Rethinking the Service Model: Scaling Ethernet to a Million Nodes

Andy Myers
T. S. Eugene Ng
Hui Zhang

acm@cs.cmu.edu
eugeneng@cs.rice.edu
hzhang@cs.cmu.edu
Vision: More Ethernet Switches Fewer IP Routers

• Today’s world: IP routers + Ethernet PHY
 – Ethernet is the dominant PHY layer
 – Large number of IP routers connecting small Ethernet networks
 • E.g. CMU campus networks

• More Ethernet switches/fewer IP routers ➔ large Ethernet networks
 – Enterprise/campus networks
 – Broadband access networks
 – Data center networks
Why Large Ethernet Networks?

• Ethernet switches
 – simple, cheap, fast
 – Last fully automatic network
 • No host configuration
 • No switch configuration
 – Seamless mobility
 – Should be used to connect in the same network

• IP routers
 – Complex, expensive
 – Should be left to connect different networks
Why Not?
Reasons Listed In Textbooks

• Flat addressing doesn’t scale
• Need to link different L2’s
• Spanning tree
 – No multi-path
 – Slow fail-over
• Broadcast overhead
Current Reality

• Flat addressing doesn’t scale
 – Bridges with 500K-1M MAC capacity ship today

• Need to link different L2’s
 – Ethernet is the only L2 left

• Spanning tree
 – ??

• Broadcast overhead
 – ??
Outline

• Study Ethernet’s flaws
 – Spanning Tree
 – Broadcast

• Identify the root cause
 – Broadcast service model

• Propose a solution
 – Turn off broadcast
 – Replace Ethernet’s control plane
RSTP

A to B: can this be my root port?
B to A: ok
B blocks port to C

BPDUs:
- root A, cost 0
- root B, cost 0
RSTP Convergence (ring)
Broadcast (ARP)
Ethernet’s Features

- Flat address space
- No TTL in frames
- Need to locate hosts
- Loop free
- Broadcast
- Learning
- Spanning tree

Higher layer rendezvous
Ethernet’s Features

- Flat address space
- No TTL in frames
- Need to locate hosts
- Broadcast
- Loop free
- Learning
- Spanning tree

Higher layer rendezvous
Breaking the Broadcast/RSTP Dependency

• Change the service model: Turn off broadcast
 – Eliminates security risk
 – Improves scalability
 – Removes exponential packet copying

• Can eliminate RSTP
 – Unicast packets may loop, but no blowup
 – Network doesn’t overload during transient loops
Fixing Ethernet

- Flat address space
- No TTL in frames
- Need to locate hosts
- Higher layer rendezvous
- New Control Plane
Why Replace the Control Plane?

- Fix what’s broken
- Enable extensibility
 - Faster convergence (MAN)
 - Traffic engineering (SAN)
 - Isolation (Access net)
- Two control planes to consider
 - Fully distributed
 - Thin control plane
Fully Distributed Control Plane

- Link state computation of forwarding paths
 - Fast convergence
 - Multiple paths, not just a spanning tree
- Distributed directory replicated at all bridges
 - Provides IP to MAC mapping
 - Also used for service location
- Hosts register with local switch
Distributed Directory Example

Query: IP A?

Response: MAC A

Register: MAC_A, IP_A, Switch S
Thin Control Plane

- Decision Plane
- Topology, link states, attached hosts

A

B

C
Thin Control Plane Advantages

• Switches remain simple
• Decisions made with global view of network
 – Multi-path forwarding
 – Directory service
• Can introduce new services
 – Traffic engineering
 – Pre-planned failure response
Related Work

• Control plane
 – OSI’s CLNP/ESIS
 – Rexford04’s Thin Control Plane

• Multi-path forwarding with [R]STP
 – SmartBridge00, STAR02, Pellegrini04, Viking04

• Replacing spanning tree with link state
 – Garcia03 (“LSOM”)
 – Perlman04 (“RBridges”)
 • Adds header with TTL for links between bridges
 • No host registration needed
Summary

• Vision: More switches, fewer routers
 – Ethernet switches are cheaper, less complex than IP routers
 – Leads to larger Ethernet networks
 – Many potential application scenarios

• To realize
 – Eliminate broadcast
 – New control plane to enable practical L2