



0

0.2

0.4

0.6

0.8

1

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
ra

ct
io

n 
of

 N
od

es

Number of nodes

Fraction of Nodes Equidistant from Nodes s1 and s2

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

R
at

io
 o

f S
ho

rt
es

t P
at

h 
T

re
e 

D
eg

re
e

to
 O

rig
in

al
 D

eg
re

e

Number of Nodes

Node s1
Node s2

(a) (b)

Figure 3: (a) Fraction of shortest path trees that do not contain the edge e∗. (b) Congestion on edge e∗ in a random shortest path
tree: This figure plots the ratio of degrees of s1 and s2 in a random shortest path tree to their degrees in the graph.

fraction of the nodes in W lie at levels ≥ d + 1 in the tree, we get
that a constant fraction of the neighbors of s2 lie at levels ≥ d + 1
in the tree, in expectation. The result follows from the fact that the
degree of s2 is Ω(n

1
α ).

4.1 Experimental Support
In this section, we report results from experiments conducted to
validate that the theoretical results obtained above hold not just
for the Preferential Connectivity Model, but also for Internet-like
graphs generated by Inet-3.0.

Unfortunately, the graphs generated by Inet-3.0, have different val-
ues of α for different n. This is consistent with the observed behav-
ior of the Internet, that α decreases with time. (We discuss this in
further detail in the following section). In order to validate our the-
oretical results and observe the asymptotic behavior of congestion
for a fixed value of α, we modify the Inet-3.0 code, for the purposes
of this section, so that it always uses a fixed value of α = 1.23, in-
stead of recalculating it for every value of n. Each reported value
is an average over multiple runs of the simulation, corresponding
to different random seeds used for generating the graphs.

Figure 3(a) plots the fraction of nodes that are equidistant from
s1 and s2. Note that this fraction always lies below 0.4 and is
consistent with our result in lemma 2 that at least a constant fraction
of the trees, n

2
in this case, contain the edge e∗.

Figure 3(b) compares the degrees of the two highest degree nodes
in the graph to their corresponding degrees in the shortest path tree
corresponding to some random node v. We find that the ratio of the
two degrees for s1 is consistently above 0.9. Similarly, the ratio of
the two degrees for s2 is always above 0.8 and increasing. This is
consistent with the findings of lemma 3.

Finally, we plot the maximum congestion in graphs generated by
Inet-3.0, as a function of the number of nodes in the graph, in Fig-
ure 4. Note that the maximum congestion scales roughly as n1.8,
which is exactly n1+1/α for the given value of α. This corroborates
our finding in Theorem 1.

5. SIMULATION RESULTS
In this section, we present the results from our simulation study
over Inet-generated graphs. Henceforth, we shall use the graphs
generated by Inet 3.0 as is, that is, we do not alter the way Inet
chooses α to depend on n. (Recall that, in contrast, the simulation
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Figure 4: Maximum congestion as a function of n, in Inet-3.0
generated graphs, with α = 1.23. The figure also plots four
other functions to aid comparison – n1.4, n1.6, n1.8, n2.

results in the previous section use the modified Inet 3.0 code which
employs the same value of α for all n. We do not show results for
such graphs.) In what follows, we first show results for shortest-
path routing, followed by policy-based routing. In both cases, we
first present results for the any-2-any communication model, then
for the leaf-2-leaf model and finally for the clout model.

5.1 Shortest-Path Routing
Figure 5(a) shows the maximum congestion in power law graphs
generated by Inet-3.0 as a function of the number of nodes. We
use the any-2-any model of communication here. From the trend
in the graph, it is clear that the maximum congestion in Internet-
like power-law graphs scales as n1+Ω(1) or worse6. Notice also
that the slope of the maximum congestion curve is slightly increas-
ing. This may be explained as follows. As mentioned earlier, Inet-
3.0 chooses the exponent of the power law degree distribution as a
function of the number of nodes n: α = at+b, where t = 1

s
log n

n0
,

a = −0.00324, b = 1.223, s = 0.0281 and n0 = 3037.7 Notice
that the absolute value of α decreases as n increases, and so, as our
lower bound of Ω(n1+1/α) suggests, the slope of the function on a
log-log plot should steadily increase. In fact around n = 28000, α
becomes less than 1 and at this point we expect the curve to scale

6Here, and henceforth, we use the term “Internet-like power-law
graphs” or “Internet-like graphs” to refer to synthetically generated
AS-level topologies.
7a, b and s are empirically determined constants. n0 is the number
of ASes in the Internet in November 1997.
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Figure 5: Edge congestion with shortest path routing and any-2-any communication: The figure on the left shows the maximum edge
congestion. The figure on the right shows the distribution of congestion over all links, with the number of links normalized to 1 in
each case. The figure on the left also plots the worst congestion for exponential graphs and preferential connectivity trees.

roughly as n2, which is the worst possible rate of growth of con-
gestion.

The figure also shows the maximum congestion in power law trees
and exponential graphs. The power law trees we generate, have
the exponent α between 1.66 and 1.8, the value increasing with
the number of nodes in the tree. These exponents are significantly
higher than those of the corresponding power law graphs. Notice
that the edge congestion on power law trees grows much faster as
compared to graphs which is expected since trees have much fewer
edges. Our lower bound on the maximum congestion, which holds
equally well for trees satisfying power law degree distributions,
predicts the slope of the curve for trees to be at least 1.5, which
is consistent with the above graph.

On the other hand, we notice that edge congestion in exponential
graphs is much smaller compared to power law graphs. In fact,
edge congestion in exponential graphs has a less than linear growth
(i.e., scales as O(n)). This could be explained intuitively as fol-
lows: Recall that for each n, we choose the exponent β of the ex-
ponential distribution so as to match the total number of edges of
the corresponding n-node power law graph. Because the power law
distribution has a heavier tail compared to the exponential distribu-
tion, the latter has more edges incident on low degree nodes. Con-
sequently, low degree vertices in an exponential graph are better
connected to other low degree vertices. Edges incident on low de-
gree nodes “absorb” a large amount of congestion leading to lower
congestion on edges incident on high degree nodes. As n increases
the degree distribution becomes more and more even, resulting in a
very slow increase in congestion.

In Figure 5(b), we show the congestion across all links in a power
law graph for varying numbers of nodes. Notice that at higher num-
bers of nodes, the distribution of congestion becomes more and
more uneven.

The corresponding set of graphs for the leaf-2-leaf communication
model is shown in Figure 6. The worst congestion is consistently
about 0.8 times the worst congestion for the any-2-any model (not
explicitly shown in the graph). The congestion across all the edges,
plotted in Figure 6(b), also displays a similar trend as for the any-2-
any model – the distribution becomes more uneven as the number
of nodes increases.

The results for the clout model are more interesting with the re-
sulting maximum congestion in the graph scaling much worse than
before. Indeed, as Figure 7(a) shows, the maximum congestion
scales worse than n5. This is because the total traffic in the graph
also grows roughly as O(n4). Again, as with the any-2-any model,
the smaller absolute values of α in the graphs generated by Inet-3.0
for larger values of n is a plausible explanation for the increasing
slope of the curve.

The graph of the congestion across all edges in this model, shown in
Figure 7(b), is equally interesting. Compared to Figure 6(b) of the
leaf-2-leaf model, Figure 7(b) looks very different. Visual inspec-
tion of the two figures reveals that the unevenness in congestion is
much more pronounced in the clout model of communication. To
summarize, the non-uniform traffic demand distribution only seems
to exacerbate the already poor congestion scaling of the Internet-
like graphs.

5.2 Policy-Based Routing
Figure 8 shows the maximum edge congestion for the three com-
munication models when policy based routing is used. For the any-
2-any and leaf-2-leaf models, shown in Figure 8(a), the maximum
edge congestion scales almost identically to that for shortest path
routing (compared with Figure 5(a) and 6(a)). However, somewhat
surprisingly, for the clout model, congestion under policy based
routing scales only as n3 compared to over n5 for shortest-path
routing.

Figure 9(a) compares maximum congestion obtained for policy rout-
ing to that for shortest path routing. Notice that the two curves are
almost overlapping, although policy routing seems to be slightly
worse when the graph is small and gets better as the graph grows
larger. This observation can be explained as follows: policy routing
disallows certain paths from being used and could thus, in general,
force connections to be routed over longer paths. This would in-
crease the overall traffic in the network leading to higher conges-
tion, especially for smaller numbers of nodes. However, as the size
of the graph grows, there are more and more shortest paths avail-
able. As a result, the constraints placed by policy-based routing
might not have any significant impact on the path lengths in the
graph. In fact, at higher numbers of nodes, policy routing could
provide better congestion properties, albeit only marginally differ-
ent, than shortest path routing. This is because while shortest path
routing always picks paths that go over high degree nodes, a frac-
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Figure 6: Edge congestion with shortest path routing and leaf-2-leaf communication
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Figure 7: Edge congestion with shortest path routing and clout model of communication
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Figure 8: Maximum Edge congestion with policy-based routing in HLSs

tion of these paths might not be allowed by policy routing as they
could involve more than one peering edge. In this case, policy rout-
ing moves traffic away from the hot-spots, thereby, partially allevi-
ating the problem.

In order to verify that the above observation is not just an artifact of
our machine learning-based labeling algorithms, we plot the same
curves for ALRs in Figure 9(b). These display exactly the same
trend—policy routing starts out being worse than shortest path, but
gets marginally better as n increases. To summarize, policy routing
does not worsen the congestion in Internet-like graphs, contrary to
what common intuition might suggest. In fact, policy routing might
perform marginally better than shortest path routing.

5.3 Shortest Path Routing Variations
As mentioned in Section 3.1, in the shortest path routing scheme,
whenever there are multiple shortest paths between two nodes, we
pick the path that contains higher degree nodes to route the flow
between them. It may appear that the poor congestion properties
of powerlaw graphs are a result of this tie breaking rule, and an
alternate rule that favors low degree nodes may perform better by
alleviating the congestion on high degree nodes.

In order to confirm that our results are robust with respect to the
tie-breaking rule, we performed the experiments with two variants
of the tie-breaking rule: favoring paths that contain lower degree
nodes, and choosing a random shortest path when there is a choice
of more than one. We report the results below.
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Figure 10: Edge congestion with shortest path routing and any-
2-any communication, with α = 1.23. The figure plots the three
different variations of breaking ties in shortest path routing.

For these experiments, we set α to be a constant value of 1.23
in Inet 3.0 and compare the resulting relations between maximum
edge congestion and the number of nodes. As Figure 10 depicts,
there is no noticeable difference between the three types of tie-
breaking methods. The same holds true for Leaf-2-leaf and Clout
models of traffic (results are omitted for brevity). This is because
very few vertex pairs have multiple shortest paths between them.
We thus conclude that our scheme of breaking ties by favoring
paths containing higher degree nodes does not skew our results.

6. ALLEVIATING CONGESTION
BY ADDING PARALLEL LINKS

Our analytical and simulation results have shown that the maximum
congestion in Internet-like power-law graphs scales rather poorly
in the graph size – Ω(n1+Ω(1)). It is therefore possible that as the
Internet AS-level graph grows in its size, the uniform scaling in the
capacities of all links in the graph according to Moore’s Law, might
not be enough to sustain the increasing congestion in the graph.
Our results show that edges between high degree nodes, which are
typically peer edges between backbone carriers in the Internet core,
are likely to get congested more quickly over time than the edges.
In such a situation, to enhance the scaling properties of the network,
it might become necessary to either change the routing algorithm
employed by the nodes or alter the macroscopic structure of the
graph.

We address the latter issue in this section. In particular, we exam-
ine ways in which additional links can be placed in the network, so
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Figure 11: Edge Congestion versus the average degree of the
nodes incident on the edge (any-2-any model with shortest path
routing). The congestion is higher on edges with a high average
degree.

as to contain the effect of bad scaling of the maximum congestion.
Specifically, we consider the model in which each link can be re-
placed by multiple links (between the same pair of nodes) that can
share the traffic load8. Ideally, we would like to provide sufficient
parallel links between a pair of nodes, so that the total congestion
on the corresponding edge divided equally among these parallel
links, even in the worst case, grows at about the same rate as the
size of the network. The number of parallel links between a pair
of nodes may need to change as the network grows to achieve this
goal. Notice that this change does alter the degree-structure of the
graph, but the alteration is only due to increased connectivity be-
tween already adjacent nodes9. This does not require new edges
between nodes that were not adjacent before.

In some ways, the network, at an AS level, already incorporates
this concept of parallel links. For example, the power law structure
of the AS graph only considers the adjacency of ASes: the link be-
tween Sprint and AT&T, for instance, is modelled by a single edge.
However, in the real world the Sprint and AT&T ASes are con-
nected to each other in a large number of places around the world.
However, not much is known about the degree of such connectivity
in the Internet today.

8For results on alternate methods of alleviating congestion, please
refer to a full version of this paper [4].
9Note that the routing is still done based on the original degrees of
nodes.



In order to guide the addition of parallel edges between adjacent
nodes, we first observe that there is clear correlation between the
average degree and edge congestion. Figure 11 plots the congestion
of each edge against the average degree of the nodes on which it is
incident, for shortest path routing on an Inet generated graph of
30000 nodes. The form of communication used here is any-2-any.
The figure shows that edges incident on high degree nodes have
much higher congestion than those incident on lower degree nodes.
This suggests that a good choice for the number of parallel links
substituting any edge in the graph, could depend on the degrees of
nodes which an edge connects.
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Figure 12: Maximum relative congestion for shortest path rout-
ing, any-2-any model, when parallel links are added to the
graph using the sum, product and max functions.

We examine several ways of adding parallel links based on the
above observation. In particular, we let the number of links be-
tween two nodes be some function of the degrees of the two nodes
and we consider the following functions: (1) sum of degrees of the
two nodes, (2) product of the degrees of the two nodes, (3) maxi-
mum of the two degrees and, (4) minimum of the two degrees. For
each of these functions, we compute the maximum relative conges-
tion, that is, the maximum over all edges, of the congestion on the
edge divided by the number of parallel links corresponding to each
edge. In what follows, we show simulation results about how the
maximum relative congestion scales for shortest path routing on
power law graphs within the any-2-any model of communication.

The results are shown in Figure 12. Notice that, surprisingly, when
parallel links are added according to any of the above four functions
the maximum relative congestion in the graph scales linearly. This
implies that adding parallelism in the edges of Internet-like graphs
according to the above simple functions is enough to ensure that
the scaling of link capacities according to Moore’s law can maintain
uniform levels of congestion in the network and avoid any potential
hot-spots.

7. SUMMARY
In this paper, we addressed the question of how the worst con-
gestion in Internet-like graphs (specifically at the AS-level) scales
with the graph size. Using a combination of analytical arguments
and simulation experiments, we show that maximum congestion
scales poorly in Internet-like power law graphs. Our simulation re-
sults show that the non-uniform demand distribution between nodes
only exacerbates the congestion scaling. However, we find, surpris-
ingly, that policy routing between adjacent ASes may not worsen
the congestion scaling on power law graphs and might, in fact, be
marginally better when compared to shortest-path routing.

Our results show that, with the current trend of the growth of the
Internet, it is possible that some locations in the network might
eventually become perpetual hot-spots. Fortunately, however, there
is an intuitively simple fix to this problem. Adding parallel links
between adjacent nodes (ASes) in the graph according to simple
functions of their degrees will help the maximum congestion in the
graph scale linearly. In this case, it might not be necessary for some
links in the graph to grow in capacity at a faster rate than the others.
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