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Abstract

This thesis deals with the modification of finite element models
used in surgical simulation.

Surgical simulation offers the promise of enhanced medical training
and education. It can provide a more realistic learning environment
than many of the methodologies employed today while reducing costs.
It also increases the variability of pathologies presented to the student,
and can be used for continuing medical education. Simulators can also
gain a place in the medical practice, to rehearse difficult or uncommon
procedures. While a good deal of work has been done on the underlying
soft tissue simulation, cutting and interacting with the model has been
relatively ignored.

In this thesis, we present a method for simulating cutting of soft
tissue within a physically based surgical simulator. The technique
works on subdividing tetrahedral meshes while impacting model and
simulator efficiency as little as possible. Model stability is addresses so
that the new, cut, model does not cause the simulation to become
unstable. Also, within the framework the interactive simulator
demonstrated, the user is able to palpate, grasp, and puncture the
model.
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Chapter 1

Introduction

Rising health care costs and reduced reimbursements over the past few years have
spawned a quest to reduce the costs associated with medical care and education. The
number of minimally invasive procedures performed has drastically increased, while
surgeons are developing new methods for applying these procedures to regions of the
body formerly unheard of. For example, while arthroscopic knee surgery has
commonly been used for the past 10 years, only recently have minimally invasive total
joint replacements become common. Recent advances in cardiac surgery have led to
minimally invasive procedures for coronary artery bypass.

Minimally invasive procedures are, generally, cheaper to perform than open
procedures. They also generate less scarring and risk to the patient and reduced
healing time because the surgical field is not fully opened, but accessed through small
ports, usually less than half an inch in length. Visualization of the surgical field is done
with long, slender video cameras, and surgical tools are of similar shape, to reach the
remote surgical field. These procedures, and the many other minimally invasive and
new open surgical techniques, require extensive training to be performed reliably and
safely.

In the past five years, surgical simulation has become an area of heavy research in the
academic world. Surgical simulation, using computers and robotics, can supplant and
improve traditional training techniques. Traditionally, surgical training has been
performed on plastic models, cadavers, or on actual patients. While mechanical
models are relatively cheap and can be used many times, the sensations they generate
are unrealistic at best. They can also only demonstrate a limited range of anatomical
sizes and pathological situations. Additionally, different models must be acquired for
every type of procedure to be learned. Cadaveric training presents the most realistic
anatomy possible, but tissue responses are affected by the preserving techniques and
11



12 CHAPTER 1 INTRODUCTION
differences in temperature and fluid flow, and the number of pathologies presented is
usually not very broad. Additionally, there is a limited supply of cadavers for medical
training and the cost to provide extensive training with them would be high.

Training students by performing procedures on actual patients is the gold standard for
training, but there are ethical considerations. Novice students may not have the
experience to reliably and safely perform procedures; the potential for complications
may cause an attending surgeon to take over. Also, similar to cadaveric training, the
procedures related to particular pathologies is limited to what may come through the
operating room at a particular time, and may not fully cover the breadth of techniques
a student would need to learn. Lastly, when the difficult and interesting cases do come
into surgery, the student may be only allowed to observe the procedure, and not
actually participate.

Surgical simulation can improve on these limitations in many ways, although they can
not completely substitute for practicing on live patients. Depending on the fidelity of
the model, the simulator can be as realistic as the plastic model up to close to the
realism of living tissue. The simulator, unlike plastic models or cadavers, can be
programmed to show an unlimited variety of pathologies, both in type and placement.
They can often be used for surgical procedures on many different parts of the body,
with only changes to the modeled part of the body in software required. Patient models
can be adjusted to account for the sex and size of the simulated patient to be operated
upon. The student can also practice on a particular pathology as many times as she
feels is necessary. Students can also be easily scored on the simulators, with data
gathered on time of the procedure, accuracy of the results, and damage to surrounding
tissue. Lastly, training using a surgical simulator can reduce costs. Since there is only
the upfront cost of the simulator, ongoing costs are reduced while realism and amount
of practice are increased.

Surgical simulators also have a place outside of medical schools. Surgeons often
attend medical conferences to learn new techniques and to continue their medical
education. Simulators can be used at these conferences in a much more versatile and
realistic manner than plastic models for practicing surgeons. Simulators can also be
used within the surgical practice for rehearsing a procedure before operating on the
patient. Patient specific models can be acquired with current scanners and object
segmentation techniques. Tissue parameters can be assigned, and then the surgeon can
use that model to verify that a procedure is safe and effective.

Much of the recent research in surgical simulation has focused on increasing the
realism of modeling soft tissue. While this is very important to the overall applicability
of surgical simulators, other aspects of surgery must also be realized. This thesis
addresses another very important part of surgical procedures, cutting of soft tissue
within the framework of a physically based, interactive simulator. Since cutting is such
November 29, 2001 DRAFT



13
a common and important task within surgery, it needs to be addressed as an issue as
important to the realism of the simulation as the soft tissue model. Cutting of the
models must be done accurately, following the path traced out by the user as close as
possible, while maintaining the stability and efficiency of the overall simulation. A
minimal set of new elements, to reduce subsequent computational load, should be
generated for each cut element in the original model. The cutting should also occur
progressively, as the user moves through individual elements and the overall model, so
that the model is updated iteratively as the cut occurs, not after the cut is completely
finished. The cutting should also affect the tissue model in the expected fashion, not
altering tissue parameters or model size unnecessarily.

The simulator described in this thesis is built upon a linear elastic finite element based
tissue model using tetrahedral elements. In addition to cutting, we also implemented
other interaction techniques, palpation, grasping, and puncture, to demonstrate the
requirements of a general simulator.

In the following chapters, we first describe the motivation and background for this
work and prior work in the area. A brief description of the surgical simulator is
introduced in Chapter 4. Chapter 5 describes the main thrust of this work on cutting.
The soft tissue modeling is introduced in Chapter 6, and Chapter 7 describes other
interaction techniques in the simulator. Next, the haptics routines and implementation
details of the overall simulator are described. Lastly, examples and results are shown
in Chapter 10, and these results are discussed in the final chapter, Chapter 11.
November 29, 2001 DRAFT
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Chapter 2

Motivation and Background

Performing surgical procedures requires a great deal of skill, involving proficiency in a
large number of different techniques. Since surgery most often entails modifying in
some manner the macroscopic tissue structure of a patient, one of the most common
aspects of surgery is cutting, to either reach or repair internal structures. Because of
the importance cutting of tissue has in surgery, this thesis largely addresses the issue of
cutting accuracy and efficiency in surgical simulators. Why surgical training is
necessary and how simulators can improve current methods was described in the
previous chapter. In this chapter, we will go into a little detail about the difficulties in
the development of an interactive surgical simulator and the importance of cutting in
surgery.

2.1  Difficulties of an Interactive Surgical Simulator

There are many challenges in the development of a realistic surgical simulation
system, including the modeling of the tissue, interaction between tools and the model,
and the user interface. A realistic model of the soft tissue of the body is required,
which behaves in a manner that surgeons would expect, given their background and
experience. A fast, physically based algorithm is required to generate the deformations
of the modeled tissue. Interaction between simulated tools and the model is also
required for a training system, as is a methodology for modifying the topology of the
tissue in an efficient manner. Lastly, the best way to train a novice user is to have her
practice the actual motions, which requires the use of a haptic interface. Update rate
requirements for force feedback devices are much higher than for graphical interfaces:
around 500-1000Hz instead of 15-30Hz, respectively.
15



16 CHAPTER 2 MOTIVATION AND BACKGROUND
The problem of how to model soft tissue for a real-time simulation is a difficult one.
Different methods have been used in the past, each with its own strengths and
weaknesses. In general, they can be broken down into either surface-based models or
volume-based models. Surface models that have been implemented range from
continuous, snake-based models, to discrete mass spring models based on triangle
meshes. The problem with all surface-based models, when used to simulate tissue with
interior structure, is that they do not explicitly model the interior. Therefore, complex
interactions between the surface of the tissue and the interior structure can not be
modeled. Volume-based models can simulate interior structure because they encode
the entire object, thereby modeling the interactions between the interior structure and
the exterior of the object. Discrete mass spring models are very popular, and can be
implemented in an efficient manner, but they do not model the tissue in a physically
based manner. A more physically based method is to use finite element techniques.
While standard finite elements can generate very accurate results, they can be quite
slow. There are techniques to speed up finite element models, but most of those impose
the requirement that the topology of the model does not change. Since cutting is such
an important part of surgery and it changes to topology of the model, none of the
standard precomputation techniques are applicable.

Modifications to the patient model caused by cutting are very important in a surgical
training system. While the ability to learn how to move and navigate around a new
anatomical region is very important, a system which does not include the capability to
modify the simulated tissue has limited utility. Modifying the soft tissue can be viewed
as occurring when the local shear stress passes above some threshold for the simulated
material, and all modification techniques, including cutting, puncture, and tearing,
have the same underlying basis in physics. For simulation however, it is advantageous
to model the different activities in different ways, both for simplicity and efficiency.
Cutting methods also should be accurate, volume preserving, and update as the user
moves the cutting tool through the modeled tissue. Progressively cutting through the
model requires a very efficient underlying technique to update the model as the user
moves a scalpel. Finding stable subdivisions of individual elements to ensure the
stability of the overall model is also necessary.

Training with a simulator requires both a graphical display and a haptic display. A
purely graphical display can tolerate low frame rates, lag, and dropouts. A haptic
display, on the other hand, would not work with any of those deficiencies. While there
are techniques for interfacing low rate simulations with high rate devices that will
provide a smooth sensation to the user, there is still a minimum update rate that needs
to be maintained to provide realistic sensations to the user. The haptic interface itself
must run at a minimum of 500Hz, while a simulation running at 100Hz, in most cases,
is fast enough to interface well with the haptic routines. Real-time interaction between
the user and the simulation also requires modeling tools that the user can hold and how
they interact with the soft tissue. Tools for modification, as described above, and
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2.2 CUTTING AS AN INTEGRAL PART OF SURGERY 17
palpation are required. All interaction techniques require fast collision detection to
detect object-tool intersections and to generate the forces that arise.

2.2  Cutting as an Integral Part of Surgery

The main actions that surgeons utilize are cutting, carving, and sewing. While there
definitely is a great deal of knowledge and skill behind their hands, surgeons mainly
perform these three tasks. This thesis demonstrates a technique that accurately models
one of those three techniques, cutting. Cutting is very common in both open surgery
and minimally invasive surgery. It is used in all parts of the body, from the brain, to the
gall bladder, to orthopedic procedures. It is important to know where and how to cut,
because the action is often non-reversible. It is also important to be able to visualize
the results of the cutting actions.

Some simulators process the cutting action after the user has completed tracing the cut
through the object. This does not provide the immediate feedback that is needed to see
how a cut is progressing. It also does not allow the user to change the path that is being
traced to account for any problems or mistakes encountered while cutting through the
tissue. Because of this, it is better to update the model as the user cuts through the
object, providing almost instantaneous updates as to the progress of the cut.

This thesis demonstrates two types of progressive cutting: cuts that occur as the user
completes his motion through individual elements of the model; and cuts that are
modeled as the user moves within individual elements. The first method generates a
small amount of lag, on the order of the typical edge length within the model. The
second method updates at the rate of the simulation, but can suffer from difficulties
with model stability and determining when an edge is definitively cut.

There are multiple ways to modify the underlying model of the simulated object, each
with its own drawbacks. The main requirements for accurate cutting are to faithfully
follow the path traced out by the user and to impact the overall simulation as little as
possible. We want to follow the path of the user, and not to modify the object in a way
that the user didn’t intend. The path should accurately reflect the path traced out, and
not modify the mass or volume of the model. The generated cut should also not impact
the computational load of the simulator severely, either through the computation
required to generate the cut, or through a large increase in the model size, i.e. the
number of elements, after the cut is completed.

One very simple technique is to remove all elements that are contacted by the cutting
tool. Another technique is to find the element boundaries closest to the surface traced
by the cutting tool, and then split elements apart along that boundary. Lastly, we can
track the actual intersection points between the cutting tool and the individual
elements, and generate the cut surface between these intersection points.
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18 CHAPTER 2 MOTIVATION AND BACKGROUND
The first two methods have clear drawbacks. The first technique changes the overall
topology, not to mention mass and volume, of the object. If the average element size is
not quite small, a large, irregularly shaped channel will be carved through the object.
The problem with the second method is that there are not always element boundaries
that closely follow the path of the cutting tool. Therefore, a rather jagged and
irregularly shaped cutting path is created, which may zig zag back and forth across the
path that the user traces out. In this way, the generated cut surface can be quite
different from the path traced by the user.

For example, if we have a model where the average edge length is 30mm, removing
elements completely, or splitting along boundaries, would place the vertices on the cut
surface a large distance away from the path traced out by the user. This deflection
would be roughly half the average edge length, or 15mm. This distance in a surgical
simulation would be quite noticeable. If we wanted to bound the error at a smaller
distance we would have to decrease the element size. If the error is bounded to 3mm,
then we would require an average edge length of 6mm, which is 5 times smaller than
the initial mesh and would increase the number of elements by approximately 125
times. Even with this reduction in error, the cut surface will still not be smooth and
will zig zag back and forth across the user’s path. Meanwhile, the computational load
will have to increase by more than two orders of magnitude to achieve this increase in
accuracy. Conversely, if we follow the path that the user traces out, we will be able to
achieve the accuracy requirement while only increasing the number of elements
locally around the cut surface, a much smaller subset of the initial mesh.

The last method, using actual intersection points, does not have any of the difficulties
mentioned with the first two techniques. The cut surface exactly follows the path of the
user, as it is traced across the original elements of the model. It does not remove any
portion of the model, and therefore maintains object volume. The main drawback of
this method, however, is that it can generate a large number of new elements to model
the intersected elements, which can be prohibitively expensive computationally to
model. This is the problem addressed by the minimal new element creation cutting
technique described in this thesis.
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Chapter 3

Previous Related Work

A large amount of work has been done in areas related to this research. In the area of
soft tissue modeling, research has been done on both surface-based and volume-based
modeling, with both physically and non-physically based representations. Haptic
methods for various applications have started to receive attention in the research
community, and work related to this thesis is also described. Work on modifying soft-
tissue models has not been as prevalent as work on the underlying soft tissue model or
on haptics. The work on model modification that is related to this thesis is described in
the following section.

3.1  Model Modification

Modification of object topology can take many different forms; cutting, tearing, and
puncture make up a large subset. Puncture simulation, where penetration of the object
occurs, is probably the most tractable form of interaction. Singh, et al. [45] and Popa
and Singh [40] demonstrate a lumbar puncture simulator using impedance control to
model the insertion through the layers of tissue of the back. Reinig [42] describes a
volume-based puncture simulator where the resistance to penetration is based on
actual tissue parameters. Reinig uses segmented visible human data to determine the
type of tissue being punctured, and integrates the frictional resistance of the shaft of
the needle along its path through the back.

Tearing can also be easily detected by looking at the internal forces being generated
within the model. Miyazaki, et al. [29] support tearing by looking at the elongation of
the springs in their mass spring system. If the length of the spring exceeds a threshold,
then one end of the spring is separated from its neighbor. Cotin, et al., in their
volumetric tensor mass system [13], support both cutting and tearing. Tearing occurs if
19



20 CHAPTER 3 PREVIOUS RELATED WORK
one of three geometric measures of the tetrahedron exceeds a threshold. Cutting occurs
when the model of a bipolar cautery instrument touches an element. Any element that
is touched is removed from the model.

Cutting of surface-based models was demonstrated by Song and Reddy [47], where, in
2 dimensions, they moved a finite element mesh around with a cutting tool. The
cutting force exerted by the user is introduced to the object as a nodal force. Once it
exceeds the shear strength of the material, cutting occurs. Tanaka, et al. [51] use
boolean operations on polygonal objects. The cutting tool and object are represented
as polygonal objects, and the intersection of the two causes the polygons of the
modeled object to be cut. Tanaka uses a haptic interface, and the cutting force
displayed to the user consists only of a viscous force, based on velocity. Since cutting
is modeled as a purely geometric activity, there is no internal model of a minimum
cutting force.

O’Brien and Hodgins [35] demonstrated a method for propagating fracture through a
brittle volumetric finite element model. They detect when the total forces, formed into
a tensor, acting on individual nodes within the model would initiate fracture. Once a
node has fractured, they determine the direction of travel of that fracture, and
subdivide the element based on that direction. They also insure that the fracturing
routine will not create ill-conditioned tetrahedra by snapping intersection points to the
closest nodes. This method generates a small number of different subdivisions, due to
the fact that all fractures are initiated at nodal locations. Fracture propagation is not
explicitly modeled, but is inherent in the model due to stress risers caused by
fracturing at previous time steps.

Cutting through volumetric objects is more difficult due to the more complicated
connectivity between nodes or vertices, and the greater number of cases due to the
arbitrary locations of intersections between the model and the cutting tool. Mazura and
Siefert [27] create a cutting surface by specifying the beginning and end points of the
cutting edge, and then interpolating between them. This creates a set of triangles
which are intersected with the tetrahedral mesh. Once an element is detected to have
been cut, it is split according to the number of intersected edges in the element. They
were able to process a model with 15,000 elements in about 6 minutes. Bielser, et al.
[7] cut through a mass spring object by tracking the tip and the direction of the cutting
edge through the object. A small cutting plane is generated at every time stop between
the previous edge position and the current edge position. Cutting occurs whenever an
element has an edge or face that has been intersected, but that no longer has the cutting
edge passing through it. In this manner, only one cut occurs in each tetrahedron, and
the cutting action occurs the equivalent of one tetrahedron length behind the cutting
edge position, introducing some apparent latency. The cutting procedure always
subdivides an element into 17 smaller elements using midpoint subdivision. If one of
the edges or faces has been cut, then that position is substituted for the midpoint. Split
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3.2 DEFORMABLE MODELING 21
edges are replaced with two edges, with two vertices at the new location, while unsplit
edges get one vertex. Also, all possible intersections are just mirrors and rotations of 5
basic cases.

Bielser and Gross [6] extended the work of [7] by reducing the number of new
elements generated for each cut element. Instead of inserting new vertices on uncut
edges and faces, they only insert vertices at intersection locations, plus new vertices on
faces split in two. This reduces the number of new elements created, but does not
minimize it. Ganovelli, et al. [18] demonstrate a similar system, where the true
minimal sets of new elements are created when an element is cut, based on which of
the five basic subcases that element corresponds to. They determine the subdivision
function to call by generating a code based on which edges are intersected. This is a
fast and efficient method of determining how to subdivide each cut element. Ganovelli
also implements tearing, where an spring elongation factor is computed. Once a
certain number of edges have factors past a threshold, then a tearing path is propagated
out from the most stretched edge. This propagation insures that the split will generate
only legal subdivisions using the same routines as the cutting process. Mor and
Kanade [33] also demonstrate a system that generates a minimal set of new elements
during cutting, with progressive updates of the cut elements while the cut is occurring.

3.2  Deformable Modeling

The area of deformable modeling can be broken down into two main types of models:
surface-based and volume-based. Surface-based models only represent the exterior of
an object, and therefore should be limited to areas where complex interior structure is
not present; for example, the gallbladder. Volume-based models can simulate the
interior structure of an object, and are therefore more powerful, although
computationally more expensive. Additionally, novel methods for integrating the
motion of the model are also presented.

3.2.1  Surface-Based Models

Physically-based deformable object simulation began with the models based on
elasticity theory developed by Terzopolous [53] to fit models to images. The models
combined an internal energy term with external forces to generate a smooth model that
was attracted to edges in an image. These models were continuous and not suitable for
real-time interaction. Terzopolous and Waters [54] also developed a discrete mass-
spring system for facial modeling. Their system consisted of a three-layer mesh with
anisotropic behavior to model muscle below a fatty tissue layer below the epidermis.
The model had 6500 springs and was animated at interactive, graphical, update rates.

Swarup [49] developed a mass spring system that would run at rates suitable for a
force feedback device. His system was based on a two layer mesh, a top layer that the
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22 CHAPTER 3 PREVIOUS RELATED WORK
user could interact with and would deform, and a bottom stationary layer that didn’t
move. The nodes in the top layer were interconnected with springs, connected to the
bottom layer with springs, and also connected to a “home” position with a spring.
Only elements within a certain distance of the user’s position would have their state
updated. One serious problem with this system was the need for the bottom layer,
whose only purpose was to ground the surface layer and to utilize existing finite
element theory. The model also was not partitioned into an octree or with bounding
spheres, so computation time increased quickly with the number of nodes. Tarr and
Salisbury [52] addressed these problems, by utilizing a dynamically remeshed surface
mesh to present to the user. The mesh was also partitioned within an octree, so only
local nodes were intersected with the sphere representing the users position. They
removed the bottom layer of the model by assuming the density of nodes on the mesh
was suitably high and homogeneous.

Keeve, et al. [24] presents a similar surface model for generating facial tissue
deformations after craniofacial bone surgery. He demonstrates both a multi-layer
mass-spring model with biphasic springs, and a single layer non-linear finite element
model. Both methods produced results that predominately agreed with a test case,
although the two demonstrate the trade-off between precision and computation time.

Meseure [28] recently presented a mass spring model that depends on a virtual rigid
component to generate bulk translations and rotations. A surface mesh is connected to
the virtual component, and motion of the virtual object represents the undeformed
desired position of the model. The surface mesh then deforms due to local interactions
and collisions. If no forces are present, then the two components line up. If there are
external forces, the surface mesh is perturbed away from the rigid component.

Moutsopoulos and Gilles [34] utilized a coarse-fine finite element model to simulate a
gallbladder in a laporascopic surgery simulation. The global model was coarse enough
(few enough nodes) to run at real-time rates, while the local model, around where the
user was interacting, would subdivide the mesh to generate a finer, smoother response
to the user. They also utilized a B-spline surface to interpolate the nodes of the finite
element model to represent the “skin” of the object. Their system was able to interact
at real-time rates (25 Hz) utilizing a coarse model with 60 nodes.

3.2.2  Volume-Based Models

Mass Spring Models

Two groups that have implemented three-dimensional, volumetric mass spring models
are Reznik and Laugier [43] and Miyazaki, et al. [29]. Reznik and Laugier
implemented a basic homogenous mass-spring model, using Euler’s method for the
numerical integration. The volume is sampled into a cubical lattice, with each node
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connected to its 26 nearest neighbors. Spring stiffness is determined by the Young’s
modulus for the material, and nodal mass is similarly determined by the density of the
material. Nodes are interconnected, but not attached to a home position. The authors
claim real-time simulation, although they do not state the number of nodes in the
simulation or what update rates they achieve. Miyazaki, et al., use a very similar
system, although they also simulate model modification through tearing or cutting. If
edges are cut, or the edges become too elongated, the spring connecting two nodes is
removed. They also present a method to prevent divergence of spring oscillations
when large forces are applied. Bielser, et al. [7] also recently demonstrated a system
for soft tissue simulation. They utilized a tetrahedral mass spring system to run the
simulation, with rigorous treatment of tracing a cutting surface through the simulated
object. They demonstrated update rates of a few Hertz on models ranging in size from
48 to 576 elements before cutting, to 354 to 2446 elements after cutting.

Radetzky, et al. [41] show a mass spring model where the spring constants are
generated by a neural network so that prespecified deformations match those acquired
from experiments on real tissue. The parameters can also be adjusted by a neuro-fuzzy
system for user feedback on whether tissue properties feel correct.

Kühnapfel, et al. [25] have developed a system based on their simulation software
KISMET, to simulate endoscopic surgery. The soft tissue system is a volumetric mass
spring model. The novel feature of their system is a spring stiffness value based on a
third degree polynomial. Their research into living tissue showed that the non-linear
shape of the stress-strain curve can be well approximated by this polynomial.

Suzuki, et al. [48] developed a system to model deformable tissue by filling a volume
with rigid spheres. Forces are generated and deformation occurs when the user,
modeled as a larger sphere, intersects the outer layer of spheres. Those spheres are
pushed back, and the spheres behind them are pushed back in turn; forces are
generated by each sphere wanting to return to its home position and contact with
neighboring spheres. Modification of the model was not demonstrated.

Physically Based Models

Bro-Nielsen and Cotin [8] developed a system to utilize classical, three dimensional
solid finite element models that would run at real-time rates. Real-time performance
was achieved by the use of condensation, precalculation of the inversion and
exploitation of the sparse structure of the force vector. Their technique is based on two
assumptions: that the topology of the model could not change and that the only
deformations seen by the user would occur at the surface nodes. First, the sparse
global stiffness matrix is condensed so as to only calculate the displacement and forces
at the surface nodes. In condensation, the effect of the interior nodes is taken into
account. The idea is that the actual value of the deformation of the interior nodes is not
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important, only the deformations of the surface nodes matter. They then preinverted
the condensed stiffness matrix. Lastly, in most situations in interactive simulations, the
user is only touching a few of the surface nodes at a time. Due to this, the force vector
is made up of mostly zeros. Bro-Nielsen and Cotin precompute deformation vectors
based on a unit force at each node. At run-time, deformations are linear sums of the
precomputed vectors based on the force vectors applied by the user. They achieved
update rates of 20Hz on models with 250 surface nodes without utilizing the sparse
nature of the force vector, and 20Hz on models with 700 nodes utilizing that
sparseness. Cotin and Delingette [12] more recently demonstrated update rates of
100Hz on models with 1400 nodes.

Condensation is a popular technique for modeling soft tissue that will not be modified.
Kühnapfel, et al. [25] have used this technique, in addition to their mass spring model,
to generate faster updates. Berley, et al. [5] show a simulator for suturing skin that
simulates models with up to 13,300 nodes using a banded matrix technique that uses
condensation as a preprocessing technique. The user can interact, with a force
feedback device, with up to 285 nodes at a time. Frank, et al. [17] demonstrates results
for a banded system, and predicts the computational power required before condensed
finite element system can run at 500Hz and directly generate forces for a haptic device.
The results were shown for different techniques of solving the state equations of the
model, with only iterative solutions of small (125 nodes) elements capable of update
rates of 500Hz.

More recently, Cotin, et al. [13] developed a new representation they named tensor
mass based on linearly elastic continuum mechanics to model soft tissue. It is based on
finite element theory, but the models are solved in a dynamic fashion over time.
Stiffness matrices are calculated in the same manner as for typical finite element
models, but instead of forming a global stiffness matrix and solving a global solution
at each time step, the stiffness matrix is stored locally, at each nodal point and for each
edge. They achieved update rates of 40Hz with a mesh made up of 760 vertices and
approximately 4000 edges, which was similar to the rate obtained for a mass-spring
system they implemented. Also, as an update to the results in [8], they demonstrated
results utilizing precomputation of elementary deformations of a quasi-static mesh of
500Hz on a mesh with almost 8000 tetrahedra.

Due to the limitations of the linear elastic models, Picinbono, et al. [37] have shown
the application of a non-linear elastic model to the tensor mass system described in
[13]. The non-linear elastic component overcomes the elongation limit of 10% of
mesh size to be reasonably accurate. They also add an incompressibility constraint to
limit growth of individual elements. For one example, this reduced the growth in the
volume of the model under a large scale deformation from 63% to 1%. The main
drawback of using a non-linear model is the computation time required. Going from a
fully linear model to a fully non-linear model, the update rate for a liver model they
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show dropped from 45Hz to 8Hz, an 82% drop in update rate. For interactive
simulations, this can be a very expensive improvement.

Debunne, et al. [15] demonstrate a system using a multi-resolution model to guarantee
a minimum frame rate while still allowing a fine resolution model around deforming
areas and where the user is contacting the model. They built a model with multiple
levels of detail, and then switch between the different models based on computational
load and a quality criterion. This multi-resolution model, while depending on a good
deal of pre-computation, allows their simulator to run at real-time rates sufficient for
haptic interfaces, with the multi-resolution model running 5 to 20 times that a single
resolution model at the finest level of detail that they use.

Most of the methods described above that generate the state of the model iteratively
use either Euler or Runge-Kutta methods. The main constraint with respect to these
solvers is that the system of equations for the position of the model is viewed as a stiff
system of equations [2]. Bielser and Gross [6], though, use a semi-implicit method to
generate results more stably than using a typical explicit solver. The method uses an
explicit step to estimate the current position of the object, then that estimated current
position to implicitly determine the velocity. The final step is another implicit step to
determine the final current position of the object. They do not give comparison
numbers, though, for the stability of this model compared to a model updated with an
explicit method. They did achieve 30Hz with a mass spring model consisting of 1381
tetrahedra using an SGI Onyx2 with 8 R10000 200MHz processors.

3.3  Haptic Interface

Haptic refers to anything having to do with the sense of touch. A haptic interface is a
device that can be used to feel “objects” that are generated by a computer or some
other modality, that are not actually present locally. Motors are used to generate forces
that can act on the user based on his location within a virtual world. Haptic devices can
take many forms. Custom interfaces have been built by many groups to satisfy unique
requirements. Singh, et al. [45] implemented a custom device to support lumbar
puncture simulation. Berkelman, et al. [4] demonstrate a device that uses a
magnetically levitated handle that the user grasps. This removes all friction from the
device, and can increase its responsiveness. A commercially available device is the
PHANToM [26], which is a 6DOF input mechanical device, with either 3 or 6 active
degrees of freedom.

Haptics have been used to feel virtual objects in many types of situations. In [32] and
[19], a system for interacting with static voxel based data sets is described. Using
segmented voxel data sets from MRI scans of a healthy knee, Gibson and Mor
demonstrated the ability to feel medical data sets using a PHANToM haptic interface.
Both polygon and volume rendering visualization were implemented. Haptic
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interaction with quasi-static finite element models of the liver is demonstrated by
Cotin and Delingette in [12]. And O’Toole, et al. describe in [36] a training and
evaluation system for end-to-end anastomosis using a flexible, spline-based model of a
blood vessel and a force feedback system.

Complex simulation systems often run at rates lower than that required for haptic
feedback. Adachi, et al. [1] proposed the use of an intermediate representation to
model a rigid object between updates from the simulation. Berkelman, et al. [4] use a
virtual coupling between the simulated object that the user is holding and the handle
position of the haptic device; and can therefore guarantee the stability of the haptic
device. When the update rate of the simulation is slow, setpoints for the haptic device
are interpolated to smooth the path that the user traces. Interaction occurs between
surfaces of completely rigid objects.

Picinbono, et al. [38] show a method of extrapolating forces by projecting the current
position of the device onto the line between the positions at the last two forces updates.
The force is then the extrapolated based on the distance from the current projected
point to the previous updated position, compared to the distance between the two
positions at the previous updates. This gave better results compared to the two other
methods that they implemented.

d’Aulignac et al. [14] demonstrated a mass spring model that uses a local model of the
system to generate updates more quickly than the rate of their underlying simulation.
The local model is based on a constraint surface that is continually updated based on
the previous history of the local model. The force generation portion of their simulator
is based on a penalty based method utilizing the volume of intersection between the
simulated object and a model of the tool that is being used. This is similar to most
implementations, although the scalar distance of penetration is normally used to
generate the magnitude of the force to display.
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Chapter 4

Experimental Simulator Overview

Surgical simulators are designed to demonstrate and teach the motion and result of
surgical actions. In this manner, they must be able to model soft tissue and the actions
that affect it. In this thesis, we describe techniques and methods that we developed to
cut through soft tissue within the framework of an interactive simulator. In addition to
those cutting methodologies, we developed methods of simulating interaction between
surgical tools, modeled as simple shapes, and soft tissue. We tied these interaction
techniques into an experimental surgical simulator, using a linear elastic deformable
model, and a haptic interface to provide physical feedback to the user.

There are 3 main components of our surgical simulator: soft tissue simulation, tissue
modification and manipulation, and the user interface. In this simulator, soft tissue is
modeled with a linear elastic finite element model. Tetrahedra are used as the basic
element shape, to simplify modifications of individual elements when compared to
element shapes with more nodes. The soft tissue model is implemented in such a
fashion that models are easily and quickly updated and modified, using interconnected
lists of pointers to basic data types: vertices, nodes, and elements.

Tissue modification and manipulation are implemented as routines that are called by
the soft tissue simulation. They access the data structures of the model, modify the
structure of the model, and generate external forces to modify the current state, both
position and velocity, of the model. Intersections between the model and the currently
wielded tool are propagated based on the local neighborhood of the currently
intersected element, speeding up the determination of which features need to be
accurately tested. When interacting with the model, the routines also generate forces to
display back to the user through the haptic interface. These routines can push and pull
on the model, and cut or puncture the model. Currently implemented interaction tools
are: a form of cauterizing knife, that can cut in any direction; an implicit sphere model
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for palpating the object, which can be viewed as similar to the shape of the fingertip;
an implicit cylinder model, also for palpating the soft tissue; a simple grasper tool,
which can grab the model and move it; and a needle model, for simulating puncture.

Lastly, all simulations require some method for the user to see and act upon the model.
A simple graphical interface is used, along with a PHANToM haptic device. The
haptic interface allows the user to feel the model, and act upon it in a more realistic
fashion than if there were no forces displayed back to the user. The haptic routines are
implemented so that they can receive intermittent, slow updates from a simulation, and
generate a smooth, stable flow of forces to display to the user.

Figure 1 shows the basic flow of control in our surgical simulator. After startup, the
soft tissue model is initialized and communications between the soft tissue simulator
and the haptics server are established. Then, the soft tissue modeling and object
modification loop runs as fast as possible, up to 1000Hz, and queries the haptic display
routine for the user’s current position. If the user is currently interacting with the
modeled tissue, then the type of interaction is determined, and if the tissue is being cut,
the intersection occurs. After the topology of the model is modified, if necessary, the
forces on the nodes are calculated and nodal positions updated, and the current model
for displaying forces to the user is communicated to the haptics server. The scene is
also, independently, graphically rendered at 30 frames per second. The separate haptic
display routine receives updates from the modeling routines after every soft tissue
update cycle, and interpolates between time steps to provide a smooth, stable
interaction for the user, nominally updating at 1000Hz. These different routines and
methods are described in the following chapters.
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FIGURE 1. System Diagram.
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Chapter 5

Cutting

Cutting of soft tissue models generates new model topologies within the surgical
simulator. The new topology of these models has to reflect competing goals. From the
user’s viewpoint, the cut should exactly follow the path that she traces out. From the
simulator’s viewpoint, the cut should impact its computational throughput as little as
possible. These two competing goals, accuracy of the cut and a minimal increase of
computational load, lead to the two main thrusts of this work on cutting: accurate and
stable progressive cutting that follows the user’s path, and minimal new element
creation for modified elements.

After describing the general cutting process, we explain the motivation and method for
generating minimal sets of new elements when cuts occur. Next, progressive cutting is
described, both within elements and between elements. Lastly, to combat possible
model instability, snapping of intersection points to maintain model stability is
described.

5.1  General Cutting Procedure

The general procedure for cutting through elements with our tetrahedral based surgical
simulator consists of the following steps. First, the initial intersection between the
cutting tool and the model is detected. To do this, we test surface triangles and edges
against the motion of the cutting tool to determine if the cutting tool moved across any
of the boundaries of the surface, creating either face intersections, caused by the
motion of the tip of the cutting tool, or edge intersections, caused by the motion of the
cutting edge itself. Once an intersection is detected, we encode where on that
intersected element the initial intersection occurred. We then test all the other faces
and edges of that element against the motion of the cutting tool. For all element faces
31



32 CHAPTER 5 CUTTING
and edges that are intersected, we also propagate the intersection to the original
element’s neighbors, thereby quickly moving the cut surface through the model.
Lastly, for each element that has been intersected, we subdivide the element once the
cut has completed within its interior. This basic process is shown in Figure 2.

5.2  Minimal New Element Creation

When an individual element is intersected by a cutting tool, there are three possibilities
for splitting that element: removing the individual element completely; finding an
element boundary and splitting along that; and generating the cut surface using the
exact intersection points between the path of the cutting tool and the model. The first
method does not preserve the volume and mass of the model, while the second method
can generate cut surfaces that are very irregular and do not appear to actually follow
the path of the cutting tool. We have implemented the last method, where we take the
exact intersection points between the cutting tool and the model and generate the
cutting surface between those points. First, we will describe the different possible
topological types of intersections, then how we generated the minimal sets to replace
the cut elements. Lastly, we describe how intersections are detected, stored, and
propagated through the model, an important part of any cutting technique.

5.2.1  Element Subdivision

Tetrahedral elements cut by planar, or near-planar, surfaces will fall into one of five
different topological cases, based on the number of cut edges and intersected faces.

FIGURE 2. General cutting process.
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5.2 MINIMAL NEW ELEMENT CREATION 33
There are two different cases where the tetrahedron is completely cut through into two
pieces, and three cases where the element is cut, but not completely through. Figure 3
shows the different cases. The first example is when 3 edges are cut and a tip of the
tetrahedron is separated from the rest of the element. The second example shows 4
edges cut, and the element evenly split into two. The first of the partially cut elements,
when there are 2 face intersections, shows 1 edge intersection. The last two examples
demonstrate, once again, 2 face intersections, and respectively, 2 and 3 edge
intersections.

5.2.2  Generation of the Minimal Set

To reduce the amount of computation required, we generate a minimal set of new
elements to replace elements that have been cut. Individual procedures were
implemented for each type of intersection, so that no excess elements would be
created. Only four to nine new elements are created for each cut element, depending
on the type of intersection. This minimal subdivision uses only the original vertices of
the element and vertices created due to the cutting action: one vertex at the location of
each face intersection, and two vertices at the location of each edge intersection. For
example, Figure 4 demonstrates how each half of the cut element from case ii in
Figure 3 is minimally subdivided. In case ii, six elements are created to replace the
original one. The five different intersection cases are shown in exploded view, with the
same numbering as in Figure 3, in Figure 5. These subdivisions contain, respectively,
4, 6, 6, 8, and 9 new elements to replace every intersected element.

FIGURE 3. The five cases of tetrahedron subdivision after a completed cut.

FIGURE 4. Minimal element subdivision.
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34 CHAPTER 5 CUTTING
To determine these minimal subdivisions, each case was examined by hand to find the
minimal set to replace the original element. The resultant elements were then encoded
based on which edge and face intersections were present in the cut element. For
element subdivisions that could be easily broken down, like the top and bottom
portions of case ii, a separate subroutine was written to subdivide the six vertices
present into three new elements. In doing so, the routine also checks to see if, on the
faces of the segment with four vertices, any of the diagonal edges already exist within
the model, to ensure that the model is internally consistent across element boundaries,
without any crossing diagonal edges.

Within the framework of the tetrahedral mesh numbering, there are multiple
orientations of the cut element based on the ordering of the vertices and cut edges.
When the element is completely cut into two, there are four different permutations
when three edges are cut, as in case i, and three different permutations in case ii, when
four edges are cut. The four different permutations of case i correspond to each of the
four vertices being cut away from the remaining three. When only one edge is cut, as
in case iii, there are six permutations, and there are twelve permutations for both cases
iv and v.

Each procedure uses a lookup table to determine how to mirror or rotate the vertices to
fit the default orientation. The lookup table basically reorders the numbering of the
vertices of the element. After the ordering is determined, any new edges that are
needed are created. Then the new tetrahedra are created and the original tetrahedron is
removed.

FIGURE 5. Minimal element subdivision, exploded view.
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5.2 MINIMAL NEW ELEMENT CREATION 35
5.2.3  Comparison of Minimal Sets to General Subdivision

A complete, general, subdivision (1 vertex on each face, and 1 vertex in the middle of
each edge) yields 17 news elements for every intersected element. By a careful
examination of the possible intersection scenarios, we generate an intelligent
subdivision which only creates between five and nine new elements per intersection.

The general subdivision is shown in Figure 6, where the circles are the locations where
new vertices are inserted. Two vertices are inserted at edge intersections, and one
vertex is inserted at all other locations.

5.2.4  Intersection Detection and Propagation

Cutting with a scalpel can be viewed as the motion of a finite length cutting edge
passing through an object. If the body of the blade is ignored, and the edge is taken to
be infinitely sharp, then the problem is reduced to tracking the passage of a line
segment corresponding to the cutting edge moving in time and space through a
tetrahedral mesh. Just checking to see if the cutting tool is in the interior of an element
is not sufficient, since the cutting edge could pass through an element between time
steps. Figure 7 shows the path of a cutting edge from time ti to ti+1, as it creates two
face intersections and one edge intersection.

The swept surface created by the path of the cutting edge must be tested at every time
step for intersections with the model. Two tests are required: the intersection between
the path of the tip of the cutting tool and the faces of the tetrahedron, and the
intersection of the swept surface and the edges of the tetrahedron. The path of the tip
of the cutting tool is a line segment whose endpoints are the positions of the tip of the
cutting tool at time ti and ti+1. The swept surface is a quad whose vertices are the

FIGURE 6. General tetrahedron subdivision.
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36 CHAPTER 5 CUTTING
endpoints of the cutting edge, both the tip and the base, at time ti and ti+1. These two
tests generate, respectively, face intersections, which mark the base of the cut, and
edge intersections, which occur where the model is split in two by the cutting edge.

The procedure for updating the intersection state of the model starts with a global
search to determine if the path of the blade has intersected the model. If any
tetrahedron has been intersected, then all 6 of the tetrahedron’s edges and all 4 of its
faces are tested against the swept surface and cutting tip path. After all the tetrahedra
are tested, if any were intersected, the model is marked as having an intersection
present.

Next, if the model has been intersected, all of the intersected elements are checked to
see if the cutting instrument has either passed through any non-intersected faces or
edges, or has left the tetrahedron. If a new intersection occurs, then the intersection
information for that tetrahedron is updated. Neighboring elements that also contain the
newly intersected edge or face are updated and tested against the motion of the cutting
tool, thereby using spatial coherency to propagate the cutting motion through the
model. If the cutting edge no longer passes through an intersected element, then the
user has completed the cut, and the element will be subdivided.

Cuts are assumed to pass through an element, such that only one intersection exists per
face or edge, and elements are subdivided after a cut is completed. Cuts where a tool
enters and leaves the element through the same face are not modeled.

5.2.5  Intersection Testing

The technique used for the actual intersection tests is based on the ray-triangle
intersection routine described in [30]. The implemented method is a fast intersection
routine, which returns, when an intersection occurs, the parametric distance along the
ray to the triangle, and the coordinates of the intersection point within the triangle. The

FIGURE 7. Cutting edge intersection with a tetrahedron.
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5.2 MINIMAL NEW ELEMENT CREATION 37
original routine in [30] was modified to generate the intersection between a triangle
and a finite length edge instead of an unbounded ray.

To accelerate the initial intersection detection between the cutting tool and the
triangles, a bounding sphere test between each surface triangle of the model and the
swept surface traced out by the scalpel between time steps is performed. If the spheres
do not overlap, that triangle is not tested further.

The first intersection test for any triangle that passes the bounding sphere test is done
between the current position of the triangle and the path of the tip of the cutting edge
traced between time steps. If this test fails, then each edge of the triangle is intersected
against the quad traced out by the motion of the cutting edge between time steps. The
edge-quad test is performed as two edge-triangle tests, with the quad split into two
triangles.

5.2.6  Intersection Coordinates

Once a collision between the cutting tool and the model is detected, the local
coordinates of that intersection are used. For an edge intersection, the local coordinate
is the value between 0 and 1 that encodes the relative distance along the edge for the
intersection point. For a face intersection, the coordinates, u and v, are the distances
along two of the edges to the intersection point within the triangle. Using the local
coordinates, both single value coordinates for edge detection and two value
coordinates for intersections on element faces, allows us to a use a simple encoding for
the actual intersection point. The coordinates, which translate cartesian positions into a
local reference frame within the edge or triangle, are also used to propagate not only
the current position of the intersection to any new vertices created, but also the rest
position and current velocity of the new vertices. Given the local coordinates, any
value at the vertices, not just position, can be transformed.

The equation to transform local coordinates back into cartesian space, or to transform
any value at the endpoints to the interior is, for edge intersections:

(EQ 1)

where Vu is the transformed value at the point represented by u, and V0 and V1 are the
values at the two endpoints of the edge.

For face intersections, the equation is:

(EQ 2)

V u 1 u–( )V o uV 1+=
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38 CHAPTER 5 CUTTING
where Vuv is the transformed value at the point represented by u and v, and V0 and V1
and V2 are the values at the vertices of the triangle. Note, both vectors and singular
values can be easily transformed with these equations. Also, for the interior point to be
within the triangle, the sum of u and v has to be between zero and one, inclusive.

5.3  Progressive Cutting

Cutting through soft tissue is a procedure where the user expects immediate visual
feedback as to the progress of the cut she is generating. Therefore, updating the model
while the user is cutting it is required. There are two types of progressive cutting: the
first method is to wait until the user completes cuts through individual elements, and
then subdivide each element; the second method is to generate temporary subdivisions
within elements as the user moves the cutting tool through the object. The first method
minimizes computation load during cutting, but generates a small amount of lag on the
order of the typical edge length within the model. The second method removes the lag,
but takes more processing time and may generate very small elements.

5.3.1  Progressive Cutting Between Elements

Progressive cutting between elements generates the subdivision of elements after the
cut through the individual element is completed. As the user moves through an
element, the intersections between the cutting tool and the element are detected and
stored. Once the cutting tool leaves an individual element, the element is permanently
subdivided. This complete process is shown in the following pseudocode, which has
been simplified by leaving speed up techniques and cut propagation out:

sweptQuad = Motion(CuttingEdge, PrevCuttingEdge)
sweptLine = Motion(CuttingTip, PrevCuttingTip)
if ModelNotIntersectedLastTimeThrough

foreach (SurfaceTriangle in Model)
if (Intersect(SurfaceTriangle, CuttingEdge) or

Intersect(SurfaceTriangle, sweptLine) or
Intersect(SurfaceTriangle, sweptQuad))
AddToIntersected(SurfaceTriangle->Element)
ModelIntersected = TRUE

endif
end

endif
if ModelIntersected or ModelIntersectedLastTimeThrough

foreach IntersectedElement
IntersectElement(sweptLine, sweptQuad)
if CutComplete(IntersectedElement)

SplitElement()
RemoveOriginalElement()

endif
end

endif
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5.3 PROGRESSIVE CUTTING 39
For example, in Figure 8, from left to right, first the cutting tool enters the left element.
As the cutting tool moves within the element, any new edge or face intersections are
detected and stored. Lastly, when the cutting tool leaves the element, it is subdivided.
The process then continues for that original element’s neighbors.

One significant problem presents itself when implementing progressive cutting
between elements. This occurs when two neighboring elements share an edge that is
cut in two. When the first element is subdivided, two new vertices are inserted along
each cut edge, and are used in the new elements that replace the first element. But,
since the second element has not been subdivided yet, the new vertices are not
connected to the second element. This is shown on the left side of Figure 9. Since the
new vertices are not connected to that neighboring element, the new elements are free
to rotate about the original vertices of the cut edge. This is shown on the right side of
Figure 9, where the two neighboring elements were originally connected by the cut
edges. Now, the new elements are attached to the neighboring element only by the
original vertices of the cut edges, and the two new sections are shown rotating away
from each other due to a combination of internal and external forces and an insufficient
number of attachment points to the rest of the model.

This problem is alleviated by effectively attaching any new vertices generated by an
edge intersection to their parent edge, as long as that edge exists. Since cut edges are
removed once all the elements containing that edge are removed due to intersections,
the edge will only exist as long as an original element that contains it has not been
subdivided. This, then, is the indicator of whether an edge has been completely cut
through or not.

FIGURE 8. Progressive cutting between elements example.
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The first step in this process is, after determining all the interior forces generated by
the soft tissue and all the external forces acting on the nodes, to check all the edges for
the case where the edge still exists but also has children vertices caused by a cut. For
those edges that fit this criteria, first the intersection coordinate for the original
intersection is ascertained. Then, the total force acting on the children vertices is
summed, and then divided between the two vertices at the ends of the original edge.
This step transfers the force acting within the new elements along the original edge to
the original elements that still exist using that edge. Then, after the overall state of the
object is updated, the same cut edges before are cycled through, and the child nodes of
the cut edges are then moved to the correct position along the deformed original edge
and their velocities are updated, using the initial intersection coordinate and
Equation 1. This process is shown in the following pseudocode:

UpdateVertexForces()
foreach Edge that is Intersected

u = Intersection Coordinate
f_total = Edge->Child_Vertex[0]->total_force +

Edge->Child_Vertex[1]->total_force
Edge->Vertex[0]->total_force += (1 - u) * f_total
Edge->Vertex[1]->total_force += u * f_total

end
UpdateModelState()
foreach Edge that is Intersected

u = Intersection Coordinate
Edge->Child_Vertex[0,1]->current_pos =

Transform_Vector(u,
Edge->Vertex[0]->current_pos,
Edge->Vertex[1]->current_pos)

Edge->Child_Vertex[0,1]->current_vel =
Transform_Vector(u,

Edge->Vertex[0]->current_vel,
Edge->Vertex[1]->current_vel)

end

FIGURE 9. New vertices not connected to unintersected element.
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5.3.2  Progressive Cutting with Temporary Subdivisions

Previous methods of modifying objects, and the basic technique described above, do
not split an element until the cut has been completed. When the element size is large,
this can introduce a noticeable lag into the cutting process. We have implemented a
method of progressive cutting that generates a minimal subdivision of a partially cut
tetrahedron. The subdivision is always based on the geometry of the original element,
not of the previous temporary subdivision, thereby minimizing a potential source of
error.

The general procedure for progressive cutting utilizes a temporary subdivision of each
partially cut element, which is added to the general process described previously in
Section 5.3.1. An example cut is shown in Figure 10. First, any temporary face
intersections caused by the cutting edge are updated for each partially cut tetrahedron.
A temporary face intersection occurs when the cutting edge, not the tip of the cutting
tool, currently intersects a face. This type of intersection does not occur for the
permanent intersections described previously. Then, the modified topology of the
partially cut element is checked for any changes. A change occurs when a new
intersection is created: for example, when the element is first cut into, or when the
cutting edge or tip passes through another edge or face. If the topology has changed, a
new minimal set of temporary tetrahedra are created and all the old temporary
tetrahedra are removed. If the modified topology has not been changed, then the
temporary elements are updated using the new positions of any temporary face
intersections. Once the cutting edge leaves an element and the cut is completed, the
temporary elements are removed, and a final subdivision is created.

As the progressive cutting moves through the model, the cutting routine modifies the
underlying soft tissue model at each time step, which is much more frequent than the
changes to the model described in Section 5.3.1. When the initial intersection occurs,
all contributions to the stiffness and mass of the model based on the original element
are removed. Then, the contributions based on the new, temporary elements are added.
As the cutting instrument moves with respect to the model, the initial contributions
due to the temporary subdivision are removed, in turn, and the new contributions are
added based on the current geometry of the temporary subdivision. The changes in the
pseudocode between the two types of progressive cutting are shown below, replacing
the second section of the first pseudocode in Section 5.3.1 with:

FIGURE 10. Progressive cutting with temporary intersections example.
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if ModelIntersected or ModelIntersectedLastTimeThrough
foreach IntersectedElement

IntersectElement(sweptLine, sweptQuad)
if CutComplete(IntersectedElement)

RemoveTemporaryElements()
SplitElement()
RemoveOriginalElement()

else
RemoveContributionFromOriginalElement()
RemoveTemporaryElements()
TemporarySplitElement()

endif
end

endif

5.3.3  Different Possible Cases for Temporary Progressive Cuts

We have enumerated eleven different combinations of intersected edges, faces, and
temporary face intersections, which are enumerated in Table 1. The different types of
intersections are illustrated in Figure 11. Momentarily marking temporary
intersections as permanent, many of these cases can directly use the procedures
described in the previous section on minimal cutting. The cases which are not
topologically similar to those described in Section 5.2.2 were implemented in a similar
fashion, with a minimum number of new elements generated for each cut element,
where each case was examined by hand to determine the correct subdivision.

Case: 1 2 3 4 5 6 7 8 9a

a. Same number of intersections as case 8, but case 9 has a different subset of edges intersected.

10 11

Edge Ints. 0 0 1 1 1 2 2 2 2 3 3

Face Ints. 1 2 0 1 2 0 1 2 2 0 1

Temp. Face Ints. 1 2 2 1 2 2 1 2 2 2 1

Interior Ints. 1 0 0 1 0 0 1 0 0 0 1

TABLE 1. Enumeration of different cases for temporary intersections.

FIGURE 11. Different types of intersections for progressive cutting.
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Figure 12 shows the topology of the different cases. Note the difference between the
relationship of the edges intersected in cases 8 and 9. As described previously, a
lookup table is used on the intersected element to rotate and mirror its state to fit the
orientation of the default topology.

5.3.4  Progressive Cutting: Cutting Tip Within Model

When the tip of the cutting instrument is within the interior of an element, ideally we
would want the model to be able to open up along the cut of the blade, so that the user
could see all the way up to the base of the cut, where the tip is located. But given the
nature of the subdivision for a generic cut, this would not be possible. An example of
this is shown in Figure 13, case i, which corresponds to Case 1 from Table 1. In this
case, the tip of the blade is inserted fully through one face, with the tip of the cutting
edge within the interior of the tetrahedron. Ii is the tip of the cutting edge, If is a
permanent face intersection, and Itf is a temporary face intersection. There are now two
intersections on one face, one permanent and one temporary. Ideally, as described
above, the object would be able to open up along the edges between the two face
intersections, as shown in Figure 14. To be able to see the tip of the cutting tool,
though, we would have to insert two intermediate vertices along the line between those
two intersection points, and generate at least 8 more edges and 8 more temporary
elements. This would be very computationally expensive to perform because of the
large increase in the number of elements that would be generated.

FIGURE 12. Eleven different progressive cutting cases.
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If no intermediate nodes are inserted between the two face intersections, a straight line
will always connect them, and the model will not be able to open up. Additionally, the
fact that the model can not open up along these edges allows us to ignore the location
of the tip within the model, and, in fact, to generate an arbitrary topology within the
interior of the original element, since that topology will never be seen.

5.3.5  Progressive Cutting: Topology Change

Even though we may be able to ignore the position of the tip of the cutting tool within
the element, we still have to make sure that none of the triangles generated on that
original face overlap. This would occur, as shown in Figure 13, as the blade travels
from case ii to case iii, when a temporary face intersection moves across an edge
belonging to the other face intersection. The shaded area shows the overlapping area of
the two triangles. If this occurs, then the modified topology of the partially cut
tetrahedron has changed, and a new set of tetrahedra will be created, as is shown in
case iv.

FIGURE 13. Temporary subdivision, with two intersections on one face.

FIGURE 14. Temporary cut opening up between face intersections.
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5.4  Stable Cutting With Snapping

Progressive cutting with the cut surface following exactly the path that the user traced
out is the ideal. This motion, though, will create small elements when the cutting tool
passes close to one of the original vertices in the model. Small elements are also
created due to the temporary subdivisions, when the cutting edge is close to an edge of
the original element. These small elements have either short edges or short height.
They can become unstable due to the nature of the simulation technique that generates
a set of stiff ordinary differential equations updated explicitly.

To counteract this problem, we utilize a snapping method with the progressive cutting
between elements technique to assure that these small elements will not be created. In
the following sections we will describe the general concept of the method, the test for
determining probable stability, how we find the collection of perturbations to the
original set of intersections that will generate a stable subdivision, and an enumeration
of all the possible topological cases of intersections with snapping.

5.4.1  General Concept

Once a cut has been completed through an element, normally, we would just subdivide
the original element. But, with model instability an issue, we first need to verify
whether or not the desired subdivision is stable or not.

If the initial subdivision would not be stable, then we set up a list of possible
permutations of the initial intersection state. The permutations are all the possible
combinations of moving one or a combination of the intersections to their closest
feature. The list is ordered based on a metric of how close the perturbed intersection
state is to the original state, and is described in detail in Section 5.4.4.

After the list is set up, we generate, in turn, a test subdivision for each permutation in
the list. If the currently tested permutation is stable, then we do a final subdivision
based on that permutation, and return to the cutting routine. If the currently tested
permutation is not stable, then we go to the next one in the list.

If none of the permutations generate a stable subdivision, then we utilize the best
permutation from the list of possible cases that was generated, utilizing the stability
values returned from the geometry test. This process is demonstrated in Figure 15.

To more clearly demonstrate the process, take, for example, Figure 16. In this element,
there are 3 edge intersections, effectively cutting off the top of the tetrahedron. If
testing of the initial subdivision, using the actual intersection points, determines that
the subdivision would be unstable, then we will attempt snapping the intersection
points. For each intersection point, we can try snapping to the closest vertex or
November 29, 2001 DRAFT
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snapping to the center of the edge. We can try snapping individually, in pairs, or all 3
at once. The method of ordering the list is, as previous described, based on the distance
from the perturbed intersection state to the initial cutting path. In this example, though,
the first attempt moves intersection 0 (I0) to vertex 0 (V0). In this example, that
permutation is also not stable. The second attempt moves intersection 1 (I1) to V0. In
this example, that permutation, again, is not stable. The third attempt then tries to
move both I0 and I1 to V0. In this case, the resultant permutation is stable, and the
subroutine returns with that final subdivision.

5.4.2  Geometry Test for Element Stability

Model stability will be described in detail in Section 6.2.5. We have found that overall
model stability is dependent on individual element stability, such that if an individual
element becomes unstable, it forces the whole model to become unstable. Therefore,
we test individual elements to determine if they meet stability criteria.

To determine whether or not an individual element will likely become unstable
depends on the geometry of the element. We use a simple test where the rest length of
all the edges and the height of the vertices above their opposing faces are compared to
a minimum value. Figure 17 shows both edge length and vertex height within a typical
element. If all the values are greater than the minimum value for this element, then the
individual element, and therefore the model, will remain stable. If any of the values are
below that threshold, then the model may remain stable, but probably will not be

FIGURE 15. Flow of stable subdivision routine.

Generate best
subdivision based
on previous
stability checks

Generate list
of possible
permutations

Sort list based on
distance from
cutting path

For each
permutation:

Generate test
subdivision

Is test subdivision
stable?

Is initial
subdivision
stable?

Is this the last
permutation to
check?

Yes

No

Yes

Yes

No

No

Return

Return

Return
November 29, 2001 DRAFT



5.4 STABLE CUTTING WITH SNAPPING 47
stable. So, the threshold is set at a safe value, not right on the cusp of causing the
model to become unstable.

5.4.3  Where Intersection Points Snap

Figure 18 shows the two types of intersections and the features they can be snapped to.
The edge intersection can be snapped either to its closest endpoint or to the center of

FIGURE 16. Example of stable snapping.

FIGURE 17. Element edge length and vertex height.
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the edge. The face intersection is more complicated. The shaded circle around the
intersection represents the thresholded distance for snapping to the second-closest
edge, if that edge has already been intersected. Before we determine where we will
snap the face intersection, we check to see if the closest edge to the face intersection
has been intersected and already used in a subdivision of a previously cut element. If
the closest edge has not, then we check to see if any of the other edges on the
intersected face have been intersected and used in a previous subdivision. If one has,
and the edge is close enough to the face intersection, that edge is used as the closest
edge, since we will then be snapping to a previously determined and used intersection
point.

After we have determined which edge on the intersected face is the “closest” edge, we
project the face intersection to that edge. If we are forcing the snapping to go to the
center of the edge and the projected point is in the middle 50% of the edge, then the
projected point is moved to the center of the edge. Next, we test to see if the projected
point is too close to one of the endpoints. If it is, then the intersection point is
automatically forced to the closest vertex. If not, then if there is already an intersection
on that edge, we snap the face intersection to that point. Lastly, if the projected point is
far enough away from the endpoints of the edge, and there are no intersections already
present on this edge, then the face intersection is snapped to the projected point on that
edge.

Additionally, in the case that we have both a face intersection and an edge intersection
of the same face, if the edge intersection is snapped to one its endpoints, then we make
sure that if we try to snap the face intersection to that edge, the face intersection is
forced to one of the endpoints, and not allowed to snap to the interior of that edge. It
would not make any sense to move an intersection off an edge, and then put another
intersection right on it. This is shown in Figure 19, where in the first step, an edge
intersection is snapped to a vertex. Then the face intersection, which was initially
further from its closest feature than the edge intersection was from the vertex, is then

FIGURE 18. Where edge and face interaction points snap to.
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5.4 STABLE CUTTING WITH SNAPPING 49
snapped. First we attempt to move it to the edge, and then realizing that the edge had
already been snapped, we move it to the vertex that the edge snapped to.

5.4.4  Ordering of Possible Cases to Find Stable Subdivision

When the initial intersection state does not provide a stable subdivision, then snapping
of one or more of the intersection points becomes necessary. The first thing that needs
to be done, then, is to determine which collection of snapped intersection points is
going to be most faithful to the original path traced by the user. While we are moving
intersection points from their original positions, and therefore changing the location of
the cut surface, we want to minimize the distance of the snapped cut surface from the
initial cutting surface traced by the user.

For each intersection, the distance to the closest feature is recorded. For edge
intersections, that closest feature would be the vertex at the end of the edge. For face
intersections, there are more possibilities, as described in the previous section.
Additionally, we can try moving edge intersections to the center of the edge, to
maximize the distance from both endpoints while still maintaining the direction of the
cut. Moving intersection points to coincide with original vertices of the element
maximizes the likelihood of a stable intersection, since the whole original edge
remains, and its edge length is no smaller than the original edge length.

FIGURE 19. Face snapping to vacated edge.
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50 CHAPTER 5 CUTTING
We generate all the different combinations of moving initial intersection points, and
sort the list based on the total distance that the vertices for each case have to move to
reach their closest feature. For example, if there are 3 initial intersections, 2 face
intersections and 1 edge intersection, then there are 7 different possible combinations
of moving intersections: 3 combinations where we move single intersection points, 3
combinations of moving 2 intersection points, and 1 combination where we move all 3
intersection points. For each of these cases, we sum up the distance from the initial
intersection points to where they will be moved, and then sort the list of possible
combinations based on that distance. In this way, if the 2 face intersections were each
0.1mm from their closest edges while the single edge intersection was 1.0mm from its
closest vertex, we would attempt moving both face intersections before moving the
single edge intersection, given that the sum of the distances is 0.2mm vs. 1.0mm.
Figure 20 and Table 2 enumerate the different permutations and the order of them for
this example.

One restriction on the moving of intersection points is required. Just as we don’t move
original element vertices, we can not move intersection points that have been used in
previous element subdivisions. As the cut progresses through an object, we subdivide

FIGURE 20. Sorting of possible permutations.
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5.4 STABLE CUTTING WITH SNAPPING 51
each intersected element in turn. After one element is subdivided, the new intersection
points, which now have had vertices created at their positions, are fixed within the
topology of the model. Since they are now part of permanent elements in the model,
they can not be moved, since their change in position would affect the topology of not
only their element, but due to stability issues, may affect one or more levels of
modification back through the model. Therefore, as we move through the model,
progressively cutting and subdividing elements, intersection points which are used in
new elements are marked as unmovable. These unmovable vertices are not used in
generating all the possible combinations of moving intersection points in subsequent
elements.

Additionally, if the first pass through the possible combinations does not provide us
with a stable subdivision, we go through the list again, forcing all edge intersections to
snap to the middle of their edges, maximizing the possibility of a stable intersection
while maintaining the general direction of the cutting path. If that pass does not
provide a stable intersection, then we go through the list one last time, forcing all
intersections to the closest original vertex of the element. If this pass also does not
provide a stable intersection, then we use the combination that provided the most
stable subdivision from the previous three passes through the combination list.

5.4.5  New Vertex Types

There are two basic types of new vertices created by cutting. Vertices created by the
motion of the tip of the cutting tool are single vertices, where only one vertex is
created at the intersection position. Vertices created by the motion of the cutting edge
are created in pairs, so that the model can split apart where the cutting edge has parted
it. This is simple to implement for the initial cutting, but a difficulty arises when
snapping occurs.

For example, if there are neighboring elements that are cut, and one element is cut
completely through at one time step. Then, at the next time step, the neighboring
element is cut and the face intersections on it are snapped up to the edges it originally

Is intersection snapped? Int. 0 Int. 1 Int. 2 Total Distance

Case: 1 Yes No No 0.1mm

2 No Yes No 0.1mm

3 Yes Yes No 0.2mm

4 No No Yes 1.0mm

5 Yes No Yes 1.1mm

6 No Yes Yes 1.1mm

7 Yes Yes Yes 1.2mm

TABLE 2. Sorting of possible permutations.
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52 CHAPTER 5 CUTTING
shared with its neighbor. So, now, the original paired vertices have to be replaced with
a single vertex, since that area which was initially going to split open is now the base
of the cut.

In the simulator, though, the replacement does not happen right away. There are many
different data structures which include pointers to both vertices that were created when
the first element was split. Because of this, it is simpler to symbolically link the two
vertices so that their positions and forces are identical, and leave both vertices in the
model. On the other hand, we don’t want to increase the computational load
unnecessarily due to the additional vertex and edges that link the two vertices. So, after
the cut is completed and there are no more pointers in use for the two joined vertices,
one of the vertices is removed and its edges linked to the other vertex of that pair.

5.4.6  Paired Vertex Above or Below the Plane

When cutting without snapping, vertices generated in pairs, caused by intersections
along the cutting edge, are easily allocated as being above or below the cutting plane.
As seen in Figure 21, when you insert two new vertices at an intersection along an
edge, normally one is clearly connected to one endpoint, while the other is connected
to the other endpoint. And, since the internal topology is clearly defined by the type of
subdivision, connecting multiple paired sets of vertices is simple. An example where
the edges from the paired vertices are drawn in bold is shown in Figure 21.

When a subdivision is caused by a snapped intersection, though, allocating and
connecting vertices above or below the cutting plane is not as clear. If an edge
intersection is snapped to a vertex, then the obvious connection of one new vertex to
each endpoint of the edge is removed. For example, in the upper row of Figure 22 an
edge intersection was snapped to V0. Now, since the new vertices are not on an edge

FIGURE 21. Paired vertices in an unsnapped intersection.
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5.4 STABLE CUTTING WITH SNAPPING 53
but at the endpoint, it needs to be determined which of the other vertices in the
subdivision each new vertex will connect to. Looking at the geometry of this example,
it is clear that the vertex above the plane, V0a, should connect to V1 and V2, while the
vertex below the plane, V0b, should connect to V3. Additionally, both new vertices will
connect to the face intersections at the base of the cut. Note that labeling the two
vertices as above or below the plane is arbitrary, as they exist at the same point in
space, and each could easily take the place of the other.

Now, in Figure 22 in the bottom row, we have a different type of intersection. In this
case, the upper element intersection was competed first, with all the edge intersections
snapping to V0. Since there is no internal subdivision to this element, only one of the
paired vertices is used for the new element that replaced the original element, with the
paired vertex kept as a placeholder. Then, when the cut through the lower element is
completed, we have two face intersections and the paired vertices at the vertex that
was previously snapped to, V0. In this case, as in the previous example, it is clear that
the vertex below the plane, V0b, should connect to V3, and the vertex above the plane,
V0a, should connect to V1 and V2.

To determine which of the paired vertices should be used in each new element in the
subdivision of the original element, we look at the unintersected vertices present in the
new element skeleton and their position with respect to the cutting plane. The skeleton
consists of four vertex pointers, of which at least one of the vertices is an original

FIGURE 22. Example of paired vertices in snapped intersections.
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54 CHAPTER 5 CUTTING
vertex from the initial intersected element. Any intersected vertex or intersection point
is considered to be on the cutting plane, while the unintersected vertices are checked to
see if they are above or below the cutting plane. The total number of vertices above
and below the plane are determined, and if there are both vertices above and below the
plane, then the position of the new element with respect to the cutting plane is used. If
the new element is predominately above the plane, then we use the paired vertex that is
above the plane for this new element, otherwise we use the paired vertex below the
plane. If only vertices above the plane, or vertices below the plane, are present, then
we use the corresponding vertex of the paired set.

Figure 23 shows two examples of the cutting plane and element skeletons. In the
element on the left, there are two sets of paired vertices, hidden from view, and 2
original vertices from the initial element. The original vertices are both above the
cutting plane, which cause us to use the paired vertices that are labeled as being above
the cutting plane. In the element on the right, though, one of the original vertices is
above the cutting plane and the other is below. In this case, then, we look at the
fraction of the new element volume that is above the cutting plane. Since in this case,
the fraction above the plane is greater than 0.5, we consider the new element to be
above the cutting plane, and use the paired vertices that are labeled as being above the
cutting plane.

To calculate the fraction of the element above, or below, the plane, all that is required
is the signed distance of each vertex from the plane. The non-trivial combinations of
distances above, below, or on the plane are shown in Figure 24.

In the case where only one vertex is above or below the plane, or all vertices with non-
zero distance are either above or below the plane, the fraction above the plane is

FIGURE 23. Example showing two different cases of paired vertices.
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5.4 STABLE CUTTING WITH SNAPPING 55
clearly exactly one or zero. If there are two vertices with non-zero distances, the
equation for the fraction above the plane is a simple ratio of the distance from the
vertices to the cutting plane:

(EQ 3)

where Fa is the fraction of the volume above the plane, da is the distance of node a
above the plane, and db is the unsigned distance of node b below the plane. Figure 25
shows this fraction graphically. The actual signed distance along the intersected edge
could be used instead of the distance above the plane. This is because the distance to
the plane is equal to the dot product of the cutting plane normal vector with the vector
from the vertex to the intersection point. Since the normal vector is the same for both
segments of the edge, the ratio of the actual distances is equal to the ratio of the
distances from the cutting plane.

The rest of the cases derive from Equation 3. If there are more than 2 non-zero
distances, then half of the element is split by one of the distance pairs, and then that
new fraction is split again by one of the other distance pairs. In the case where there
are 3 non-zero distances, this equates to:

FIGURE 24. Non-trivial combinations of vertex distances above, below, or on the plane.
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(EQ 4)

There are two different permutations when all four distances are non-zero. In the first
case, there is one vertex above and 3 vertices below the plane:

(EQ 5)

In the case where there are two vertices above, and two vertices below the plane,
breaking down the resultant volumes goes through three levels, and the resultant
fraction above the plane is:

(EQ 6)

5.4.7  Different Possible Cases For Snapped Cuts

Table 3 and Figure 26 demonstrate the different topological cases for snapped cuts.
These 60 permutations shown in Figure 26, some of which have the same combination
of intersected vertices, faces, and edges, were identified by first determining all

FIGURE 25. Volume fraction above the cutting plane.

Va

Vb

Va

Vb

da

db

Va

Vb

Va

Vb

Fa

da

da db+
-----------------

da

da dc+
-----------------

da
2

da db+( ) da dc+( )
---------------------------------------------= =

Fa

da

da db+
-----------------

da

da dc+
-----------------

da

da dd+
-----------------

da
3

da db+( ) da dc+( ) da dd+( )
--------------------------------------------------------------------= =

Fa

da
2

da db+( ) da dd+( )
---------------------------------------------

dadbdc

da db+( ) da dd+( ) db dc+( )
--------------------------------------------------------------------

dc
2dd

da dd+( ) db dc+( ) dc dd+( )
--------------------------------------------------------------------

+

+

=

November 29, 2001 DRAFT



5.4 STABLE CUTTING WITH SNAPPING 57
possible permutations of intersection cases with an allowable number of intersections.
Those possible cases were examined to weed out the cases which weren’t truly
possible due to geometric constraints. Lastly, during testing, additional cases were
found to occur due to the snapping of intersections. Without snapping, a maximum of
five intersections can occur on any one tetrahedron. But with snapping, we empirically
found two cases with six intersections on an element. Also, cases which did not look
geometrically possible without snapping did occur with snapping, and were similarly
addressed. As in Section 5.2.2, each of these 60 cases was examined by hand to
determine the minimal number of elements that needed to be generated to replace the
original cut element.

Case: 1 2 3 4 5 6 7 8 9 10 11

Vertex Ints. 0 0 0 0 0 0 0 0 0 0 0

Edge Ints. 1 1 1 2 2 2 3 3 3 4 4

Face Ints. 0 1 2 0 1 2 0 1 2 0 1

Case: 12 13 14 15 16 17 18 19 20 21 22

Vertex Ints. 1 1 1 1 1 1 1 1 1 1 1

Edge Ints. 0 0 1 1 1 2 2 2 3 3 4

Face Ints. 1 2 0 1 2 0 1 2 0 2 0

Case: 23 24 25 26 27 28 29 30 31 32

Vertex Ints. 1 2 2 2 2 2 2 2 3 3

Edge Ints. 4 0 0 1 1 2 2 3 0 1

Face Ints. 1 1 2 1 2 0 1 0 1 1

TABLE 3. Enumeration of different cases for snapped intersections.
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FIGURE 26. Snapped progressive cutting cases.
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FIGURE 26. Snapped progressive cutting cases. (Continued)
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FIGURE 26. Snapped progressive cutting cases. (Continued)

xxivb. xxv. xxvi. xxvib.

xxvii. xxviib. xxviii. xxviiib.

xxix. xxixb. xxixc. xxx.

xxxb. xxxc. xxxi. xxxii.

edge int.

face int.

temp. face int.
November 29, 2001 DRAFT



November 29, 2001 DRAFT
Chapter 6

Soft Tissue Modeling

Physically based volumetric models provide the most accurate results for soft tissue
simulation. The difficulty with these types of systems is the large amount of
computation required. A finite element model with 500 elements will have a global
stiffness matrix with a size on the order of 700 x 700, or larger. Inverting a matrix of
that size or solving the constitutive equations is very time consuming. Mass spring
systems can model objects volumetrically in a more efficient manner, but they are not
physically based. The tensor mass model has similar computational properties as the
mass spring model, but is physically based, and was the method chosen for the
proposed system.

6.1  Tensor Mass System

The tensor mass system, as described by Cotin, et al. [13], breaks down the standard
linear elastic finite element formulation into its component stiffness formulation, and
can be viewed as a local formulation of the global finite element method. The
advantage of this method is in its computational efficiency. To allow for easy
modification of the system, the stiffness and damping terms are modeled locally, and
not assembled into global matrices. The tensor mass system sums the contribution to
each node and edge in the model from all the elements before the simulation
commences. This allows topology changes to occur easily and quickly, without having
to deal with large sparse matrices. Tetrahedral elements were chosen as the basic
element type because of their simplicity, and relative ease of subdividing.

In addition to the standard element by element representation, the method relies on a
model that represents the object as a list of nodes and edges. The standard 12 x 12 (4
nodes, each with 3 degrees of freedom) stiffness matrix for each element is calculated,
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62 CHAPTER 6 SOFT TISSUE MODELING
and the 10 distinct 3 x 3 submatrices (6 edges and 4 nodes, each with 3 degrees of
freedom) are distributed and linearly summed for each edge and node.

If the finite element system was to be solved on a per element basis, looking at the 12
x 12 stiffness matrix for each element, then the force contribution from each node and
edge present would be calculated for each element. This would visit nodes and edges
multiple times. For the tensor mass system, the simulation examines each node once
and each edge twice, leading to a decrease in the number of calculations required per
cycle. For a model of a cube consisting of 6 elements, the equivalent of 96 3 x 3 matrix
multiplications are performed for the per element technique; the tensor mass system
requires 46, which is equal to the sum of the number of nodes, 8, and twice the number
of edges, 19, present.

6.1.1  Element Properties

The standard finite element method can be broken down into 5 steps [58]:

1. The continuous object is broken down by a set of lines or planes;

2. The elements are interconnected by the lines connecting a discrete number of nodal
points on the boundary of the elements;

3. Shape functions are selected that transform nodal displacements into general
displacements within the interior of the elements;

4. The shape functions uniquely identify the strain state within each element when
given the nodal displacements;

5. A collection of forces at the nodal locations that balances out any boundary
conditions and external forces is calculated, given the general relationship that:

(EQ 7)

where f is the nodal force, Ke is the element stiffness matrix, ae is the displacement
vector, and fa is the applied external force vector.

The tetrahedral element shape and nodal numbering for this model are shown in
Figure 27. The tetrahedral element consists of four vertices, numbered 0 through 3.
They are ordered such that if you apply the right hand rule to the first three vertices,
the resultant vector points toward the fourth vertex.

The general equation for the stiffness matrix, Ke, is dependent on material properties
(represented by the matrix D) and the shape functions of the element (represented by
matrix B) given the following equation:

f Keae f a
+=
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6.1 TENSOR MASS SYSTEM 63
(EQ 8)

Given an isotropic solid, the equation for the stiffness matrix simplifies to:

(EQ 9)

Due to the nature of the linear elastic model, realistic deformations are limited to
approximately 10% strain levels. If deformations grow past this 10% limit, the validity
of the results decreases. This leads to limitations on what the linear elastic model can
realistically simulate.

6.1.2  Nodal and Edge Properties

Cotin, et al breaks the element stiffness matrix for a tetrahedron down into its nodal
and edge components using the following equations:

(EQ 10)

The stiffness matrix above depends on the Lamé material coefficients, and , and
the geometry of the matrix, represented by the M vectors. The i and j indices represent
the node or edge to which the stiffness matrix belongs. If the index is repeated, as in

, then the stiffness relates to the force felt by the node due to its own displacement
from its home position. If the index is not repeated, as in , then the stiffness relates
to the force felt by the node i due to the displacement of node j from node j’s home
position; this can be viewed as an edge effect since it occurs between two nodes. Also,
due to symmetry,  is the equal to the transpose of .

FIGURE 27. Tetrahedral element shape and nodal ordering.
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64 CHAPTER 6 SOFT TISSUE MODELING
The M vectors are defined as:

(EQ 11)

where is the home position of node i. These vectors point away from the center of
the tetrahedron, toward the exterior, and their magnitude is equal to twice the area of
face j, which is the face opposite vertex j, with vertex numbering as shown in
Figure 27.

To calculate the internal elastic force acting on a node i, the contributions from all the
tetrahedra that node i belongs to are summed:

(EQ 12)

where fi is the nodal force, is the sum of the tensors associated with all the

tetrahedra that node i belongs to; the tensor is the sum of the tensors

associated with the edge from node i to node j, is the displacement vector of

node i, and N(Pi) is a list of all nodal neighbors of the node i.

Figure 28 shows a simple two element, tetrahedral mesh. For example, the stiffness
matrix for node n2, , is the sum of from the element on the left and the
element on the right, because node n2 belongs to both elements. is equal to
because node n1 belongs to only one element. Similarly, is the sum of from
both elements, while is equal to from the element on the left. Also, while the
vertices are numbered from 1 to 5 in this model, within each element the nodal
numbering is the same as in Figure 27. In this manner, the stiffness matrix for each
edge and node encodes all the contributions from the elements that the edge or node is
associated with.

6.2  Position Integration

Once the forces acting on the nodes of the model are determined, a method for
calculating the current position of the nodes is needed. We looked at three different
explicit solvers: first-order Euler integration, fixed-time step fourth-order Runge-
Kutta, and three different formulations of the Verlet algorithms. We compared these
solvers on the basis of computational load and maximum time step while still
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6.2 POSITION INTEGRATION 65
maintaining stability. Due to the fact that the finite element model consists of a stiff set
of ordinary differential equations, stability was the main concern with respect to
choosing a solver. An explicit solver was selected to avoid having to solve a system of
algebraic equations at every time step, which would have required setting up and
inverting a large sparse matrix. Also, note that stability is the driving criteria, and not
accuracy. Accuracy is important, but for the type of simulation described, and the
interactivity of it, greater stability and computational efficiency is of more significance
than greater accuracy. Computational efficiency affects synchronicity, the need for the
time step to be equal the computational time per cycle, insuring that simulation time
matches real time.

6.2.1  Nodal Dynamics

The position, velocity, and acceleration of the nodes is governed by standard
Newtonian mechanics, using the following basic equation:

(EQ 13)

where N is the mass matrix for the mesh, C is the damping matrix, K is the overall
representation of the stiffness of the mesh, is the vector of current positions of the
nodes, and fa is the vector of applied external forces, such as gravity and pushing
forces from the user, acting on the nodes. These matrices are the global equivalents of
the local matrices actually used in the tensor mass system. The calculation of the state
of individual nodes is done on a per node basis, using scalar values for nodal mass, and
Equation 12 to determine the force representative of the term. Raeligh

FIGURE 28. Summing of stiffness matrices.
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66 CHAPTER 6 SOFT TISSUE MODELING
damping is used to gernate C, and and are chosen empirically so as to damp out
oscillations in a reasonable period of time. The mass term for each node is
proportional to the volume of the elements it belongs to. The mass for each node is
determined with the equation:

(EQ 14)

where mi is the mass of node i, E(i) is the set of elements that node i belongs to, and
 are the density and volume of element j, respectively.

This second order ordinary differential equation is solved using the explicit solvers
described below. When rewritten on a per-node basis to show the acceleration acting
on each node, Equation 13 looks like:

(EQ 15)

where is the current position of node i, and are the internal and applied
external forces acting on node i, is the Raleigh damping force acting on node i, and
c is the global scalar damping term, which models damping between the object and its
environment.

Figure 29 demonstrates an example of a model of a simple cubic object, where each
cube consists of 6 tetrahedra, randomly colored. The left image is of the model with no
external forces acting and no displacements. The right image is the model deformed
due to a gravitational force, with the model anchored at the top.

6.2.2  Euler Integration

First order Euler integration was implemented as a baseline numerical integration
technique to verify the viability of the model, and as a comparison for the other two
integration methods tested. The second order differential equation of the state of the
nodes, Equation 15, was implemented as a system of two first order equations:

(EQ 16)

While this equation did generate a solution for the current state of the model, it is
limited both by its accuracy, which was not a large concern, and more importantly by
the need for a very small time step to insure stability.
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6.2.3  Runge-Kutta Integration

Due to the small time steps required to insure stability with Euler integration, a more
accurate and stable method was implemented. Fourth-order Runge-Kutta was chosen
for its large increase in accuracy for a given time step, thereby allowing us to greatly
increase the time step while maintaining stability and similar levels of accuracy.

The equations were set up in a similar fashion as before, as two sets of first order
equations, and then solved with the fourth-order Runge-Kutta algorithm:

(EQ 17)

where is the function which generates the acceleration acting on the node
when it has position xt and velocity yt, as in Equation 15. This method is written as:

(EQ 18)

where

FIGURE 29. Tensor mass system deformation example.
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(EQ 19)

The implementation of this method stacked the position and velocity vectors on top of
each other, to generate one large vector that was passed to the Runge-Kutta routine
written for Numerical Recipes in C [39]. That is, the two equations in Equation 17, for
position and velocity, were solved simultaneously. While this method of integration
did generate results that were much more stable than those produced by the Euler
method, the simulation was still not quite fast enough.

6.2.4  Verlet Integration

The Verlet integration methods are popular in the molecular dynamics world, where
molecules are modeled as point masses that behave strictly according to Newtonian
mechanics [56]. Due to that similarity to the lumped mass model employed in the soft
tissue simulation, the Verlet method was tried here. There are three popular forms of
the Verlet algorithm: the basic Verlet, a leap-frog technique, and the Velocity Verlet
algorithm. All three were tested and found to be quite comparable in terms of model
stability, and more computationally efficient in this application than the other methods.

Basic Verlet Algorithm

The basic Verlet algorithm is simple and robust, and is the sum of two Taylor
expansions around the current time step, which are summed, and then rearranged to
provide the position at time t+h:

(EQ 20)

(EQ 21)

where  is the sum of all the forces acting on a node at time t.
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6.2 POSITION INTEGRATION 69
If velocity terms are needed, they can they be calculated with a difference term,
although note that at time t+h, the velocity term to be calculated is that for time t:

(EQ 22)

Since the velocity term is used in the calculation of forces for the nodes, calculating
the velocity one time step behind is not ideal, so the Velocity Verlet algorithm was
investigated.

Velocity Verlet Algorithm

The Velocity Verlet algorithm [50] calculates the velocities of the nodes at the new
time step, and therefore improves upon the basic algorithm. The main drawback is that
it is more expensive computationally. The basic Velocity Verlet algorithm requires four
steps:

1. Calculate the midpoint velocity:

(EQ 23)

2. Calculate the new position based on the midpoint velocity:

(EQ 24)

3. Calculate the new forces acting on the nodes, using the midpoint velocity and new
positions:

(EQ 25)

4. Calculate the final new velocity:

(EQ 26)

This form gives the most complete solution, but is slightly slower due to the fact that it
has to cycle through the list of nodes twice, once before updating the total forces
acting on the nodes, and once after. Depending on the memory architecture of the
machine and the software, this can impact the computation time.

Verlet Leapfrog Algorithm

The Verlet Leapfrog algorithm explicitly calculates velocity, like the Velocity Verlet
method, but the velocity it calculates is at the midpoint of the time step. The significant
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70 CHAPTER 6 SOFT TISSUE MODELING
difference for us is that it only cycles through the list of nodes once, not twice, and
therefore can run more quickly. While having the velocity calculated at the midpoint is
not as accurate and desirable as determining it at the end of the time step, in practice, it
did not prove to be a problem.

The algorithm first calculates the midpoint velocity:

(EQ 27)

Then, the new position is calculated using the midpoint velocity:

(EQ 28)

If the velocity term at time t is desired, it can be calculated with the difference
equation:

(EQ 29)

This method proved to be the fastest of the three methods described in this section,
while stability numbers were similar for all three.

6.2.5  Element Stability

Two of the main requirements for position integration within this type of surgical
simulator, where the user is applying a highly variable amount of force, is efficiency
and stability. Efficiency to reduce the computational load, and therefore increase either
the number of elements that can be modeled or the complexity of the interaction
routines between the model and the tools that the user wields. Stability is important so
that the models behave appropriately, and do not oscillate and shoot off to infinity,
thereby either generating large arbitrary forces or crashing the simulator.

The theoretical limits on time steps for the different routines do have interest, but only
in an academic sense. Due to the complexity of the model, the variability of element
size, and implementation issues, actual, empirical limits on the time steps proved to be
of more use than the theoretical limits.

For instance, in implementing a cubical model, the theoretical limit on the time step
for these explicit methods is proportional to the ratio of edge length to maximum wave
velocity in the material:
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6.2 POSITION INTEGRATION 71
(EQ 30)

For one model, this results in a maximum time step of 0.005sec. Empirically, the
maximum time step found for Euler integration was 0.00015sec, more than 30 times
less. This may be due to the fact that each node is not moving independently, but is
interconnected with many neighboring nodes in the model, thereby affecting the
calculations of a representative stiffness matrix.

In addition to determining a minimum stable time step for a given integration method,
we also need to determine the inverse, the minimum edge length, or threshold length,
to maintain stability, given material properties and the actual time step being used, for
use in our cutting routines.

This was also done on an empirical basis, given the fact that the minimum edge length
is proportional to the maximum velocity that a wave can travel through a linear elastic
finite element model:

(EQ 31)

where lt is the minimum threshold length, h is the time step of the simulation, and vmax
is determined using Equation 30. c is an empirical constant, determined through
testing.

The testing method to determine c is straightforward. Given a particular model, the
minimum edge length was found. Assuming that this edge length is lmin, and knowing
vmax, we increased the time step, h, until the model became unstable. We then reduced
this value to give a slight amount of cushion for stability, and set the value of c:

(EQ 32)

Subsequently, during cutting, the element edge lengths and the height of the vertices
are compared to lt, from Equation 31, to determine whether the resultant element will
be unstable or not.

6.2.6  Computational Efficiency

To determine which integration routine would work best overall, we calculated the
trade-off between numerical stability and computational efficiency by examining the
maximum time step that could be utilized without causing instability. We then divided
this maximum time step by the actual time spent performing the computation to
determine how close to, or how much better than, real-time the calculations could run.
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72 CHAPTER 6 SOFT TISSUE MODELING
A value of 1.0 would signify that the fastest this model could run would be real-time,
while a value of 5.0 would be five times as fast as real-time, and 0.5 would be half as
fast as real-time. These experiments were run on an SGI O2 with an 180MHz R5000
processor, with a model size of 144 elements, 63 vertices, and 262 edges.

As can be seen in Table 4, the Verlet algorithms perform much better than the Euler
and Runge-Kutta integration methods. Also, due to its better computational efficiency,
the Leapfrog Verlet technique is a little more than 4% better than the Velocity Verlet
method, and is the method used in our simulator.

Integration Type: Max. Time Step Calculation Time Ratio to Real-Time

Euler 0.00015 0.0006 0.25

Runge-Kutta 0.0113 0.0027 4.19

Velocity Verlet 0.0074 0.0007 10.57

Verlet Leapfrog 0.0074 0.00067 11.04

TABLE 4. Computational efficiency vs. numerical stability for integration.
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Chapter 7

Object Interaction

While cutting tissue is the main method surgeons use to modify and effect changes in
patients, it is not the only way in which they interact with the patient. Palpation is used
quite often in determining possible pathologies in tissue and the location of particular
features. Forceps are used for grasping tissue, either to hold it out of the way or to
remove tissue fragments from the surgical field. Lastly, puncture of tissue is not
exactly similar to palpation and grabbing, but needle sticks are used often, and
suturing can be viewed as a series of tissue punctures, after which the punctured tissue
is affixed to its neighbor.

7.1  Palpation of Model

Palpation can be viewed as a method of applying external forces to an object, either
using the fingers directly or through some instrument. A surgeon would use her fingers
to palpate tissue, for example, when feeling for a lump in underlying tissue, while she
might use an instrument to hold tissue back or to palpate tissue while performing
minimally invasive procedures.

To simplify the modeling of interaction with the soft tissue model, the fingertip can be
represented by an implicit sphere, which roughly mimics the fingertip shape.
Instruments are represented as finite length, implicit cylinders, which can push on
objects both along their length and with their endcaps. Implicit shape models, where
the model is described completely by a mathematical equation instead of a set of
surface triangles, are used to simplify the intersection detection and calculations. With
these two shapes, a simple and powerful paradigm for interaction was generated.

Two methods of interaction were implemented using these implicit shapes. With the
sphere model, the first technique described generates interaction and intersections
73



74 CHAPTER 7 OBJECT INTERACTION
between the nodes themselves and the sphere, while the second technique intersects
the surface triangles. For the cylinder only interactions between the cylinder and the
triangles of the surface were modeled. Interacting directly with the surface, instead of
with the individual nodes, proved to be a more reliable and realistic interaction
modality.

7.1.1  Implicit Sphere - Node Interaction

The first method tested for interacting with the soft tissue model was to have the
implicit sphere model intersecting the surface nodes. This method is fast and efficient,
and generates smooth consistent forces.

This method generates external forces on the nodes using a penalty based method. In
the penalty based method, the magnitude and direction of the force vector acting on a
node, and acting back on the user, is dependent on how far into the sphere the node
penetrates. The routine cycles through the list of nodes that are on the surface of the
model, and checks to see which nodes are within the sphere centered at the user’s
current position. It stores pointers of all the nodes which fall within the diameter of the
sphere, and then cycles through that list, and generates the external forces being
applied to the intersected nodes. The external force vectors are also summed, so as to
display the opposite force back to the user, so that she feels the effects of the
deformation she is causing.

This method is demonstrated in Figure 30. As can be seen, two of the surface nodes
intersect the implicit sphere, and external forces are then applied to the nodes. A force
is applied to the sphere, which is equal and opposite of the sum of the forces on the
nodes. This force is displayed back to the user through the haptic interface.

The forces applied to the nodes are:

(EQ 33)

where is the current position of node i, is the current position of the
implicit sphere, r is the radius of the implicit sphere, is the external force being
applied to node i, and k is the stiffness term for the implicit sphere, which determines
how hard the sphere pushes on the nodes. Note that the internal structure of the model
generates the internal forces that cause the nodes to push back on the implicit sphere.

While this technique can work well in most cases, there are clear cases where it fails.
The most obvious case is when the diameter of the sphere is smaller than the average
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7.1 PALPATION OF MODEL 75
distance between nodes. In this case, the sphere can just slip right between nodes and
penetrate within the object without generating any forces. A no less significant, but
more insidious difficulty arises when the sphere is on the order of the average distance
between nodes. In this case, the sphere will generate forces at first, but as it pushes into
the model, it effectively spreads the nodes apart and makes a hole in the surface for
itself. The force needed to generate this hole is smaller than might be expected,
because the directions of the forces being applied to the nodes tend to cancel each
other out.

Say, as shown in Figure 31, that there are four nodes arranged in a square on the
surface, or, in two dimensions, 2 nodes connected by an edge. The implicit sphere
starts to interact with those nodes, and after a little bit of time, falls slightly into the
crater at the center of the four nodes. In this case, all the force vectors are pointing to
the center of the sphere, and the components of the force vectors parallel to the surface
cancel themselves out. Therefore, the total force felt by the user can be much less that
the sum of the magnitudes of the component forces. Then, as the user pushes further
into the object, the force vectors acting on the nodes become more parallel to the
surface of the model, and the total force magnitude becomes even smaller. This
continues until the implicit sphere has penetrated to the interior of the model, with the
total force being displayed back to the user becoming smaller and smaller as the
penetration distance increases.

Because of this problem, it was decided that the interaction routines should deal with
the surface of the model, instead of the nodes, to generate a more realistic interaction
modality.

FIGURE 30. Cross-section of implicit sphere interacting with the nodes of a model.
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76 CHAPTER 7 OBJECT INTERACTION
7.1.2  Implicit Sphere - Surface Interaction

Interacting with the surface triangles instead of the surface nodes is much more
realistic and analogous to real palpations. In this manner, the user interacts with what
she sees, and not some underlying, seemingly arbitrary, grid of points. The closest
example to this method found in the literature is in Berkelman, et al., [4] where an
impulse based method is used between two surfaces to enforce that no inter-
penetration occur between rigid models. But that method was not applied to
deformable models.

This method uses a similar penalty based method as that described in the previous
section, except that instead of using the distance from the node position to the surface
of the implicit sphere, we calculate an approximation of the volume of intersection,
and use that volume as the penalty term. This volume of intersection is shown in
Figure 32. We are looking back from the front, and seeing the surface area that has
been intersected by the implicit sphere. The volume of intersection is then projected
back between the shaded area and the boundary of the sphere.

This routine cycles through the surface triangles of the object, in the same manner as
the sphere-node routine, and first checks to see which triangles are intersecting the
sphere. It first does a simple test to see if the sphere intersects the unbounded plane
that the triangle defines. The test calculates the distance between the sphere center and
the plane, and if the distance between them is greater than the sphere radius, then no
intersection occurs. If the sphere does not intersect that unbounded plane, then it can
not intersect the triangle itself, and no intersection occurs between the implicit sphere

FIGURE 31. Example of hole generated by implicit sphere, in cross-section.
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7.1 PALPATION OF MODEL 77
and that triangle. If there is an intersection between the implicit sphere and the
unbounded plane, we then check to see if there is an intersection with the triangle
itself. The first part of this extended test is to see if any of the vertices are within the
sphere itself. If so, then an intersection has occurred, the triangle is added to a list of
intersections with the sphere, and the next triangle is tested.

If no vertices are within the interior of the sphere, then an exact intersection test is
done. This test calculates the actual distance between the center of the sphere and the
triangle. The closest point on the triangle could be within the triangle, or on any of its
vertices or edges. We adapted the algorithm demonstrated by [16]. This algorithm
looks at the gradient of the squared distance function between the point in question
and the parametric form of the triangle. First, the parametric coordinates are calculated
for the point where the gradient is zero. If these coordinates are within the interior
triangle, then we use these coordinates. If they are outside the interior, then based on
which region they are in, as shown in Figure 33, we find the parametric coordinates of
the closest point, either on the closest vertex or edge. We then calculate the distance to
the center of the sphere. If this distance is less than the radius of the sphere, then there
is an intersection, and this triangle is added to the list of current intersections.

In testing to find the triangles which are currently intersected, the routine also uses the
previous list of intersected triangles to speed up the calculations. The first time we test
for intersections, we test all the surface triangles to insure that no intersections are
missed. These intersected triangles are stored, and the next time through the routine,
these current intersections are used as the basis for determining which new triangles
are intersected. Instead of testing all the surface triangles, only the previously

FIGURE 32. Cross-section of implicit sphere interacting with surface, showing the
volume of intersection
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78 CHAPTER 7 OBJECT INTERACTION
intersected triangles and their neighbors are tested. This greatly reduces the number of
intersection tests performed. This speedup relies on continuity of the model, and the
fact that the models simulated are not convex in such a way that the user could contact
two triangles that are not neighbors at the same time. In testing, this has been true and
no problems attributable to this speedup have arisen.

Once we have a list of the triangles that are currently intersected, we then determine
the volume of intersection and forces to apply for each one. The first step is to
determine the fraction of the triangle that is within the volume of the sphere, and the
centroid of that intersected area.

First, we calculate the center and radius of the intersection between the sphere and the
plane that the triangle defines. In this manner, the intersection is now between a circle
and a triangle in two dimensions, as shown in Figure 34. We then determine the
topology of the intersected shape, composed of a set of segments of EDGES and
ARCS. The different types of intersections are shown in Figure 35. The possible cases
are: the projected circle is fully within the triangle; the triangle is fully within the
projected circle; one edge of the triangle is intersected by the projected circle; and two
or more edges are within the projected circle.

In the first case, where the circle of intersection is fully within the triangle, then the
area and centroid of intersection are just those of the circle itself. In the second case,
the area and centroid of intersection are just those of the triangle. If there are two
segments in the intersection, as in the third case, then the area of intersection is part of
a lopped off circle.

FIGURE 33. Closest point on a triangle.
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7.1 PALPATION OF MODEL 79
For this lopped off circle portion, we first determine whether or not we want the large
portion of the lopped circle, or the small side, based on whether or not the center of the
intersection circle is within the interior of the triangle or not. Next, we calculate the
area of the lopped portion of the circle:

FIGURE 34. Sphere intersected with surface triangle, and projection of the sphere onto
the plane of the triangle.

FIGURE 35. Different types of intersections between projected circle and triangle.
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(EQ 34)

where As is the area of the small side of the lopped circle and Al is the area of the large
side, r is the radius of the circle, and is half of the angle of the pie shaped segment
from the center of the circle to the two points where the lopping edge intersected the
circle. The shaped of the lopped off portion, and the other side of the circle, is shown
in Figure 36.

Lastly, we calculate the centroid of the lopped portion of the circle. The x-component
is zero, while the equation for that y-component of the centroid is:

(EQ 35)

where ycs is the y-component of the centroid of the lopped section if we are looking at
the smaller side of the circle, and ycl is the y-component if we are dealing with the
large side of the lopping segment.

If there are three or more segments, then there is an interior polygon area, and,
possibly, an additional area created by ARC segments. In the case of the triangle fully
within the projected circle, then there are no ARC segments. First, we calculate the
area of the interior, polygonal section of the intersected triangle, using the method
described in [22]. In the same function, we adapted the method in [3] to a three

FIGURE 36. Area of lopped circle.
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7.1 PALPATION OF MODEL 81
dimensional form to calculate the centroid of the polygon. After the centroid of the
interior is calculated, the area and centroids of any ARC segments present are
calculated using Equation 34 and Equation 35 and appropriately added to the total area
and centroid of the intersected triangle section.

After the area of intersection and the centroid for the intersected triangle are
determined, we calculate the distance between the centroid of the triangle and the
sphere center. We also find the normal vector of the triangle. Then, the total force
applied to the triangle is:

(EQ 36)

where is the total force acting on the triangle, k is the gain associated with the
implicit sphere, At is the total area of the triangle intersected with the implicit sphere,

is the centroid of the intersected area, is the position of the sphere center,
is the unit normal of the intersected triangle, and r is the diameter of the implicit

sphere. In this equation, the term:

(EQ 37)

approximates the volume of intersection, with the first term approximating the area of
intersection, and the second term representing the depth of intersection. This is scaled
by the gain, and the direction of force is perpendicular to the intersected triangle.

Ideally, we would then apply this force directly to the centroid of the intersected area.
This is not possible with the lumped masses at the nodes, so we calculate scaling
factors such that the total applied force to the triangle is equal to . The other main
requirement is that the total moment acting on the triangle is equivalent to the moment
generated by the force acting at the centroid . This can be represented by the
set of equations:

(EQ 38)

which can be represented by the matrix equation:

(EQ 39)
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82 CHAPTER 7 OBJECT INTERACTION
Inverting this and solving, we get:

(EQ 40)

Lastly, since we only need the first column of the inverted matrix, this simplifies to:

(EQ 41)

where the variables are as in Figure 37, with Fi being the force on node i and dix,y
being the distance along the respective axes between the vertex and the centroid of the
intersected area.

Figure 38 shows a snapshot of a model being deformed due to palpation with an
implicit sphere utilizing this method.

FIGURE 37. Equivalent forces at nodes to force at centroid.
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7.1 PALPATION OF MODEL 83
7.1.3  Implicit Cylinder - Surface Interaction

As mentioned before, an implicit cylinder can model many of the instruments used in
surgery. Almost all laporascopic and endoscopic instruments can be modeled by
cylinders or a collection of a small number of cylinders. If needed, a whole finger can
be modeled as a set of small cylinders, possibly with an implicit sphere on the end. In
this section, we will describe the geometric underpinnings of the implicit cylinder
interaction.

The basic paradigm for modeling the interaction between the implicit cylinder and the
model is the same as for the interaction between the implicit sphere and the model.
First, intersections between individual surface triangles and the cylinder are detected.
Then, for each triangle, the area and centroid of intersection within each triangle is
calculated, a volume of intersection is determined, and then the total force due to that
volume is distributed to the three vertices that make up the individual triangle.

The process of determining if the triangle and the cylinder intersect is more
complicated than in the case of the sphere. Not only must the body of the cylinder be
checked, but it must be truncated due to its length, and the endcaps at the two ends of
the finite cylinder must also be checked for intersections.

The first test is a simple test to see if the central axis of the cylinder intersects the
triangle. Next, we determine whether or not the vertices of the triangle are in the
interior of the cylinder. Then, we see if either of the circles bounding the endcaps
intersect the triangle. Lastly, if none of these simple tests determine that an
intersection has occurred, we do a complete test to see if the individual edges of the
triangle pass through the cylinder. In this test, we first determine whether the closest

FIGURE 38. Model deformed by an implicit sphere touching the surface.
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84 CHAPTER 7 OBJECT INTERACTION
point between the edge and the axis of the cylinder is within the extent of the infinite
cylinder or not. If it is, we then calculate the distance between that closest point and
the surface of the cylinder, and the distance along the edge to the two intersection
points. Next, we check to see if the edge would actually hit either of the two endcaps
of the finite implicit cylinder, instead of either of the calculated intersections along the
infinite extent of the cylinder. Lastly, we check to see if the intersection points are truly
within the length of the finite edge. In this way, we calculate the true intersections with
the cylinder, check to see if the edge would strike an endcap first, and then verify that
the intersection points are within the actual length of the edge and the finite extent of
the cylinder. This process is demonstrated in Figure 39.

After it is determined that a triangle has been intersected by the implicit cylinder, we
have to generate the boundary of the area of intersection that has been created. This is
generated using the information on whether or not individual vertices are inside the
implicit cylinder, whether the endcap boundaries intersected the triangle, and the exact
intersection information generated by the tests between the triangle’s edges and the
cylinder. Each intersection point on the boundary is recorded, and the subsequent type
of edge segment determined in the same manner as in Section 7.1.2.

We also determine the amount of projection needed, based on the angle between the
implicit cylinder and the triangle normal. This is needed because if the cylinder axis
and the triangle normal are not parallel, then the intersection boundary between the
two is an ellipse and not a circle. To account for this, the intersection points are
projected back to a circle on the cylinder. Then, exactly as in the implicit sphere
routines, the centroid and area of intersection are calculated. The centroid is then
projected back to the plane of the triangle, while the area of intersection is scaled by:

(EQ 42)

where Ac is the area projected back onto the triangle, Ap is the area of the projected
intersection, is the normal vector of the triangle, and is the direction of the axis

FIGURE 39. Intersection of a finite edge with a finite, implicit cylinder.
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7.2 GRASPING OF THE SOFT TISSUE MODEL 85
of the implicit cylinder. Note that the projected area scales with the inverse of the dot
product . As the cylinder axis moves away from being parallel to the normal of
the triangle, the major axis of the ellipse of intersection increases, as does the area of
intersection. At the limit, when the two axes are perpendicular and the cylinder lies
parallel to the triangle’s plane, the dot product goes to zero and the projected
area becomes infinite. In this case, we use the actual intersection area of the triangle.

Once we have the location of the centroid and the area of intersection, we use the same
calculations as for the implicit sphere method to determine the total force and to divide
it among the three vertices of the triangle. The total force applied to the triangle is:

(EQ 43)

with the force split up according to:

(EQ 44)

7.2  Grasping of the Soft Tissue Model

Grasping and pulling on tissue is often used in surgery for many different purposes.
Clamping tissue and securing it temporarily to keep tissue out of the surgical field,
pulling on a tissue to expose a cut surface, and removing cut tissue from the surgical
field all rely on the ability to affix tissue with a tool. Grasping of the soft tissue model
within the simulator is built upon the interaction routines described in Section 7.1. A
simple tool modeled as an implicit sphere interacts with the object, and when closed,
or activated, grasps the object. This tool model could be easily replaced with a more
realistic model of forceps represented as two small cylindrical elements. Grasping of
the model is demonstrated with three different methods, grasping individual nodes of
the model, grasping individual triangles of the model, and grasping of an arbitrary
point on the surface of the model. While the first method is an analog of the implicit
sphere model interacting with individual nodes, the other two methods more directly
correlate to actual grasping. The second method generates forces based not only the
position of the grabber, but the orientation of it also. The last method does not generate
forces based on the orientation of the grabber, but more accurately relates forces based
on grasping the closest point on the model to the grasper when the user closes the tool,
and is the method most commonly used within our simulator.
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86 CHAPTER 7 OBJECT INTERACTION
7.2.1  Grasping a Single Vertex

One method of grasping a model is to affix the closest node in the model to the
grasping tool. A fixed offset between the current position of the closest node and the
grasper is generated to insure that the grasper appears to be holding a point centered
under the grasping tool. The node would be moved along with the grasper to generate
deformations based on the motion of the tool. Figure 40 shows how this type of
grasping would be set up.

The first step with modeling this type of grasper is to determine whether or not there
are any nodes close enough to the grasper to be within its working range. If there are,
then the closest node is selected as the grasped node, and the current offset between it
and the grasper is determined:

(EQ 45)

where is the current offset within the grasper reference frame, is the transpose
of the rotation matrix between the grasper’s reference frame and the inertial frame,

is the current position of the closest node, and is the current position of
the grasper.

At each time step, then, the current position of the grasped node is set to:

(EQ 46)

The main problem with this method is similar to the difficulty with the palpation based
on nodal positions, in that there are times when the grasping tool may be touching the

FIGURE 40. Grasping of a node.
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7.2 GRASPING OF THE SOFT TISSUE MODEL 87
surface but not in contact with any of the nodes. In this case, when the user closes the
grasper, there will be nothing for it to grasp within its reach, which would be
unexpected for the user. We therefore investigated grasping of the closest triangle to
the grasper instead of the closest node.

7.2.2  Grasping of a Surface Triangle

Interacting with the surface triangles solves the difficulty associated with grasping of
the nodes directly. The user will be grasping the triangle he is currently touching, and
will be able to rotate it based on the orientation of the tool, as if the grasper was
clamping the triangle in its jaw, instead of just fixing on a point. Figure 41 shows an
example of the initial grasp and calculations of offsets for this method of grasping.

This method is set up the same way as the method of grasping a node, except that
instead of finding the closest node, the closest triangle within the grasping radius of
the tool is located. Once the closest triangle is found, grasping offsets are calculated
for the three vertices that make up the triangle:

(EQ 47)

where is the current offset within the grasper reference frame of the ith vertex of
the closest triangle, is the transpose of the rotation matrix between the grasper’s
reference frame and the inertial frame, is the current position of the ith vertex of
the triangle, and  is the current position of the grasper.

At each time step, then, the current position of each vertex of the grasped, closest,
triangle is set to:

FIGURE 41. Grasping of a triangle.
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88 CHAPTER 7 OBJECT INTERACTION
(EQ 48)

In this manner, the triangles current state, both position and orientation, with respect to
the grasper is fixed until the grasper is opened.

7.2.3  Grasping a Point Within a Triangle

One other method for grasping a model is to affix the grasper to the model with a stiff
spring damper system. While there is no direct analog to this within the range of
medical instruments, it can be useful as a method of directly applying forces instead of
displacements to the modeled tissue.

Grasping can be viewed as shown in Figure 42. When grasping is initiated, the closest
point on the model to the center of the grasper is found, and then that point is
connected to the grasper with a spring and damper.

The force applied to the closest point, and back to the user through the grasping tool, is
proportional to the displacement between the tool and the closest point and the relative
velocity between the two:

FIGURE 42. Grasping the closest point on the model to the grasping tool.
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7.3 NEEDLE PUNCTURE MODELING 89
(EQ 49)

where is the force applied to the object at the closest point to the grasper, k and b
are the stiffness and damping terms for the grasper, is the current position of the
closest point, is the current position of the grasper, and is the force applied
back to the grasping tool. Note that the relative velocity term is dotted with the unit
vector between the closest point and the grasper. This insures that only the velocity
along the direction of the applied force is included in the damping term. Lastly, the
value of r that is used in Equation 49 is adjusted when grasping begins so that the total
force applied by the user, and back to the user, is the same as the force right before
grasping commenced, when the grasper was palpating the model.

(EQ 50)

where ra is the adjusted radius that is used in Equation 49 and is the magnitude of
the force acting on the grabber at the time step before grasping commenced.

is the total force being applied to the closest point on the model. This force needs
to be divided between the three nodes in a manner that does not generate any moments
about the closest point. To do this, we utilize Equation 41 to generate the relative
fractions of the total force that each vertex receives.

Figure 43 demonstrates a rectangular model being grasped using this method, with the
grasping tool being pulled away, to the left, from the model. This model generates the
best feeling response of the three described, although the second method can be used if
control of the orientation of the grasped tissue is desired.

7.3  Needle Puncture Modeling

Placing a needle and puncturing soft tissue is done countless times in surgery. It is
done when giving injections, when placing sutures, and when performing biopsies.
The simulation does not currently simulate the placement of sutures, but does generate
the forces created by the motion of the needle through the soft tissue. We have
implemented a simple sharpness model for the needle to initiate penetration, and then
track the motion and path of the needle through the object to generate transverse
forces.
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90 CHAPTER 7 OBJECT INTERACTION
7.3.1  Needle Sharpness Model

Needles are not infinitely sharp, so there is some deformation of the underlying tissue
before puncture initially occurs. Looking at this as an elastic material, puncture will
occur when the local stress passes a threshold for that tissue type. From an
experimental point of view, though, we can simply look at the force being generated
by the needle before puncture occurs. Using the now familiar penalty based method, a
needle pushing on the tissue will generate the force:

(EQ 51)

where is the force applied to the object by the needle, k is a stiffness term
associated with the needle, is the current position of the closest point on the
surface to the tip of the needle, and is the current position of the tip of the
needle. Before puncture occurs, this force would be transferred to the vertices of the
triangle using Equation 41.

If this force passes some threshold, based on tissue properties, sharpness of the needle,
and the direction of the needle with respect to its velocity, then puncture will occur.
This force threshold can be represented as:

(EQ 52)

FIGURE 43. Example of soft tissue model being grasped and pulled upon.
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7.3 NEEDLE PUNCTURE MODELING 91
where is the threshold force for the needle attempting to puncture the model at
the current time step t, s is sharpness value for the needle, is the force threshold
value for this particular tissue type, is the direction that the needle is pointing,
and is the direction that the needle is moving. The sharpness value is greater or
equal to zero, where a value of zero would imply that the needle is infinitely sharp, and
the threshold to initiate puncture is zero, and increasing values signify a needle that is
more and more dull, and therefore will require more force to initiate puncture. The
sharpness value can also be viewed as the radius of curvature of the tip of the needle.
The last term, the dot product between the needle direction and the direction the
needle is moving, encodes whether the needle is pushing, along its length, into the
tissue or not. This would return a value ranging from one, if the needle is moving in
the direction it is pointing, down to zero if the needle is just pushing from its side. An
example of the initiation of a needle puncture is shown in Figure 44.

7.3.2  Propagation of the Needle Path

The first thing that is done after puncture has commenced, and at each time step during
puncture, is to determine if the needle has been pulled back through the last triangle it
passed through. As the needle is pushed into the soft tissue, we track all the triangles
that it passes through, and record their local intersection coordinates in an ordered list,
from first to last intersection point. So, to see if the needle is being pulled back out of
the model, we check to see if the tip of the needle has passed back through the triangle
of the last intersection point. If so, then we remove that intersection point from the list.
If the needle tip did not pass back through the last intersection point, we then check the
other triangles of the tetrahedron that the last intersection point is on, to see if the
needle moved forward out of that element in the last time step. If so, we add the new
punctured triangle to the list. These two possibilities are shown in Figure 45.

FIGURE 44. The beginning of puncture with a needle.
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92 CHAPTER 7 OBJECT INTERACTION
Once the list has been updated with the motion of the triangle, we check to see if the
list is empty. If the list is empty, then the needle pulled completely out of the model. If
the list is not empty, then we generate the transverse forces to apply to the model based
on the motion of the needle perpendicular to its recorded path.

7.3.3  Transverse Forces Generated by a Needle

After puncture is initiated, the needle will trace a path through the soft tissue. If the
needle moves away from this path that it has traced, then forces should be generated to
move both the tissue over towards the current position of the needle and the needle
over towards the path that it had started tracing through the soft tissue.

For each intersection point that the needle passed through, we find the closest point on
the needle, and generate a force to apply to the intersection point based on this
displacement:

(EQ 53)

where is the force to the applied at the intersection point, k is the stiffness measure
of the needle, is the current position of the closest point on the needle to ,
the current position of this intersection point. This force is then split up amongst the
three vertices of the triangle using Equation 41. The force applied back to the needle is
the opposite of the sum of the forces applied to the triangles:

(EQ 54)

FIGURE 45. Checking the backward or forward motion of the needle.
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7.3 NEEDLE PUNCTURE MODELING 93
where is the total force acting on the needle, I(N) is the set of intersected triangles,
and is the force acting on the ith intersection point. Because the haptic interface
we use can only display 3 degrees of freedom, we do not calculate the moment
generated on the needle by the forces the user generates within the model.

A graphical example of how the forces on the individual intersection points are
ascertained is shown in Figure 46. Note that in Figure 47 the object is deflected
slightly due to the displacement of the needle from along its initial intersection points,
represented by the dots in the wireframe image.

FIGURE 46. Force generation due to needle deflection.

FIGURE 47. Example of object deformation caused by needle deflection.
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Chapter 8

Haptics

Surgical simulation requires a method of interaction to be used for training and
practice for surgery. While a simple graphical interface could be used, possibly with a
6 degree of freedom input device, haptic feedback provides the most powerful and
useful modality for a complete surgical simulator. The basic concept behind haptic
feedback is to allow the user to feel, through a physical device, the modeled object and
the effect of any action that she initiates. The device can interface with the user
through a simple manifestation that is familiar to the user. One available haptic device
has an endoscopic gripper handle, while the device we use has a simple cylindrical
handle.

8.1  Haptic Feedback in a Surgical Simulator

The basic purpose of haptic feedback is to display forces to the user based on the
current position of the device and the current state of the simulator. A typical update
cycle is shown in Figure 48. At the beginning of the update cycle, the current state of
the device is determined. The current state of the device is then fed to the simulator,
which updates its current internal state based on the position of the device and any
internal parameters and models. Additionally, the simulation calculates the forces and
moments to display to the user based on the state of the device and the simulation.
Then, the forces and moments from the simulator are transformed and displayed back
to the user.

For the device that is used in this simulation, a haptic update rate of 1000Hz is
considered ideal to ensure device stability [26]. The difficulty arises in that the
simulator does not always update at 1000Hz, and has an indeterminate rate that can
vary based on computational load and can intermittently drop down to a rate around
95



96 CHAPTER 8 HAPTICS
100Hz. Therefore, a method to generate intermediate forces based on slow and
indeterminate updates is required.

8.2  Intermediate Representation

An intermediate representation was implemented, similar to the method described in
[1]. The basic concept is to take a slow update rate simulation running as a haptic
client, and run a simple, local model on the haptic server at a high update rate. This
removes the effects of a zeroth order hold on the haptics system, where the haptic
device might display a constant force, F1, for a time step of 5ms, and then a constant
force, F2, for a time step of 3ms, and so on. With the intermediate representation, a
local model that would generate forces similar to F1 would run for 5ms, and then after
the next update, a local model that would generate forces similar to F2 would run until
the next update. The possible difference between the two haptic modes is illustrated in
Figure 49. The graph on the left demonstrates the force displayed without a local
model, while the graph on the right demonstrates how the force can vary with a locally
updated model. In this way, an indeterminate, slow, and erratically updated simulation
would still give rise to a stable haptic experience.

Additionally, with a local model, the force displayed can be much more realistic.
Without a local model, a certain constant force is displayed to the user, even if she
moves in such a way as to break contact with the simulated object. Even though the
force displayed to the user should be zeroed, there might be a noticeable lag before the
force is zeroed due to the slow update rate. With a local model of the object updated at
the full 1000Hz, if the user attempts to break contact with the simulated object, not
only will the force be zeroed at the boundary of the local model, the force will
correctly ramp down from the initial value to zero in a smooth fashion.

Three different types of local simulation were implemented and are described in the
following sections. The first method, servoing to a setpoint, demonstrates a first, and
naive, attempt for generating local models. The other two methods, local plane and

FIGURE 48. Basic haptic feedback loop.
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8.2 INTERMEDIATE REPRESENTATION 97
line models, are the methods used in our simulator to generate appropriate forces that
behave in a correct manner as the user’s position changes with respect to the model.

8.2.1  Setpoint Local Model

The local setpoint model utilizes a setpoint calculated by the object simulation based
on the current position of the user. For instance, utilizing a penalty based method for
generating forces, where the force magnitude and direction are determined by the
penetration of the user’s position within the model, we can project the current position
of the user back out to the surface of the model. Given this, forces can then be
generated by servoing to the setpoint. For instance, in Figure 50 we see that the probe
has penetrated slightly into the modeled object. That position is projected out to the
surface, which is then communicated to the haptics server as the current setpoint.

The equation for the force generated by servoing to a point is:

(EQ 55)

FIGURE 49. Typical force levels with and without intermediate representation with slow
update rates.

FIGURE 50. Example of servoing to a point.
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98 CHAPTER 8 HAPTICS
where is the force displayed back to the user, k is a gain term, Pt is the current
position of the haptic device at time t, and Ps is the current position of the setpoint
since the last update.

An extension of this method is to extrapolate and move the setpoint based on the
recent motion of the setpoint. In this manner, we can account for the motion of the
user. To do this, we move the setpoint along the line projected from the last two
setpoints, and then servo to the moving setpoint. The equation for the motion of the
setpoint is:

(EQ 56)

where is the position of the extrapolated setpoint at the current timestep t, tu is the
timestep when was last received, is the most recent received setpoint set at
timestep tu, is the previous received setpoint set at timestep tu-T, and T is the
number of timesteps that passed between the previous two updates of the setpoint.
Using this equation, the setpoint moves evenly along the path predicted by the
previous two updates of the setpoint, as shown in Figure 51, and does not try to hold
the user to a particular point in space.

There are clear problems with both of the setpoint methods. The first method generates
a very sticky experience. If the user is interacting with a sphere, and is feeling the
shape in a circular motion, then as she tries to move the device around the sphere, it is
as if she is stuck to one point momentarily. Then, that point moves closer to her current
location, at which point the device can move around the sphere a little more, given a
similar force as generated at the previous setpoint. In this manner, a path can be traced
around the surface, but it is punctuated by many hangups along the way. Additionally,
this method does not deal appropriately with the user trying to pull away from the
object. With a setpoint, if the user pulls back, away from the sphere, the local
simulation still servos to the setpoint, thereby imparting a sticky feeling to the object.

To partially alleviate one of these problems, the extrapolated setpoint helps with the
feeling of little hangups as the user traces a path. This works well as long as the user
maintains an even pace. But, if the user tries to stop, for example, the setpoints will

FIGURE 51. Extrapolated setpoint example.
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8.2 INTERMEDIATE REPRESENTATION 99
continue to extrapolate beyond the user’s current position, and try to pull the user
along the path of the setpoints. In this way, the simulation feels partly alive, since it
adds energy back to the user. Also, this enhancement does not help alleviate the
stickiness problem of the general setpoint method. Because of these problems, we
investigated other local models for generating forces to display.

8.2.2  Constraint Plane Local Model

Interacting with a plane can generate a much more realistic experience than servoing
to a point. The constraint plane local model method generates that experience by
taking the position and direction of a plane and generating forces to keep the user on
the positive side of that plane. In this manner, there is no attachment to a particular
point, and no stickiness. In Figure 52, the plane shown is the local approximation of
the surface, and forces are generated while the user is on the negative side of the plane.

As before, the simulation determines the closest point on the model to the user’s
current position. The surface normal at that point is then calculated, and the position
and direction are communicated to the haptics server. On the haptic server side, given
the position and direction of the constraint plane, the signed distance from the current
position of the user to the constraint plane is calculated. If it is greater than or equal to
zero, then no force is applied because the user has stopped interacting with the surface.
Otherwise, the force is proportional to the depth of penetration, utilizing a penalty
based method:

(EQ 57)

where d is the depth of penetration, or the distance between the current position and
the constraint plane, k is the gain or stiffness of the plane, and is the normal of the
plane.

The constraint plane method is used for all palpations of the deformable models. It
also is used for grasping, where the force generated by the deformation of the model is

FIGURE 52. Constraint plane for local modeling.
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100 CHAPTER 8 HAPTICS
used to create a local plane, pointing in the direction of the force vector generated by
the grasping subroutine.

8.2.3  Line Constraint Local Model

The last local method implemented, to enable the simulation of needle puncture, is a
line constraint mode. In this mode, forces are generated to move the user back toward
a line in space, for instance, a line demarcating the current path of a needle. In this
model, the user is free to move along the line, but will feel perpendicular forces if she
tries to move away from the line in space, as shown in Figure 53.

The data communicated to the local simulation running on the haptic server is similar
to the plane model. The object simulation determines the direction of the constraint
and position of the constraint line, which, for a needle stick, would be the location and
direction of the path traced out by the needle up to its current location. Given that
information, the haptic server then calculates the closest point on the constraint line to
the current position of the device. The force generated and displayed to the user is
proportional, then, to the vector between this closest point and the current position of
the device:

(EQ 58)

where is the force displayed back to the user, k is a gain term, Pt is the current
position of the haptic device at time t, and Pc is the closest position on the constraint
line. Note that at this point that the equation for is very similar to that in the setpoint
model. The significant difference is that the setpoint in the line constraint mode, as the
closet point can be viewed, is free to move along the constraint line, and therefore does
not generate the stickiness present in the setpoint model.

FIGURE 53. Line constraint for local modeling.
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Chapter 9

Implementation Details

The general theory of the different components that make up this thesis were described
in the previous chapters. While these descriptions are complete, as with any
experimental system, there are many details of the implementation which directly
affect the performance and quality of the work. In this chapter, we will describe the
general layout of the experimental system, how the soft tissue model was created and
updated, the way that the interaction and cutting routines fit within the scope of the
simulator, and details on the haptics and graphics subsystems.

9.1  System Setup and Implementation

The simulator is composed of three main subsystems, the soft tissue simulation and
interaction routines, the graphical subsystem, and the haptics subsystem. The soft
tissue simulation sits at the core of the simulator, with the modification and interaction
routines running concurrent with it. The graphics subsystem is another part of the
main simulator, updating the graphical scene at 30Hz. Running on a separate machine
is the haptics server. This server was implemented separately to insure the safety of the
haptic device, so that it would behave gracefully if the simulator itself were to crash.

The system can be viewed in block-diagram form in Figure 54. The system starts up
by either reading in from a data file or creating from scratch the soft tissue model. The
tools that might be used are then created, and the graphics system started up. Next, the
simulator tries to find a haptics server to generate user position updates. Once it
connects to a haptic server, it starts updating the model’s state and calling the
appropriate interaction routines, based on position data it receives from the haptic
server. At each time step, the simulator receives an updated user position from the
haptics server. It then runs the interaction routine that is currently selected, and
101



102 CHAPTER 9 IMPLEMENTATION DETAILS
modifies or perturbs the model as necessary. The last step is to run the position
integration routine. After that, the simulation returns, and then repeats. The simulation
routines are run on a 1000Hz interrupt driven rate. If the process takes more than 1ms,
then the process runs as fast as possible. The graphics routine runs at 30Hz. It runs as
a separate process from the soft tissue simulation, and uses semaphores to insure that
the data it is reading is not currently in use by the soft tissue routines.

The haptics server runs on a separate machine, and is started up separately. On startup,
it initializes the haptic device, if necessary, and then opens a communications port and
waits for a client to connect. Once a client connects, it receives commands from the
client on changing the state of the device controller, such as rezeroing the device or
enabling or disabling forces, and updates of the intermediate representation for
generating forces. The haptics server also cycles on a 1000Hz interrupt, and at each
cycle, it checks to see if it has received an update of the intermediate representation. If
it has, it updates that representation, whereas if it doesn’t, it just continues to run with
the previous local model. It then generates forces to display to the user based on the

FIGURE 54. Block diagram of system flow.
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9.2 LINEAR ELASTIC SOFT TISSUE MODELING 103
current intermediate representation. The last part of the cycle is to broadcast the
current position of the device back to the user. The server sends current position data
back to the client at twice the rate it receives data, up to 1000Hz. This insures that the
client does not receive a flood of updates at a rate much higher than it is running at. For
example, if the server receives updates at 200Hz, which is the rate that the soft tissue
simulation would be running at, then it only sends out updates at 400Hz. When the
simulator next checks for updates, it might have two updates there, and it discards the
older one.

The soft tissue system is currently implemented to run on a single or dual processor
SGI. Results shown in this thesis were generated on a dual processor SGI Octane, with
250MHz R10000 processors. One processor handled the simulation of the soft tissue
and the interaction routes, while the other processor handled the graphics rendering.
The graphic board in this machine is an MXI. The haptics server runs on a single
processor SGI Indigo-2 Extreme with a 250MHz R4400 processor. Communications
between the two machines runs over 100Base-T ethernet.

9.2  Linear Elastic Soft Tissue Modeling

There are a great many different details on how our soft tissue model is implemented.
In this section, we discuss the basis for our choice of tissue parameters and how the
model is allocated and stored.

9.2.1  Tissue Parameters

While a linear elastic finite element model is not the best method for simulating soft
tissue, due to its internal structure, we attempted to find tissue parameters that were
roughly correct and appeared appropriate. The stiffness value used in the homogenous
model of the liver was 2e6 N/m^2, which is similar to the value used in [38] and to the
values determined for bovine livers in [11]. Tissue density of 1.05 g/cm^3 was
obtained from [21], and is used for iteratively updating the model state. The Raleigh
damping parameters were determined empirically to damp out motion of the model in
an appropriate time frame. A value of 1e-5 1/sec was used for , and 2e-4 m*sec was
used for .

9.2.2  Object Construction within the Simulator

Finite element models can be implemented in many different ways. A popular method
for generating a fast model is to precompute a stiffness matrix for the model and invert
it ahead of time. Then, updating the state of the model is quite simply a large matrix
multiplication. This is not possible for this model due to the modifications and changes
that can occur in the model. To help facilitate the modification of the model, we

α
β
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104 CHAPTER 9 IMPLEMENTATION DETAILS
needed a memory structure that would be easily and quickly updated, for both
removing and adding elements to the model.

In this vein, we implemented the model as a linked list of elements, nodes, and edges.
We used a linked list instead of a fixed size array because we can not predict the
number of elements that might end up in the model after cutting occurs. If we had a
fixed size array, and generated more elements due to a cut than could fit in that array, it
might take a disproportionate amount of time to resize and move the array. On the
other hand, adding elements individually only requires the allocation of small chunks
of memory. This requires a fair amount of memory overhead, but ensures that there
should always be enough room to add more elements, assuming that the machine itself
hasn’t run out of memory. The basic data structures are shown in Figure 55.

The object data type contains the basic pointers to the contents of the model. It
contains linked lists of all the elements, nodes, edges, and surface triangles in the
model. It also contains the tissue parameters and other values of import to the model.
The object data type is passed to every function, to facilitate locating, and removing if
necessary, any part of the model. The lists of vertices and edges are used in the model
update routines to quickly compute, for every node, the forces applied to it.

FIGURE 55. Basic data structures for the soft tissue model.
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9.3 INTERACTION ROUTINES 105
Elements are the next largest data structures, and contain pointers to the four nodes
and six vertices that make up the element. The element data structure also includes the
calculated M vectors to speed up any modification of the element that may be
necessary. Lastly, they also contain pointers to their neighboring elements to help with
quickly propagating intersection detection throughout the model.

The edge data structure contains pointers to its two endpoints, its stiffness matrix, and
a list of elements that it is a member of.

The vertex data structure contains its current state: position, velocity, and acceleration,
and the external and total forces acting on it. It holds the vertex’s mass and stiffness
matrix. It also contains the list of edges and elements that the vertex belong to.

Both the edge and vertex data structures include lists of the other data types that they
belong to, in order to facilitate checking of certain conditions and to help remove other
structures when the underlying data type is removed. This allows quick and easy
modification of the model. For instance, if we had to remove a vertex, all the edges and
elements that use that vertex will have to be removed to. It is much faster to store a list
of those edges and vertices than to have to search through the object lists to find which
edges and elements need to be removed.

9.3  Interaction Routines

The routines that implement the different types of interaction that the user can have
with the model, cutting, palpation, grasping, and needle puncture, are implemented as
routines that can plug into the soft tissue simulation. In this way, it is very easy to
create and add a new type of interaction routine, and to cycle through the available
routines.

All the different routines act in the same manner within the framework of the
simulation system: the state of the interaction tool is updated by the position update
from the haptics server, the tool is tested against the model, resultant forces or
modifications are then applied to the model, and then the routines return to the process
that called them. In this case, the soft tissue modeling routine, which then feeds into
the position integration state.

All of the tools include the relevant data for their action. For instance, the cutting tool
includes the length and size of the cutting blade, the position and orientation of the
blade, and the length of the handle. It also contains any data structures it needs to
facilitate and speed up the cutting process, like a list of the currently intersected
elements. The same is true for the other routines.
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106 CHAPTER 9 IMPLEMENTATION DETAILS
9.4  Haptics System

The haptics system uses the PHANToM device from Sensable Technologies, Inc. The
haptics environment is built on a simple package that encapsulates the basic i/o
package that ships with the PHANToM. The PHANToM is a version 1.5 model, which
provides 3 degrees of freedom of feedback, and 6 degrees of freedom of input. While
this device can not generate torques to display to the user, it is adequate for an
experimental system.

9.5  Graphics System

The graphics subsystem was written in OpenGL on the SGI, and uses the glut library
to perform simple windowing functions. The system can display the model as either a
wireframe or surface rendered model, and shows graphical models of the user’s tools
within the workspace. Zooming is implemented, as is arbitrary rotation utilizing the
Arcball routines from [44]. The monitor is considered to be the inertial reference
frame, and rotations in the graphical view are transferred to the object data structure as
the gravity direction, so that gravity always points down on the monitor. In this way,
with gravity enabled, the object can be rotated and simple deformations of the model
can be tested and shown. Simple stereo rendering is also implemented.
November 29, 2001 DRAFT



November 29, 2001 DRAFT
Chapter 10

Examples and Performance

The results of the progressive cutting techniques described in the previous chapters
can be quantified in two ways. The first numerical result is the decrease in
computational load the minimal set creation of these techniques has when compared
with generating full sets. The second numerical result is the deviation of the generated
cut surface from the surface traced out by the user. The second half of this chapter
demonstrate examples of the simulator running with two types of model, a simple
rectangular model, and a liver model courtesy of Project Epidaure at INRIA.

10.1  Changes in Update Rate

When the cutting tool passes through the model, all intersected elements are modified.
The update rate of the state of the model is dictated by the size of the model, so the
number of elements directly impact how quickly the model runs. When the described
cutting routines process an intersected element, they generate between five and nine
new elements, compared to seventeen new elements for a general subdivision, or the
complete removal of the intersected element. Given the passage of the cutting tool
through the model shown in the upper left in Figure 56, we generated subdivisions to
demonstrate the following techniques:

1. the general minimal element creation method

2. cutting with snapping

3. and the complete removal of any intersected elements.

The number of elements that would have been created with a general subdivision,
along with a comparison of computation times and expected update rates are shown in
Table 5.
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108 CHAPTER 10 EXAMPLES AND PERFORMANCE
As we can see, using the general subdivision method the model more than tripled in
size. Using the progressive cutting method, the model size increases by a much smaller

FIGURE 56. Completed cuts for showing changes in update rates.

Original
Number of
Elements

Original
Integration

Time

Number of
Elements

After
Cutting

Integration
Time After

Cutting

Decrease in
Integration
Time over
General

Subdivision

General Subdivision 72 0.00030 232 0.00109a -

Element Removal 72 0.00030 62 0.00023 79%

Progressive Cutting 72 0.00030 128 0.00061 44%

Cutting w/Snapping 72 0.00030 106 0.00050 54%

TABLE 5. Changes in update rate and number of elements based on cutting method.

a. Expected integration time.
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10.2 DISTANCE OF CUT SURFACE FROM USER’S PATH 109
number. The increase in the number of elements was more than two and a half times
less, 6.6 new elements vs. 17 new elements for every element replaced. This
translated, for this model, into 44% better integration time. Looking at the results for
cutting with snapping, we achieved a similar improvement in the integration time and
number of elements after cutting, with almost four times fewer new elements (4.4 new
elements per cut element) and a 54% decrease in integration time after cutting.
Completely clearing out intersected elements, predictably, resulted in fewer elements
and a faster update time after cutting, but at the expense of cutting and model accuracy.

10.2  Distance of Cut Surface from User’s Path

When the user moves a cutting tool through a model, intersections between the path of
the cutting tool and the edges and faces of the model are generated. These intersections
represent a discrete form of the path of the cutting tool. They also represent the ground
truth of our knowledge of how the tool’s path interacts with the model. This ground
truth is generated by the progressive cutting method described in Section 5.3, since it
only uses the intersection points created by the tool.

The second numerical comparison is based on the distance of the generated cut surface
from this ground truth. Using the technique of completely removing any intersected
surfaces, this metric would be the mean distance of the vertices that make up the
removed elements from the ground truth path. For the cutting with snapping method,
the metric is the mean distance of the vertices used on the generated cut surface from
the ground truth path. The equation for this distance is:

(EQ 59)

where is the mean distance to the ground truth surface, is the number of vertices
on the cut surfaces, V is the set of those vertices, is the position of the ith vertex,
and  is the closest point on the ground truth surface to the ith vertex.

These calculations are performed on the undeformed models after the cutting occurs.
The same path as in Figure 56 is used, and the actual cut surfaces are shown in
Figure 57. First is the surface traced by the progressive cutting routines, which uses
the precise intersection points. The second image is of the snapped progressive cutting
example. Note how the surface is similar to the exact surface, but deflects away at
points which were initially too close to edges and vertices of the original elements.
The last image is of the surface generated by completely removing the intersected
elements. Unlike the previous two images, where only one apparent surface is visible
because the upper and lower cut surfaces are coincident, this surface has two distinct
parts, since part of the original model was removed. Another example of cutting
through a rectangular object is shown in Figure 58 and Figure 59. An example of the
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110 CHAPTER 10 EXAMPLES AND PERFORMANCE
results of cutting a liver model with the different methods is shown in Figure 60 and
Figure 61. Results for these examples are tabulated in Table 6.

FIGURE 57. Cut surfaces generated by the same motion as in Figure 56.

FIGURE 58. Second example of completed cuts demonstrating different cutting methods.
November 29, 2001 DRAFT



10.2 DISTANCE OF CUT SURFACE FROM USER’S PATH 111
FIGURE 59. Cut surfaces generated by the same motion as in Figure 58.

FIGURE 60. Liver model example (Exact, snapped, clearing cuts).
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\

FIGURE 61. Cut surfaces of model shown in Figure 60. (Exact, snapped, clearing cut).

Rect. Example 1 Rect. Example 2 Liver Example

Progressive Cutting 0.000 (mm) 0.000 0.000

Removal of Intersected Elements 14.050 16.008 13.833

Cutting with Snapping 3.318 2.368 2.162

TABLE 6. Mean distance from ground truth.

FIGURE 60. Liver model example (Exact, snapped, clearing cuts). (Continued)
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10.3 PROGRESSIVE CUTTING WITH TEMPORARY SUBDIVISIONS 113
As can be seen from these results, while the progressive cutting does follow the path
exactly, cutting with snapping is still significantly better than just removing the
intersected elements, which generates the maximum deviation of the cut surface from
the path traced out by the user. These distances are in relation to a typical edge length
of 30mm for the rectangular model and an average edge length of 26.522mm for the
liver model. Element removal, instead of subdivision, causes an average deflection
from ground truth of half of the typical edge length. The deflection from the ground
truth caused by snapping is on the order of 10% of the typical edge length. In the two
rectangular examples, the improvement in actual distance from the ground truth
surface due to cutting with snapping is 4.23 and 6.76 times. The improvement in the
liver model example is 6.40 times better. Additionally, the snapping method does not
remove mass and volume from the model. In the liver model, the clearing method, as
shown by the distance between cut surfaces at rest in Figure 61, removes 3.5% of the
object’s volume. This reduces the mass of the liver from 3.470kg to 3.351kg, a change
of 119 grams. The snapping method does not change the model’s volume or mass at
all.

10.3 Progressive Cutting with Temporary Subdivisions

Figure 62 shows the results of an example of cutting through a rectangular object that
is under tension. There were 576 tetrahedra in the rectangular object before cutting, on
a 4x6x4 cubical lattice, and 954 afterwards. 60 elements were cut, removed, and
replaced by a new set of 312 tetrahedra, an average of 5.2 elements added for every
element removed.

10.4  Interaction with a Rectangular Model

Testing of the simulator was done with a rectangular model to facilitate seeing
deformations and performing predictable cuts and other interactions with the object.
The basic shape of the object was shown in Figure 29, where the image on the left is of
the undeformed object and the image on the right is the object under the influence of
gravity. The nodes on the top of the model are anchored in space. This model is
rendered in random colors to facilitate viewing of the deformation. The model used in
the following figures is made up of 20 cubical blocks, 30mm on a side, where each
block consists of six tetrahedra. The undeformed state of this model is shown in
Figure 63. This model requires 0.188 milliseconds of computation per cycle to update
the model state while using a time step of 1.0 milliseconds.

Figure 64 shows the effects of the user interacting with the model. The first image
shows the user palpating the object with an implicit sphere model, while the next
image shows the effects of the user grasping the model and pulling to the side.
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114 CHAPTER 10 EXAMPLES AND PERFORMANCE
The next two figures show the results of the user cutting the rectangular model with
snapping. Figure 65 shows a partial cut through the object, while Figure 66 shows a
complete cut through the object, with a simple displacement of the cut portion.

FIGURE 62. Progressive cutting, with temporary subdivisions, of a rectangular model.
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10.4 INTERACTION WITH A RECTANGULAR MODEL 115
FIGURE 63. Undeformed image of basic rectangular model

FIGURE 64. Palpating and grasping the rectangular model.
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FIGURE 65. Partial cut of rectangular object.

FIGURE 66. Complete cut of rectangular object.
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10.5 SIMULATION OF LIVER MODEL 117
10.5  Simulation of Liver Model

The underlying simulation of the liver model is identical to that of the rectangular
model. The only difference is that the liver model is read in by the simulator from a
data file, while the rectangular model is generated at runtime. The basic shape of the
liver is shown in Figure 67. Note, that the surface nodes on the left side of the liver are
anchored in space, to keep the liver fixed in space during interactions. A fixed surface
to rest it on could have been used, but the collision detection required for that was
deemed too expensive. The model consists of 467 nodes that make up 1967 elements.
The simulation runs at approximately 300Hz, and has a time step of 0.001 seconds. As
currently implemented, this model does not achieve synchronicity and is not real time.

Figure 68 shows the liver model deformed under the effect of gravity. As was
mentioned, the nodes on the left side of the model are fixed in space, so only the right
side of the liver is affected by the gravitational force.

Figure 69 shows the liver being palpated by an implicit sphere, similar to pushing on it
with a fingertip. Figure 70 shows the effect of the user palpating the liver with a
cylindrical object, similar to a straight probe. This shows the effects of the implicit
cylinder modeling.

FIGURE 67. Undeformed model of the liver.
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FIGURE 68. Model of the liver under the effect of gravity.

FIGURE 69. Liver model palpated by implicit sphere.
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10.5 SIMULATION OF LIVER MODEL 119
The last four figures show the effects of cutting the liver model. Figure 71 and
Figure 72 shows a partial cut that has been grasped by the user and pulled to open up
the cut. Figure 73 and Figure 74 show the effect of a complete cut of the model of the
liver.

Update Rate Considerations

Based on the results in [28], we foresee at least an increase by a factor of 2 the number
of nodes than can be modeled in real-time by moving to a system based on an Intel
Pentium, running at 1.0 GHz or above. Meseure and Chaillou [28] show that the
computation times between a R10000 at 194 MHz and a Pentium II at 300 MHz are
very similar. These results were generated on a R10000 at 250 MHz, so moving to a
Pentium IV at 1.6 GHz could result in a computational increase by a factor of a 4.

FIGURE 70. Palpating the liver model with an implicit cylinder.
November 29, 2001 DRAFT
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FIGURE 71. Partial cut of the liver, front view.

FIGURE 72. Partial cut of the liver, bottom view.
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10.5 SIMULATION OF LIVER MODEL 121
FIGURE 73. Complete cut of the liver, frontal view.

FIGURE 74. Complete cut of the liver, bottom view.
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Chapter 11

Conclusions

The main goal of this thesis was to address the problem of cutting tissue within the
framework of an interactive physically based soft tissue surgical simulation.
Physically based linear elastic finite elements were used as a fairly simple model to
generate the simulation of the soft tissue. We focused on cutting of the soft tissue as a
surgical technique that occurs with great frequency but that can impact the state of the
simulation a great deal. This thesis demonstrated cutting techniques to generate
accurate cut surfaces that impact the computational load of the simulator as little as
possible. Different methods were shown that traded off accuracy of the cut surface
with stability of the resultant model. These techniques can be easily utilized in other
systems as methods to model modification of any tetrahedral mesh. By demonstrating
these results, we have shown that it is possible to cut through models while
maintaining the accuracy of the cut, preserving the volume of the model, and
maintaining the underlying efficiency and stability of the simulator.

We also demonstrated other interaction techniques required for surgical simulators:
palpation, grasping, and puncture. These were all demonstrated on an interactive
system utilizing both a graphical and a haptic interface.

11.1  Contributions

The main thrust of this thesis was to generate accurate cuts through models of soft
tissue. The cutting of these tetrahedral models is designed to impact the total number
of elements, nodes, and edges as little as possible. In reaching this goal, a method for
testing the geometry of the elements was required due to limitations in the underlying
soft tissue simulation utilizing a tetrahedral linear elastic finite element mode.
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The cutting methods demonstrated follow the surface swept out by the user while
preserving the volume of the element. The progressive cutting within elements
technique models cut elements while the user is moving within these elements by
creating temporary subdivisions, thereby generating as realistic updates of the model
as possible. This method creates temporary subdivisions based on the current position
of the cutting tool and the true intersection points on faces and edges that the cutting
path has already passed through. In this way, there is no lag between the motion of the
user and the updating and subdividing of the model. The cut surface within the model
also accurately follows the path that the user has traced out with the cutting tool. With
the temporary subdivision, the user can see the complete cut as it is created. The main
drawback with this technique is that very small elements can be created right after the
cutting tool passes a boundary, which can cause instability in the model. Progressive
cutting between elements does not generate small temporary elements, but can create
small permanent elements.

Progressive cutting between elements with snapping guarantees that the cutting
routines do not create any elements small enough to cause instability. The cutting of
elements lags behind the motion of the user by approximately one element length, but
it does not create any unstable elements. The cut path follows the path that the user
traces with the cutting tool, but does not always lie on it, due to the snapping of
intersection points to maintain stability. We have demonstrated the ability to generate
stable and efficient cuts through tetrahedral meshes that closely approximate the path
traced out by the user.

Both of these methods were implemented in such a fashion that they generate the
minimum number of new elements to fill the cut element, impacting the computational
load of the simulator as little as possible. Other methods either create the maximum
numbers of elements to fill up a subdivided element, or remove the intersected element
completely. This method generates a minimal set of new elements to replace the cut
element, while maintaining the volume of the model.

In addition to cutting, other aspects of interactive simulators were shown. Different
methods for interacting with deformable models were developed. New techniques for
palpation, with either an implicit model of a sphere or a cylinder, for grasping of
triangles or points on the surface, and for simulating needle puncture were described.
While previous methods have mainly generated forces based on a penalty method
based solely on penetration depth, we looked at the volume of intersection to more
accurately model the resultant forces. Lastly, a method for displaying forces based on
a local model of an erratically updated simulation was also described.

We have shown a general method for cutting soft tissue within an overall interactive
surgical simulator. This cutting generates an accurate cut while maintaining the
stability and the efficiency of the model as much as possible.
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11.2  Future Work

While we have demonstrated accurate and efficient interaction with and modification
of soft tissue models, there are areas within this research and the experimental
simulator which could be explored further.

The implementation of these techniques, while leading towards a realistic surgical
simulator, is not yet polished enough to be used in an actual system. The cutting
routines do not always handle extraordinary cases appropriately. Also, cutting through
the model multiple times, for instance if the user was extending a cut, does not always
work and can cause the simulator to crash. The force that is displayed to the user can
behave erratically, which reduces the realistic nature of the simulator. Forces generated
by the needle subroutines can also fluctuate as the needle is pulled out of the model,
causing large instantaneous forces which can pull the interface handle out of the user’s
hand. The current simulator also only generates 3 degrees of freedom of feedback,
which can be insufficient when grasping tissue, or levering between objects in the
surgical field. Methods to co-locate the haptic device and the graphical image would
also greatly increase the realism for practicing open techniques. For minimally
invasive techniques, changing the physical setup to match the operating theater would
improve the similarity between the two modalities.

The soft tissue model can be more accurately modeled with a technique other than a
linear elastic finite element model. Non-linear elasticity, volume constraints, and other
new methods for more accurately modeling tissue can be investigated for their
applicability in a fast, real time simulator. Other methods for updating the state of the
model are also possible. More efficient explicit solvers, or implicit solvers, could be
investigated.

With regards to the user interface, the graphical model can be improved, using texture
maps and showing surrounding tissue, for example. The haptic modeling could be
improved by overlaying texture and friction onto the local haptic model. Interpolation
between updates from the haptics client and other methods for improving the
intermediate representation are possible.

Interaction between the user and the model can also be improved through better
methods to generate forces to apply to the model. A more accurate method for
calculating the projected volume of intersection for penalty methods and impulse
based methods so that no penetration will actually occur during palpation are possible.

Collision detection routines can also be improved. The method for propagating cuts
and interaction through the model utilizes spatial coherency to accelerate collision
detection during a cut. While this did prove sufficient for the models tested, a more
global method will probably be required in actual use, due to a more crowded and
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complex field of interest. For example, a palpation tool may actually push on two parts
of a liver while holding it back. Or extending a cut may actually bring the scalpel blade
into contact with two disjoint surfaces due to deformations caused by the initial cut.

Lastly, the main improvement to the cutting techniques would be to implement a
snapping version of progressive cutting within elements. One possible method would
be to hold an intersection at the element boundary until the user has moved far enough
into the model to generate a stable, temporary subdivision. Then, once the user gets
close to another boundary of the element, snap the temporary intersection forward to
that boundary. Once the user passes through the boundary, generate the final
subdivision as described in the thesis.
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