The Multiple Gamma and Related Functions

Bibliography:

  1. V. S. Adamchik, Polygamma functions of negative order, J. Comp. and Appl. Math., 100(1998) 191-199.

  2. V. S. Adamchik, On the Barnes function, in Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, London, Ontario; July 22-25, 2001, ACM Press, New York, 2001, 15-20.

  3. V. S. Adamchik, H. M. Srivastava, Some series of the zeta and related functions, Analysis (1998) 131-144.

  4. V.B. Adesi, S. Zerbini, Analytic continuation of the Hurwitz zeta function with physical application, Journal of Mathematical Physics 43, no. 7 (2002) 3759-65.

  5. M. Aigner, A characterization of the Bell numbers, Discrete Math., 205 (1999) 207-210.

  6. W. Alexejewsky, Ueber eine Classe von Funktionen, die der Gammafunktion analog sind, Leipzig Weidmanncshe Buchhandluns 46 (1894) 268-275.

  7. G. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, 1999.

  8. T.M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.

  9. T. M. Apostol, Formulas for higher derivatives of the Riemann zeta function, Math. Comp., 44, no. 169 (1985) 223-232.

  10. E. Artin, The Gamma function, Holt Rineart and Winston, 1964.

  11. R. Ayoub, Euler and the Zeta function, Amer. Math. Monthly 81 (1974) 1067-1086.

  12. U. Balakrishnan, Y.-F.S. Petermann, Asymptotic estimates for a class of summatory functions, Journal of Number Theory 70, no. 1 (1998) 1-36.

  13. E. W. Barnes, The theory of the G-finction, Quart. J. Math. 31 (1899) 264-314.

  14. E. W. Barnes, Genesis of the double gamma function, Proc. London Math. Soc. 31 (1900) 358-381.

  15. E. W. Barnes, The theory of the double gamma function, Philos. Trans. Roy. Soc. ser. A 196 (1901) 265-388.

  16. E. W. Barnes, On the theory of the multiple gamma function, Philos. Trans. Roy. Soc. ser. A 19 (1904) 374-439.

  17. E. Barouch, B. M. McCoy and T. T. Wu, Zero-field susceptibility of the two dimensional Ising model near Tc, Phys. Rev. Lett. 31 (1973) 1409-1411.

  18. F.A. Barone, C. Farina, The zeta function method and the harmonic oscillator propagator, American Journal of Physics 69, no. 2 (2001) 232-235.

  19. H. Bateman, A. Erdelyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, 1953.

  20. C.M. Bender, Q. Wang, Comment on a recent paper by Mezincescu, Journal of Physics A 34, no. 15 (2001) 3325-3328.

  21. L. Bendersky, Sur la fonction gamma généralisée, Acta Math. 61 (1933) 263-322.

  22. B. C. Berndt, Ramanujan's Notebooks, Part I, Springer-Verlag, 1985.

  23. M.V. Berry, The Riemann-Siegel expansion for the zeta function: High orders and remainders, Proceedings. Mathematical and physical sciences / 450, no. 1939 (1995) 439-462.

  24. K. Billingham, Uniform asymptotic expansions for the Barnes double gamma function, Proceedings: Mathematical, Physical & Engineering Sciences 453, no. 1964 (1997) 1817-1829.

  25. E.B. Bogomolny, J.P. Keating, Random matrix theory and the Riemann zeros II : n-point correlations, Hewlett Packard, Bristol England, 1996.

  26. H.E. Boos, V.E. Korepin, Quantum spin chains and Riemann zeta function with odd arguments, Journal of Physics A 34, no. 26 (2001) 5311-5316.

  27. J.M. Borwein, D.M. Bradley, R.E. Crandall, Computational strategies for the Riemann zeta function, Journal of Computational and Applied Mathematics 121, no. 1-2 (2000) 247-296.

  28. P.Borwein, W. Dykshoorn, An interesting infinite product, J. Math. Anal. and Appl.. 179 (1993) 203-207.

  29. E. Brezin, S. Hikami, Logarithmic moments of characteristic polynomials of random matrices, Physica A 279, no. 1-4 (2000) 333-341.

  30. P. Cassou-Nogues, Analogues p-adiques des functions G-multiples, in “Journees Arithmetiques de Luminy” (Collq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), pp.43-55, Asterisque 61, Soc. Math. France, Paris (1979).

  31. M.-P. Chen, H.M. Srivastava, Some families of series representations for the Reimann (3), Resultate Math. 33 (1998) 179-197.

  32. J.S.Choi, Ph.D. thesis, Florida State Univ., 1991.

  33. J. Choi, On a generalization of the Hurwitz zeta function (s, a), Indian J. Pure Appl. Math. 23 (1992) 83-91.

  34. J. Choi, J.R. Quine, E. W. Barnes' approach of the multiple gamma functions, J. Korean Math. Soc. 29, no. 1 (1992) 127-140.

  35. J. Choi, Multiple gamma functions and determinants of Laplacians, Automorphic forms and related topics (Seoul, 1993), 5-16, Pyungsan Inst. Math. Sci., Seoul, 199?.

  36. J. Choi, Determinant of Laplacian on S^3, Math. Japon. 40 (1994) 155-166.

  37. J.Choi and Y.M. Nam, The First Eulerian integral, Kyushu J. Math. 49 (1995) 421-427.

  38. Choi, H. M. Srivastava, J. R. Quine, Some series involving the zeta function, Bull. Austral. Math. Soc. 51 (1995) 383-393.

  39. J. Choi, A duplication formula for the double gamma function $\Gamma\sb 2$, Bull. Korean Math. Soc. 33, no. 2 (1996) 289-294.

  40. J. Choi, Explicit formulas for Bernoulli polynomials of order n, Indian J. Pure Appl. Math. 27 (1996) 667-674.

  41. J. Choi, C. Nash, Integral representations of the Kinkelin's constant A, Math. Japon. 45 (1997) 223-230.

  42. J. Choi, T.Y. Seo, The double Gamma function, East Asian Math. J. 13 (1997) 159-174.

  43. J. Choi, H.M. Srivastava, Sums Associated with the Zeta Function, Journal of Mathematical Analysis and Applications 206, no. 1 (1997) 103-120.

  44. J. Choi, The Catalan's constant and series involving the zeta function, Commun. Korean Math. Soc. 13, no. 2 (1998) 435-443.

  45. J. Choi, H.M. Srivastava, Nan-Yue Zhang, Integrals involving a function associated with the Euler-Maclaurin summation formula, Applied Mathematics and Computation 93, no. 2-3 (1998) 101-116.

  46. J. Choi, T.Y. Seo, Identities involving series of the Riemann zeta function, Indian journal of pure and applied mathematics 30, no. 7 (1999) 649-654.

  47. J. Choi, H.M. Srivastava, An application of the theory of the double gamma function, Kyushu J. Math. 53, no. 1 (1999) 209-222.

  48. J. Choi, H.M. Srivastava, Certain Classes of Series Involving the Zeta Function, Journal of Mathematical Analysis and Applications 231, no. 1 (1999) 91-117.

  49. J. Choi, H.M. Srivastava, Certain classes of series associated with the Zeta function and multiple gamma functions, Journal of Computational and Applied Mathematics 118, no. 1-2 (2000) 87-109.

  50. J. Choi, H. M. Srivastava, V.S. Adamchik, Multiple Gamma and related functions, Appl. Math. and Comp. 134 (2003) 515-533.

  51. B.K. Choudhury, The Riemann zeta-function and its derivatives, Proceedings of the Royal Society of London Series A 450, no. 1940 (1995) 477.

  52. L. Comtet, Advanced Combinatorics, Reidel, 1974.

  53. J. B. Conway, Functions of One Complex Variable (2nd Ed.) Springer-Verlag, 1978.

  54. J. B. Conway, D. W Farmer, Mean Values of L-functions and Symmetry, IMNR 2000: 17 (2000), 883-908.

  55. R.E. Crandall, On the quantum zeta function, Journal of Physics A 29, no. 21 (1996) 6795-6816.

  56. D. Cvijovic, J. Klinowski, Closed-form summation of some trigonometric series, Math. Comput. 64 (1995) 205-210.

  57. D. Cvijovic, J. Klinowski, Values of the Legendre chi and Hurwitz zeta functions at rational arguments, Mathematics of Computation 68, no. 228 (1999) 1623-1630.

  58. D. Cvijovic, J. Klinowski, Integral representations of the Riemann zeta function for odd integer arguments, Journal of Computational and Applied Mathematics 142, no. 2 (2002) 435-439.

  59. P. Dahlqvist, The role of singularities in chaotic spectroscopy, Chaos, Solitons and Fractals 8, no. 7-8 (1997) 1011-1029.

  60. E. D’Hoker and D.H. Phong, Multiloop amplitudes for the bosonic Polyakov string, Nuclear Phys. B 269 (1986) 205-234.

  61. E. D’Hoker and D.H. Phong, On Determinants of Laplacians on Riemann surface, Comm. Math. Phys. 104 (1986) 537-545.

  62. E. D’Hoker and D.H. Phong, Functional determinants on Mandelstam diagrams, Comm. Math. Phys. 124 (1989) 629-645.

  63. A. Dietmar, A determinant formula for the generalized Selberg zeta-function, The quarterly journal of mathematics 47, no. 188 (1996) 435-455.

  64. K. Dilcher, On generalized gamma functions related to the Laurent coefficients of the Riemann zeta function, Aequationes Math. 48 (1994) 55-85.

  65. J. Dufresnoy et Ch. Pisot, Sur la relation f(x +1) – f(x) = (x), Bulletin de la Societe Mathematique de Belgique 15 (1963) 259-270.

  66. I. Efrat, Determinants of Laplacians on surfaces of finite volumes, ibid. 119 (1998), 443-451; erratum, ibid. 138 (1991) 607.

  67. S. Egami, K. Matsumoto, Asymptotic Expansions of Multiple Zeta Functions and Power Mean Values of Hurwitz Zeta Functions, Journal of the London Mathematical Society 66, no. 1 (2002) 41-60.

  68. E. Elizalde, A simple recurrence for the higher derivatives of the Hurwitz zeta function, Journal of Mathematical Physics 34, no. 7 (1993) 3222-3226.

  69. E. Elizalde, L. Vanzo, S. Zerbini, Zeta-Function Regularization, the Multiplicative Anomaly and the Wodzicki Residue, Communications in mathematical physics 194, no. 3 (1998) 613-630.

  70. E. Elizalde, On the concept of determinant for the differential operators of quantum physics, JHEP-Journal of High Energy Physics (1999).

  71. E. Elizalde, Zeta functions: formulas and applications, Journal of Computational and Applied Mathematics 118, no. 1-2 (2000) 125-142.

  72. E. Elizalde, Some uses of zeta -regularization in quantum gravity and cosmology, Gravitation & Cosmology 8, no. 1-2 (2002) 43-48.

  73. A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953.

  74. O. Espinosa, V.H. Moll, On Some Integrals Involving the Hurwitz Zeta Function: Part 2, The Ramanujan Journal 6, no. 4 (2002) 449-468.

  75. J.A. Ewell, On the Zeta Function Values z(2k + 1), k = 1,2,..., The Rocky Mountain Journal of Mathematics 25, no. 3 (1995) 1003-1012.

  76. C. Ferreira, J. Lopez, An Asymptotic Expansion of the Double Gamma Function, Journal of Approximation Theory 111, no. 2 (2001) 298-314.

  77. C. Ferreira, J. Lopez, Asymptotic expansions of the double Zeta function, Journal of Mathematical Analysis and Applications 274, no. 1 (2002) 134-158.

  78. A.R. Forsyth, Theory of Function of a Complex Variable, Cambridge University Press, 1900.

  79. J.W.L. Glaisher, On a numerical continued product, Messenger of Math., 6 (1877) 71-76.

  80. J.W.L. Glaisher, On the product 1^1 2^2 3^3…n^n, Messenger of Math. 7 (1887) 43-47.

  81. J.W.L. Glaisher, On certain numerical products, Messenger of Math. 23 (1893) 145-175.

  82. J.W.L. Glaisher, On the constant which occurs in the formula for 1^1·2^2·3^3·…·n^n, Messenger of Math. 24 (1894) 1-16.

  83. J.W.L. Glaisher, On products and series involving prime numbers only, Quart. J. Math. 26 (1983) 1-74.

  84. R. W. Gosper, int_{\frac{\pi}{4}}^{\frac{\pi}{6}}\log \Gamma (x) dx, In Special functions,q-series and related topics, pages 71-76. M.Ismail, D.Masson, M. Rahman editors. The Fields Institute Communications, AMS, 14 (1997).

  85. I.S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Sixth Ed., Academic Press, 2000.

  86. D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms, Birkhäuser, 1981.

  87. C.C. Grosjean, Formulae concerning the computation of the Clausen integral CI2, J. Comput. Appl. Math. 11 (1984) 331-342.

  88. C.R. Guo, On the zeros of the derivative of the Riemann zeta function, Proceedings of the London Mathematical Society 72, no. 1 (1996) 28-62.

  89. F. H. Jackson, A generalization of the functions Gamma(x) and x^n, Proc. Roy. Soc. London, 74.

  90. E.R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975.

  91. V.O. Holder, Uber eine transcendente function, Gottingen, Dieterichsche Verlags-Buchhandlung (1886) 514-522.

  92. J. Honkala, On generalized zeta functions of formal languages and series, Discrete Applied Mathematics 32, no. 2 (1991) 141-153.

  93. Hughes, Keating, N. O'Connell, Random matrix theory and the derivative of the Riemann zeta function, Proceedings: Mathematical, Physical & Engineering Sciences 456, no. 2003 (2000) 2611-2627.

  94. S. Hwang, R. Marnelius, P. Saltsidis, A general BRST approach to string theories with zeta function regularizations, Journal of Mathematical Physics 40, no. 10 (1999) 4639-4657.

  95. S. G. Kanellos, Mathematical Researches and Results, Athens, 1965 (in Greek).

  96. S. Kanemitsu, H. Kumagai, M. Yoshimoto, On Rapidly Convergent Series Expressions for Zeta- and L-Values, and Log Sine Integrals, The Ramanujan Journal 5, no. 1 (2001) 91-104.

  97. S. Kanemitsu, H. Kumagai, M. Yoshimoto, Sums Involving the Hurwitz Zeta Function, The Ramanujan Journal 5, no. 1 (2001) 5-19.

  98. E.A. Karatsuba, Fast evaluation of zeta (3), Problems of Information Transmission 29, no. 1 (1993) 58-62.

  99. E.A. Karatsuba, Fast calculation of the Riemann zeta function zeta (s) for integer values of the argument s, Problems of Information Transmission 31, no. 4 (1995) 353-362.

  100. E.A. Karatsuba, Automata Theory - Fast Evaluation of the Hurwitz Zeta Function and Dirichlet L-Series, Problems of information transmission 34, no. 4 (1998) 342-353.

  101. E.A. Karatsuba, Fast evaluation of the Hurwitz zeta function and Dirichlet L-series Karatsuba, Source: Problems of Information Transmission 34, no. 4 (1998) 342-353.

  102. K. Katayama, M. Ohtsuki, On the multiple gamma-functions, Tokyo J. Math 21, no. 1 (1998) 159-182.

  103. K. Katayama, On the special functions higher than the multiple gamma-functions, Tokyo J. Math. 23, no. 2 (2000) 325-349.

  104. J. P. Keating, N. C. Snaith, Random matrix theory and $\zeta(1/2 + i*t)$, Commun. Math. Phys. 214 (2000) 57-89.

  105. J. P. Keating, N. C. Snaith, Random matrix theory and L-functions at $s=\frac{1}{2}$, Commun. Math. Phys. 214 (2000) 91-110.

  106. T. Kim, A note on q-multiple zeta functions, Journal of Physics A 34, no. 46 (2001) 643-646.

  107. V.H. Kinkelin, Ueber eine mit der Gamma function verwandte Transcendente und deren Anwendung auf die Integralrechnung, J.Reine Angew. Math. 57 (1860) 122-158.

  108. K. S. Kolbig, The polygamma function and the derivatives of the cotangent function for rational arguments, CERN-IT-Reports, CERN-CN-96-005, 1996.

  109. H. Kumagai, The determinant of the Laplacian on the n-sphere, Acta Arithmetica, XCI.3 (1999) 199-208.

  110. N. Kurokawa, Multiple sine functions and Selberg zeta functions, Proc. Japan. Acad. 67A, (1991), 61-64.

  111. N. Kurokawa, S. Koyama, Multiple Sine Functions, Forum Math ,15(2003) 839-876.

  112. X. Li, X.Shi, J. Zhang, Generalized Riemann zeta -function regularization and Casimir energy for a piecewise uniform string, Physical Review D 44, no. 2 (1991) 560-562.

  113. J.L. Lopez, Several series containing gamma and polygamma functions, Journal of Computational and Applied Mathematics 90, no. 1 (1998) 15-23.

  114. R. A. MacLeod, Fractional part sums and divisor functions, J. Number Theory, 14 (1982) 185-227.

  115. W. Magnus, F. Oberhettinger, and R.P. Soni, Formulas and theorems for the special functions of mathematical physics (3rd Ed.), Springer-Verlag, 1966.

  116. K. Matsumoto, Asymptotic series for double zeta and double gamma functions of Barnes, Analytic number theory (Japanese) (1994) S\=urikaisekikenky\=ushoK\=oky\=uroku No. 958 (1996) 162-165.

  117. K. Matsumoto, Asymptotic series for double zeta, double gamma, and Hecke L functions, Mathematical Proceedings of the Cambridge Philosophical Society 123, no. 3 (1998) 385-405.

  118. K. Matsumoto, Asymptotic expansions of double gamma-functions and related remarks, Analytic number theory (1999), 243-268, Dev. Math., 6.

  119. B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model, Harvard Univ. Press, 1973, Appendix B.

  120. Z. A. Melzak, Infinite Products for p e and p/e, MAA Monthly, 68 (1961) 39-41.

  121. J. Miller, V.S. Adamchik, Derivatives of the Hurwitz Zeta function for rational arguments, Journal of computational and applied mathematics 100, no. 2 (1998) 201-206.

  122. D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling.(French), C. R. Acad. Sci. Paris, 252 (1961) 2354-2356.

  123. H. L. Montgomery, The pair correlation of the zeta function, Proc. Symp. Pure Math. 24 (1973) 181-193.

  124. C. Muses, Some new considerations on the Bernoulli numbers, the factorial function, and Riemann's zeta function, Applied Mathematics and Computation 113, no. 1 (2000) 1-21.

  125. Z. Nan-Ye, K.S. Williams, Values of the Riemann zeta function and integrals involving log (2 sinh oo2) and log (2sin oo2), Pacific journal of mathematics 168, no. 2 (1995) 271-290.

  126. C. Nash, D. O’Connor, Determinants of Laplacians, the Ray-Singer torsion on lens spaces and the Riemann zeta function, Journal of Mathematical Physics 36, no. 3 (1995) 1462-1505.

  127. C. Nash, D. O'Connor, Erratum: Determinants of Laplacians, the Ray-Singer torsion on lens spaces and the Riemann zeta function (J. Math. Phys. 36, 1462-1505 (1995)), Journal of mathematical physics 36, no. 8 (1995) 4549.

  128. K. Nishimoto, C.-E.Yen, M.-L. Lin, Some integral forms for a generalized zeta function, J. Fract. Calc. 22 (2002) 91-97.

  129. M. Nishizawa, Generalized Hölder's theorem for multiple gamma function, Physics and combinatorics (2000) 220-232.

  130. M. Nishizawa, Generalized Hölder's theorem for Vignéras' multiple gamma function, Tokyo J. Math. 24, no. 1 (2001) 323-329.

  131. M. Nishizawa, Multiple Gamma Function, its q- and Elliptic Analogue, The Rocky Mountain journal of mathematics 32, no. 2 (2002) 793-813.

  132. G. H. Norton, On the asymptotic analysis of the Euclidean algorithm, J. Symbolic Computation 10 (1990) 53-58.

  133. A. M. Odlyzko, The 10^20th zero of the Riemann zeta function and 70 million of its neighbors, Preprint, 1989.

  134. O.M. Ogreid, P. Osland, More series related to the Euler series, Journal of Computational and Applied Mathematics 136, no. 1-2 (2001) 389-403.

  135. F. W. J. Olver, Asymptotics and Special Functions, Academic Press, 1974.

  136. B. Osgood, R. Phillips and P. Sarnak, Extremals of determinants of Laplacians, J. Func. Anal. 80 (1988) 148-211.

  137. K. Ota, On Kummer-type congruences for derivatives of Barnes' multiple Bernoulli polynomials, Journal of Number Theory 92, no. 1 (2002) 1-36.

  138. R.B. Paris, An asymptotic representation for the Riemann zeta function on the critical line, Proceedings of the Royal Society of London, Series 446, no. 1928 (1994) 565-587.

  139. K.S. Park, J. Choi, The Double Gamma Function With Applications, in International conference on mathematical analysis and applications; Differential equations and applications, Chinju, South Korea; August 1998, Nova Science, 2000, 255-265.

  140. A.P. Prudnikov, Yu.A. Bryckov, O.I. Maricev, Integrals and Series (Elementary Functions), Nauka, Moscow, 1981 (in Russia); see also Integrals and Series, Vol. I: Elementary Functions (Translated from the Russian by N.M. Queen), Gordon and Breach, New York, 1986.

  141. J. R. Quine, J. Choi, Zeta regularized products and functional determinants on spheres, Rocky Mountain J. Math. 26, no. 2 (1996) 719-729.

  142. T.M. Rassias, H.M. Srivastava, Some classes of infinite series associated with the Riemann Zeta and Polygamma functions and generalized harmonic numbers, Applied Mathematics and Computation 131, no. 2-3 (2002) 593-605.

  143. K. N. Rosen and et.., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000.

  144. B. Ross, Problem 6002, Amer. Math. Monthly. 81 (1974) 1121.

  145. M. Rovinsky, Multiple Gamma Functions and Derivatives of L-functions at Non Positive Integers, DAI, 57, no. 09B (1996) 5695.

  146. M. Rovinsky, Multiple gamma functions and $L$-functions, Math. Res. Lett. 3, no. 5 (1996) 703-721.

  147. S. Rudaz, Note on asymptotic series expansions for the derivative of the Hurwitz zeta function and related functions, Journal of Mathematical Physics 31, no. 12 (1990) 2832-2834.

  148. P. Sarnak, Determinants of Laplacians, Communications in Mathematical Physics 110, no. 1 (1987) 113-120.

  149. P. Sarnak, A.A. Karatsuba, S.M. Voronin, The Riemann zeta function, Bulletin of the American Mathematical Society 32, no. 2 (1995) 251-253.

  150. P. Sarnak, Quantum chaos, symmetry and zeta functions, Curr. Dev. Math. (1997) 84-115.

  151. T. Shintani, A proof of the classical Kronecker limit formula, Tokyo J. Math. 3 (1980) 191-199.

  152. N. Sloan, The online encyclopedia of integer sequences, http://www.research.att.com/~njas/sequences/.

  153. K. Soundararajan, On the distribution of gaps between zeros of the Riemann zeta function, The quarterly journal of mathematics 47, no. 187 (1996) 383.

  154. M.R. Spiegel, Mathematical Handbook, McGraw-Hill, New York, 1968.

  155. J. L. Spouge, Computation of the gamma, digamma, and trigamma functions, SIAM J. Numer. Anal. (1994) 931-944.

  156. H.M. Srivastava, A unified presentation of certain classes of series of the Riemann Zeta function, Riv. Mat. Univ. Parma 14 (1988) 1-23.

  157. H.M. Srivastava, A note on the closed-form summation of some trigonometric series, Kobe J. Math. 16 (1999) 177-182.

  158. H.M. Srivastava, Some rapidly converging series for (2n + 1), Proc. Amer. Math. Soc. 127 (1999) 385-396.

  159. H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Mathematical Proceedings of the Cambridge Philosophical Society 129, no. 1 (2000) 77-84.

  160. H.M. Srivastava, Some simple algorithms for the evaluations and representations of the Riemann Zeta function at positive integer arguments, J. Math. Anal. Appl. 246 (2000) 331-351.

  161. H.M. Srivastava, M.L. Glasser, V.S. Adamchik, Some definite integrals associated with the Riemann Zeta function, Z. Anal. Anwendungen 19 (2000) 831-846.

  162. H. M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Series on Mathematics and Its Applications, vol. 531, Kluwer Academic Publishers, Dordrecht, 2001.

  163. E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, Second Ed., Clarendon Press,Oxford, 1951 (Revised by D.R. Heath-Brown, 1986).

  164. C.A. Tracy, Asymptotics of a tau -function arising in the two-dimensional Ising model, Communications in Mathematical Physics 142, no. 2 (1991) 297-311.

  165. C.A. Tracy, H. Widom, Asymptotics of a Class of Solutions to the Cylindrical Toda, Communications in Mathematical Physics 190 (1998) 697-721

  166. C.A. Tracy, H. Widom, Asymptotics of a class of Fredholm determinants, in "Spectral Problems in Geometry and Arithmetic," ed. T. Branson, Amer. Math. Soc., Providence, 1999, 167-174.

  167. K. Ueno, M. Nishizawa, Multiple gamma functions and multiple $q$-gamma functions, Publ. Res. Inst. Math. Sci. 33, no. 5 (1997) 813-838.

  168. K. Ueno, M. Nishizawa, The multiple gamma function and its q-analogue, Banach Center Publications 0137-6934, vol. 40 (1997) 429-441.

  169. I.Vardi, Determinants of Laplacians and multipe gamma functions, SIAM J. Math. Anal. 19 (1988) 493-507.

  170. I. Vardi, Integrals, An introduction to analytic number theory, Amer. Math. Monthly 95 (1988) 308-315.

  171. M.-F.Vignéras, L`équation fonctionelle de la fonction zêta de Selberg du groupe mudulaire PSL(2, Z), in “Journees Arithmetiques de Luminy” (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978) pp. 235-249, Astérisque, 61, Soc. Math, France, Paris (1979).

  172. A.Voros, Special functions, spectral functions and the Selberg Zeta function, Comm. Math. Phys. 110 (1987) 439-465.

  173. W. I. Weisberger, Normalization of the path integral measure and the coupling constants for bosonic strings, Nuclear Phys. B 284 (1987) 171-200.

  174. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth Ed., Cambridge University Press, Cambridge, 1963.

  175. K.S. Williams, Z.Y. Yue, Special values of the Lerch zeta function and the evaluation of certain integrals, Proc. Amer. Math. Soc. 119 (1993) 35-49.

  176. T. T. Wu, B. M. McCoy, C. A. Tracy and E. Barouch, Spin-spin correlation functions for the two-dimensional Ising model: exact theory in the scaling region, Phys. Rev. B 13 (1976) 316-374.

  177. C.-E.Yen, M.-L. Lin, K. Nishimoto, An integral form for a generalized zeta function, J. Fract. Calc. 22 (2002) 99-102.

  178. M. Yoshimoto, Two examples of zeta-regularization, Analytic number theory (Beijing/Kyoto, 1999), 379-393, Dev. Math., 6, Kluwer Acad. Publ., Dordrecht, 2002.

  179. Z.Y. Yue, K.S. Williams, Application of the Hurwitz Zeta function to the evaluation of certain integrals, Canad. Math. Bull. 36 (1993) 373-384.