
A Secure, Publisher-Centric Web 
Caching Infrastructure

Andy Myers, John Chuang, Urs 
Hengartner, Yinglian Xie, 
Weiqiang Zhuang, Hui Zhang

Infocom 2001



April 26, 2001 Infocom 2001 2

Caching

§ 30-40% reduction in bandwidth at ISP

§ Reduced waiting time for users

§ Lower load on publisher’s server

Server

Cache

Clients



April 26, 2001 Infocom 2001 3

But…

§ Caches don’t meet publishers’ demands
§ Logging of user accesses

§ Publishers routinely “cache bust” to get log 
information

§ Generation of dynamic content
§ Lots of content uncacheable because it 

has a dynamic component

§ Result: reduction in performance



April 26, 2001 Infocom 2001 4

Make cache publisher-centric

§ Do a bit for the publisher, get back a big 
performance increase

§ Need to increase flexibility
§ Solution: Java!

§ Publisher writes cache applets to generate 
content

§ Can perform custom logging



April 26, 2001 Infocom 2001 5

Gemini

§ Active cache generates reply for client 
based on code sent by publisher

§ Later, cache returns access logs

2. Request’

3. Java code, data4. Reply
(HTML, gif, …)

1. Request

Active Cache

5. Logs



April 26, 2001 Infocom 2001 6

Example applications

§ MyYahoo
§ Cache assembles preset components
§ Cache could act as front-end for publisher 

database

§ AmIHotOrNot.com
§ Caches send ratings feedback in logs

§ Content adaptation
§ 56K vs. DSL vs. WAP
§ Cache thins content for constrained client



April 26, 2001 Infocom 2001 7

Challenges

§ Building an active cache
§ Addressed by previous work

§ Incremental deployment
§ Some help from HTTP

§ Security
§ Unaddressed until now



April 26, 2001 Infocom 2001 8

Outline

§ The security problem
§ Current solutions inadequate

§ New approach to security
§ Implementation
§ Related work & conclusion



April 26, 2001 Infocom 2001 9

New security problems

§ Cache lies to client
§ Cache lies to publisher
§ (Malicious code sent to cache)

2. Request’

3. Code/data

4. Reply

1. Request

5. Logs



April 26, 2001 Infocom 2001 10

Strawman: Public key signatures

§ Cache supposed to alter content, so 
publisher signature meaningless to 
client

§ Cache can still lie

Request’

Reply’Bogus Reply

Request

Evil Cache



April 26, 2001 Infocom 2001 11

Strawman: Secure coprocessor

§ Secure coprocessor is trusted by 
everyone

§ Runs all publisher code
§ Expensive and inflexible

Secure
Coprocessor

Code HTML

Cache
Processor

Cache



April 26, 2001 Infocom 2001 12

Outline

§ The security problem
§ Current solutions inadequate

§ New approach to security
§ Implementation
§ Related work & conclusion



April 26, 2001 Infocom 2001 13

Observations

§ Securing individual request/reply pairs 
is expensive/difficult

§ Publisher always knows what the right 
answer is

§ Can we put publisher back into the 
loop?



April 26, 2001 Infocom 2001 14

Solution architecture
§ Authorization

§ Publisher chooses caches to trust

§ Authentication
§ Cache authenticates itself to client
§ Client can tell that a cache is authorized to 

serve a URL
§ Provides non-repudiation

§ Verification
§ Client and publisher both verify that 

authorized caches are behaving



April 26, 2001 Infocom 2001 15

Auth. basics
§ Build on a Public Key Infrastructure 

(PKI)

§ PKI provides a way to bind public keys 
to names
§ E.g. “CNN.com’s key is AD23428F989…”

§ Binding is in the form of a certificate

§ We assume a Certificate Authority
§ Everyone trusts it

§ Everyone knows its public key, K_CA



April 26, 2001 Infocom 2001 16

Meaning of a certificate

§ Identity

§ E.g. CNN’s public key is K_CNN

§ Authorization

§ E.g. CNN (the entity which knows K_CNN) 
authorizes the cache with key K_Cache to 
serve URL U

CNN K_CNN K_CA

URL U K_Cache K_CNN



April 26, 2001 Infocom 2001 17

Basic authorization

Reply’

Request U

CNN K_CNN K_CA

Request U’

URL U K_Cache K_CNN

K_CNNReply K_Cache

CNN K_CNN K_CA

URL U K_Cache K_CNN

§ CNN authorizes cache to serve U
§ Cache signs its reply to client

Private Key 
K_Cache



April 26, 2001 Infocom 2001 18

Authorization with delegation

Reply’

Request U

CNN K_CNN K_CA

Request U’

K_CNNReply K_Cache

CNN K_CNN K_CA

URL U K_UL K_CNN

Honest K_Cache K_UL

URL U K_UL K_CNN

Underwriters’ Laboratories

Honest K_Cache K_UL



April 26, 2001 Infocom 2001 19

Recursive delegation

Honest K_AOL K_UL

Reply’

Request U

CNN K_CNN K_CA

Request U’

K_CNN

URL U K_UL K_CNN

Reply K_Cache

CNN K_CNN K_CA

URL U K_UL K_CNN

Honest K_AOL K_UL

Cache K_Cache K_AOL

Underwriters’ Laboratories



April 26, 2001 Infocom 2001 20

Verification

§ Trusted cache can misbehave
§ Could be compromised

§ Administrator could be bribed

§ Clients, publisher need to check cache’s 
output



April 26, 2001 Infocom 2001 21

Verification design

2. Reply

1. Request

3. Logs

4. Verify: Request, Reply

§ Client sends verification request with 
some probability, p



April 26, 2001 Infocom 2001 22

Verification limitations

§ Possible
§ Checking cache’s reply to client

§ Verifying that cache has not deleted logs

§ Future work
§ Verifying that cache has not added bogus 

log entries



April 26, 2001 Infocom 2001 23

System architecture



April 26, 2001 Infocom 2001 24

Performance Gemini - miss

Regular - miss

Regular - hit

Gemini - hit



April 26, 2001 Infocom 2001 25

Related work

§ Active proxies (Active Cache, HPP)
§ WWW security (SSL, HTTPS, DSig, 

HTTP Digest Authentication)
§ Mobile agents (e.g. Yee’s Sanctuary)
§ Secure hardware (e.g. IBM’s 

coprocessor)



April 26, 2001 Infocom 2001 26

Conclusion

§ Caches need to become more 
publisher-centric

§ We have addressed the security issues 
of publisher-centric caching
§ Authorization, Authentication, Verification

§ We have implemented our ideas by 
adding a Java VM to Squid
§ Performance enhancement is future work


