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During the past decade, computer vision research has focused on constructing

image based appearance models of objects and action classes using large databases of

examples (positive and negative) and machine learning to construct models. Visual

inference however involves not only detecting and recognizing objects and actions

but also extracting rich relationships between objects and actions to form storylines

or plots. These relationships also improve recognition performance of appearance-

based models. Instead of identifying individual objects and actions in isolation,

such systems improve recognition rates by augmenting appearance based models

with contextual models based on object-object, action-action and object-action re-

lationships. In this thesis, we look at the problem of using contextual information

for recognition from three different perspectives: (a) Representation of Contextual

Models (b) Role of language in learning semantic/contextual models (c) Learning

of contextual models from weakly labeled data.

Our work departs from the traditional view of visual and contextual learn-



ing where individual detectors and relationships are learned separately. Our work

focuses on simultaneous learning of visual appearance and contextual models from

richly annotated, weakly labeled datasets. Specifically, we show how rich annota-

tions can be utilized to constrain the learning of visually grounded models of nouns,

prepositions and comparative adjectives from weakly labeled data. I will also show

how visually grounded models of prepositions and comparative adjectives can be

utilized as contextual models for scene analysis. We also present storyline models

for interpretation of videos. Storyline models go beyond pair-wise contextual mod-

els and represent higher order constraints by allowing only specific possible action

sequences (stories). Visual inference using storyline models involve inferring the

“plot” of the video (sequence of actions) and recognizing individual activities in the

plot.
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Chapter 1

Introduction

The universe is made of stories, not of atoms

Muriel Rukeyser

Traditionally, researchers in computer vision have focused on the problem

of modeling and recognizing object and action classes, which are represented in

language by nouns and verbs respectively. These problems are central problems

in the quest to develop automated systems that “understand scenes and videos”.

But only detecting and classifying objects and actions falls short of matching the

way humans “see” and perceive the world around them. For example, consider the

image shown in figure 1.1(a). An ideal computer vision algorithm would certainly

recognize the objects and regions in the image and list the corresponding nouns (See

figure 1.1(b)). Humans would additionally recognize and understand object-object,

action-action and object-action relationships to produce the explanation -“ A person

wearing a green shirt is stealing the fish caught by a person wearing a red shirt”.

Our goal is to create representations of the world depicted in images and videos

which are based on physical, functional and causal relationships. These relationships

1



(a) Original Image (b) Current Approaches

Figure 1.1: Understanding stories hidden in images: Humans tend to extract rela-

tionships among objects and actors to infer stories hidden in the images.

can be used to extract rich storylines of images and videos. Similar to humans, we

would ideally like to develop a system that understands the intentions of actors

to extract the stories in understanding their world. In this thesis, I address the

problem of learning and representing “concepts” beyond the modeling of object and

action categories which are useful in representing physical, functional and causal

relationships in the world. These relationships capture semantic knowledge and

serve as contextual information that can be used to improve object and action

recognition.

The main contributions of this dissertation 1 are:

• Storyline Model - Representation and Learning: We present an ap-

1These contribution have been reported in the following publications [41, 42, 45, 43]
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proach to modeling and learning visually grounded storyline models of video

domains. The storyline of a video describes causal relationships between ac-

tions. Beyond recognition of individual actions, discovering causal relation-

ships reveals the semantic meaning of the activities.

• Language for Learning Contextual Models: We show how other parts

of speech such as prepositions and comparative adjectives can be harnessed to

represent the contextual information and how we can use rich annotations to

constrain learning from weakly labeled data.

• Functional Relationships for Recognition: We present an approach to

represent functional relationships between objects and actions by co-occurrence

statistics and we show how using these relationships improve both action recog-

nition and object recognition.

1.1 Understanding Videos, Constructing Plots

People create stories create people; or rather stories create people create stories

Chinua Achebe

Analyzing videos of human activities involves not only recognizing actions

(typically based on their appearances), but also determining the story/plot of the

video. The storyline of a video includes the actions that occur in that video and
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the causal relationships between them. Beyond recognition of individual actions,

discovering causal relationships helps to better understand the semantic meaning of

the activities. However, storylines of videos differ across videos in a domain. There

is a substantial difference in terms of the actions that are part of the storyline, agents

that perform those actions and the relationships between those actions. Our goal

is to learn the space of allowable storylines for a given domain and use a particular

“instance” as a contextual model for action recognition. A model that represents the

set of storylines that can occur in a video corpus and the general causal relationships

amongst actions in the video corpus is referred to as a “storyline model”.

A storyline model can be regarded as a (stochastic) grammar, whose language

(individual storylines) represents potential plausible “explanations” of new videos

in a domain. For example, in analysing a collection of surveillance videos of a

traffic intersection scene, a plausible (incomplete) storyline-model is: When a traf-

fic light turns green traffic starts moving. If, while traffic is moving, a pedestrian

walks into an intersection, then the traffic suddenly stops. Otherwise, traffic stops

when the signal turns red. Not only are the actions “turns green”, “moving” and

“walks” observable, but there are causal relationships among the actions: traffic

starts moving because a light turns green, but it stops because a pedestrian entered

an intersection or the signal turned red. Beyond recognition of individual actions,

understanding the causal relationships among them provides information about the

semantic meaning of the activity in video - the entire set of actions is greater than

the sum of the individual actions. The causal relationships are often represented in
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terms of spatio-temporal relationships between actions. These relationships provide

semantic/spatio-temporal context useful for inference of the storyline and recogni-

tion of individual actions in subsequent, unannotated videos.

Inference using a storyline model involves simultaneously estimating the sto-

ryline of the video and recognizing all the actions that are part of the storyline. We

formulate an Integer Programming framework for action recognition and storyline

extraction using the storyline model and visual groundings learned from training

data.

1.2 Language for Learning Semantic Models

Most of the fundamental ideas of science are essentially simple, and may, as a

rule, be expressed in a language comprehensible to everyone.

Albert Einstein

Our goal is to learn the semantic model and visual groundings of each action.

Traditionally, computer vision approaches have used large visual datasets to learn

contextual models which represent relationships between different actions. Such

approaches, however, require large labeled datasets which are expensive to obtain.

On the other hand, humans are quick to learn relationships with even few instances.

One way to learn relationships is direct interaction with the physical world. For
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example, as a child, when we touch a hot object we realize that it hurts. Current

computer vision systems lack the ability to use direct interaction with the world

to learn the rules/physical constraints which are the basis of the semantic models.

However, most of the rules/constraints can be encoded in language and be used to

learn semantic models.

In this thesis, we propose the use of rich weakly annotated data (See Fig-

ure 1.2) to simultaneously learn semantic models and visual grounding of these

models. Weakly annotated data refers to a large visual dataset where each im-

age/video is described by text. Current vision systems have evaluated the use of

“list of nouns” as description to learn object classifiers. We present an approach to

harness the richness in language, such as using parts of speech like “prepositions”

and “comparative-adjectives” to simultaneously learn object appearances models

and contextual models for scene understanding. Another advantage of using the

rich linguistic descriptions is that it constrains the learning problem as compared

to the original learning problem using only a list of nouns. This leads to better

appearance models of nouns as well.

1.3 Functional Recognition - Linking Nouns and Verbs

We also investigated the use of contextual models involving functional rela-

tionships. We studied the problem of understanding images and videos of human

object interactions. Interpretation of such images/videos involves understanding
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Figure 1.2: In fully supervised learning the segmentation of the image and region

labels are provided. In conventional weakly supervised datasets, only the original

image and the list of nouns are provided. No segmentation and correspondence

between segments and labels is provided. We propose the use of rich, weakly anno-

tated data in which the original images, list of nouns and some relationships between

nouns are provided.
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scene/event, analyzing human movements, recognizing manipulable objects and ob-

serving the effect of the human movement on those objects. While each of these

perceptual tasks can be conducted independently, recognition rates improve when

interactions between them are considered. Motivated by psychological studies of

human perception, we present a Bayesian approach which integrates various per-

ceptual tasks involved in understanding human object interactions. Our approach

goes beyond these traditional approaches and applies spatial and functional con-

straints on each of the perceptual elements for coherent semantic interpretation.

Such constraints allow us to recognize objects and actions when the appearances

are not discriminative enough. We also demonstrate the use of such constraints in

recognition of actions from static images without using any motion information.

1.4 Organization of Thesis

We first discuss the role of language in learning contextual models. In the

following chapter, we will investigate how richness in the language can be har-

nessed to (a) Improve learning from weakly labeled datasets (b) Learn contextual

relationships between objects. More specifically we present an approach to simulta-

neously learn visual groundings of nouns, prepositions and comparative adjectives

from richly annotated, weakly labeled datasets (shown in figure 1.3). We also show

how visually grounded models of prepositions and comparative adjectives can be

used as contextual models for improving recognition (See figure 1.4).
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Figure 1.3: In Chapter 2 we focus on how rich linguistic annotations can constrain

the learning problem and how we can learn grounded models of nouns, prepositions

and comparative adjectives simultaneously.

Figure 1.4: Grounded models of prepositions and comparative adjectives provide us

contextual models for improving recognition. For example, the two hypotheses of

labeling shown in the image are equally likely based on appearances. However, since

we know that the relationship sky above water occurs more frequently; the left

hypothesis becomes more likely.
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While Chapter 2 focuses on learning contextual models, based on pair-wise con-

straints, represented by prepositions and comparative adjectives, such an approach

is unable to represent high-order causal relationships between actions in videos. In

Chapter 3, we propose the use of storylines which can represent higher order con-

straints between actions. However, there is substantial variation in storylines across

different videos in a domain (in terms of actions and agents performing those actions

and relationships between those actions). We present a storyline model which not

only encodes the contextual relationships between actions but also learns the space

of allowed storylines for videos in a given domain. We present an approach to learn

the storyline model from richly annotated videos (See Figure 1.5). Our approach

presented in Chapter 2 provides the initialization for an iterative structure search

of a storyline model and rich linguistic annotations provide additional constraints

on the structure learning. We also present an approach to simultaneously estimate

storylines and recognize actions given new unseen videos.

Our approaches in Chapters 2 and 3 consider contextual models based on

noun-noun and verb-verb relationships respectively. While the problem of object

recognition and action recognition can be solved separately, with each having its

own contextual model, recognition rates improve considerably when functional rela-

tionships between objects and actions are also considered. In Chapter 4, we present

an approach to evaluate the use of functional constraints for improving action and

object recognition. We represent functional constraints by simple co-occurrence

relationships and show that such constraints improve both action and object recog-
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Figure 1.5: In Chapter 3 we present our storyline model for action recognition. The

storyline model is learned from richly annotated videos as shown

nition considerably. In this chapter, we also present an approach to recognize actions

from static images using functional relationships between objects and human mo-

tion/pose.
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Chapter 2

Exploiting Richness of Language for Learning Contextual Concepts

Language is not only the vehicle of thought, it is a great and efficient instrument in

thinking.

Sir H. Davy

2.1 Weakly Labeled Datasets

One of the long term goals of computer vision has been to represent and

recognize objects in natural images. Even young children can name and recognize

thousands of objects, and the problem of object recognition is central to computer

vision. It is hard to imagine a truly useful robot companion that could not recognize

(and interact with) a large repertoire of natural and man made objects.

Early research on computer object recognition emphasized matching of three

dimensional object models against images. But progress was limited both because it

is hard to acquire very accurate 3D information from images, and, more importantly,

because many of the objects in our world have a large diversity of 3D structure due to
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non-rigidity, articulation, and within class variability. So, during the past decade,

research has instead focused on constructing image based appearance models of

objects using large image databases and machine learning to construct models.

Obtaining large datasets with full labeling requires huge manual effort (See

figure 2.1). For this reason, there has been recent interest in learning visual clas-

sifiers of objects from weakly labeled datasets. Weakly labeled datasets are image

datasets with associated text and captions, however, there is no segmentation and

correspondence given between the text and the regions which generate the text.

Learning a visual classifier involves establishing correspondence between image re-

gions and semantic object classes named by the nouns in the text.

Figure 2.1: Human effort for different type of annotations

Traditionally, computer vision researchers have used a particular kind of weakly

labeled datasets - images with lists of nouns (referred to as tags) associated with

them. These tags are either extracted from the text caption or the dataset is col-
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lected in manner where users provide tags. There exist significant ambiguities in

correspondence of visual features and object classes. For example, figure 2.2 con-

tains an image which has been annotated with the nouns “car” and “street”. It is

difficult to determine which regions of the image correspond to which word unless

additional images are available containing “street” but not “car” (and vice-versa).

A wide range of automatic image annotation approaches use such co-occurrence

relationships to address the correspondence problem.

Some words, however, almost always occur together, which limits the utility

of co-occurrence relationships, alone, to reduce ambiguities in correspondence. For

example, since cars are typically found on streets, it is difficult to resolve the cor-

respondence using co-occurrence relationships alone. While such confusion is not a

serious impediment for image annotation, it is a problem if localization is a goal 1.

We describe how to reduce ambiguities in correspondence by exploiting nat-

ural relationships that exists between objects in an image. These relationships

correspond to language constructs such as “prepositions” (e.g. above, below) and

“comparative adjectives” (e.g. brighter, smaller). If models for such relationships

were known and images were annotated with them, then they would constrain the

correspondence problem and help resolve ambiguities. For example, in figure 2.2,

consider the binary relationship on(car, street). Using this relationship, we can

trivially infer that the green region corresponds to “car” and the magenta region

1It has also been argued [3] that for accurate retrieval, understanding image semantics (spatial

localization) is critical
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corresponds to “street”.

The size of the vocabulary of binary relationships is very small compared to

the vocabulary of nouns/objects. Therefore, human knowledge could be tapped to

specify rules which can act as classifiers for such relationships (for example, a bi-

nary relationship above(s1, p1) ⇒ s1.y < p1.y). Alternatively, models can be learned

from annotated images. Learning such binary relationships from a weakly-labeled

dataset would be “straight forward” if we had a solution to the correspondence

problem at hand. This leads to a chicken-egg problem, where models for the binary

relationships are needed for solving the correspondence problem, and the solution of

the correspondence problem is required for acquiring models of the binary relation-

ships. We utilize an EM-based approach to simultaneously learn visual classifiers of

objects and “differential” models of common prepositions and comparative binary

relationships.

Grounded models of prepositions and comparative adjectives can also be used

to represent semantic relationships between objects. These grounded models can

therefore be used as a contextual model for scene analysis and improve recognition

of objects. Figure 2.3 shows an example. In the image shown in the figure, based

on appearances it is hard to classify whether the region associated with the sun

or its reflection is the sun. However, if we can learn a grounding for above(B,A) -

the y-coordinate of B is more than y-coordinate of A, then based on our linguistic

knowledge of the world that - Sun occurs above Sea and the position of the sea, we

can classify the region associated with the sun.
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Figure 2.2: An example of how our approach can resolve ambiguities. In the case of

co-occurrence based approaches, it is hard to correspond the magenta/green regions

to ‘car’/‘street’. ‘Bear’, ‘water’ and ‘field’ are easy to correspond. However, the

correct correspondences of ‘bear’ and ‘field’ can be used to acquire a model for the

relation ‘on’. We can then use that model to classify the green region as belonging to

‘car’ and the magenta one to ‘street’, since only this assignment satisfies the binary

relationship.

The significance of the work described in this chapter is threefold: (1) It allows

us to learn classifiers (i.e models) for a vocabulary of prepositions and comparative

adjectives. These classifiers are based on differential features extracted from pairs of

regions in an image. (2) Simultaneous learning of nouns and relationships reduces

correspondence ambiguity and leads to better learning performance. (3) Learning

priors on relationships that exist between nouns constrains the annotation problem

and leads to better labeling and localization performance on the test dataset.
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Figure 2.3: Language based Contextual Model

2.2 Related Work

Our work is clearly related to prior work on relating text captions and image

features for automatic image annotation [5, 22, 21]. Many learning approaches have

been used for annotating images which include translation models [28], statistical

models [5, 8], classification approaches [2, 59, 63] and relevance language models [58,

50, 31].

Classification based approaches build classifiers without solving the correspon-

dence problem. These classifiers are learned on positive and negative examples gen-

erated from captions. Relevance language models annotate a test image by finding

similar images in the training dataset and using the annotation words shared by

them.

Statistical approaches model the joint distribution of nouns and image features.

These approaches use co-occurrence counts between nouns and image features to
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predict the annotation of a test image [69, 19]. Barnard et. al [8] presented a

generative model for image annotation that induces hierarchical structure from the

co-occurrence data. Srikanth et. al [88] proposed an approach to use the hierarchy

induced by WordNet for image annotation. Duygulu et. al [28] modeled the problem

as a standard machine translation problem. The image is assumed to be a collection

of blobs (vocabulary of image features) and the problem becomes analogous to

learning a lexicon from aligned bi-text. Other approaches such as [51] also model

word to word correlations where prediction of one word induces a prior on prediction

of other words.

All these approaches use co-occurrence relationships between nouns and im-

age features; but they cannot, generally, resolve all correspondence ambiguities.

They do not utilize other constructs from natural language and speech tagging ap-

proaches [17, 18]. As a trivial example, given the annotation “pink flower” and a

model of the adjective “pink”, one would expect a dramatic reduction in the set

of regions that would be classified as a flower in such an image. Other language

constructs, such as “prepositions” or “comparative adjectives”, which express rela-

tionships between two or more objects in the image, can also resolve ambiguities.

Our goal is to learn models, in the form of classifiers, for such language con-

structs. Ferrari et. al [33] presented an approach to learn visual attributes from a

training dataset of positive and negative images using a generative model. However,

collecting a dataset for all such visual attributes is cumbersome. Ideally we would

like to use the original training dataset with captions to learn the appearance of
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nouns/adjectives and also understand the meanings of common prepositions and

comparative adjectives. Barnard et. al [10] presented an approach for learning ad-

jectives and nouns from the same dataset. They treat adjectives similarly to nouns

and use a two step process to learn the models. In the first step, they consider only

adjectives as annotated text and learn models for them using a latent model. In the

second step, they use the same latent model to learn nouns where learned models of

adjectives are used to provide prior probabilities for labeling nouns. While such an

approach might be applicable to learning models for adjectives, it cannot be applied

to learning models for higher order(binary) relationships unless the models for the

nouns are given.

Barnard et. al [6] also presented an approach to reduce correspondence am-

biguity in weakly labeled data. They separate the problems of learning models of

nouns from resolving correspondence ambiguities. They use a loose model for defin-

ing affinities between different regions and use the principal of exclusion reasoning to

resolve ambiguities. On the other hand, we propose an approach to simultaneously

resolve correspondence ambiguities and learn models of nouns using other language

constructs which represent higher order relationships 2.

We also present a systematic approach to employing contextual information

(second-order) for labeling images. The use of second order contextual information

is very important during labeling because it can help resolve the ambiguities due

2The principles of exclusion reasoning are also applicable to our problem. We, however, ignore

them here
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to appearance confusion in many cases. For example, a blue homogeneous region,

B, can be labeled as “water” as well as “sky” due to the similarity in appearance.

However, the relation of the region to other nouns such as the “sun” can resolve the

ambiguity. If the relation below(B, sun) is more likely than in(sun,B), then the

region B can be labeled as “water” (and vice-versa). As compared to [6], which uses

adjacency relations for resolution, our approach provides a broader range of rela-

tions(prepositions and comparative adjectives) that can be learned simultaneously

with the nouns.

2.3 Overview

Each image in a training set is annotated with nouns and relationships be-

tween some subset of pairs of those nouns. We refer to each relationship instance,

such as above(A,B), as a predicate. Our goal is to learn classifiers for nouns and re-

lationships (prepositions and comparative adjectives). Similar to [28], we represent

each image with a set of image regions. Each image region is represented by a set

of visual features based on appearance and shape (e.g area, RGB). The classifiers

for nouns are based on these features. The classifiers for relationships are based on

differential features extracted from pairs of regions such as the difference in area of

two regions.

Learning models of both nouns and relationships requires assigning image

regions to annotated nouns. As the data is weakly labeled, there is no explicit
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assignment of words to image regions. One could, however, assign regions to nouns

if the models of nouns and relationships were known. This leads to a chicken-egg

problem (See Figure 2.4). We treat assignment as the missing data and use an EM-

approach to learn assignment and models simultaneously. In the E-step we evaluate

possible assignments using the parameters obtained at previous iterations. Using

the probabilistic distribution of assignment computed in the E-step, we estimate the

maximum likelihood parameters of the classifiers in the M-step.

Figure 2.4: Correspondence/assignment of regions to words is dependent on learned

appearance models; however learned appearance models themselves depend on the corre-

spondence

In the next section, we first discuss our model of generating predicates for a

pair of image regions. This is followed by a discussion on learning the parameters

of the model, which are the parameters of classifiers for nouns, prepositions and

comparative adjectives.
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Figure 2.5: The Graphical Model for Image Annotation

2.4 Our Approach

2.4.1 Generative Model

We next describe the model for language and image generation for a pair of

objects. Figure 2.5 shows our generative model.

Each image is represented with a set of image regions and each region is associ-

ated with an object which can be classified as belonging to a certain semantic object

class. These semantic object classes are represented by nouns in the vocabulary3.

3Generally, there will not be a one-one relationship between semantic object classes and nouns.

For example, the word “bar” refers to two different semantic concepts in the sentences: “He went to

the bar for a drink” and “There were bars in the window to prevent escape”. Similarly, one semantic

object class can be described by two or more words(synonyms). While dealing with synonyms and

word sense disambiguation [9] is an important problem, we simplify the exposition by assuming a
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Assume two regions j and k are associated with objects belonging to semantic

object classes, ns and np respectively. Each region is described by a set of visual

features Ij and Ik. The likelihood of image features Ij and Ik would depend on the

nouns ns and np and the parameters of the appearance models(CA) of these nouns.

These parameters encode visual appearance of the object classes.

For every pair of image regions, there exist some relationships between them

based on their locations and appearances. Relationship types are represented by

a vocabulary of prepositions and comparative adjectives. Let r be a type of rela-

tionship (such as “above”, “below”) that holds between the objects associated with

regions j and k. The nouns associated with the regions, ns and np, provide priors

on the types of relationships in which they might participate (For example, there is

a high prior for the relationship “above” if the nouns are “sky” and “water”, since

in most images “sky” will occur above “water”). Every relationship is described by

differential image features Ijk. The likelihood of the differential features depends on

the type of relationship r and the parameters of the relationship model CR.

2.4.2 Learning the Model

The training data consists of images annotated with nouns (nl
1, n

l
2..) and a set

of relationships between these nouns represented by predicates P l, where l is the

image number. Learning the model involves maximizing the likelihood of training

one-one relationship between semantic object classes and the nouns in the annotation.
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images being associated with predicates given in the training data. The maximum

likelihood parameters are the parameters of object and relationship classifiers, which

are represented by θ = (CA, CR). However, evaluating the likelihood is expensive

since it requires summation over all possible assignments of image regions to nouns.

We instead treat the assignment as missing data and use an EM formulation to

estimate θML.

θML = arg max
θ

P (P1,P2..|I1, I2.., θ) = arg max
θ

∑

A

P (P1,P2.., A|I1, I2.., θ)

= arg max
θ

N∏

l=1

∑

Al

P (P l|I l, θ, Al)P (Al|I l, θ) (2.1)

where Al defines the assignment of image regions to annotated nouns in image

l. Therefore, Al
i = j indicates that noun nl

i is associated to region j in image l.

The first term in equation 2.1 represents the joint predicate likelihood given

the assignments, classifier parameters and image regions. A predicate is represented

as rl
i(n

l
si
, nl

pi
), where rl

i is a relationship that exists between the nouns associated

with region Al
si

and Al
pi

. We assume that each predicate is generated independently

of others, given an image and assignment. Therefore, we rewrite the likelihood as:

P (P l|I l, θ, Al) =

|Pl|∏

i=1

P (P l
i |I

l, Al, θ)

∝

|Pl|∏

i=1

P (rl
i|I

l
Al

si
Al

pi

, CR)P (rl
i|nsi

, npi
)
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Table 2.1: Notation

N : Number of images

l: Image under consideration (superscript)

P l: Set of Predicates for image l

(nl
1, n

l
2...): Set of Nouns for image l

P l
i = rl

i(n
l
si
, nl

pi
): ith predicate

Al
i = j: Noun nl

i is associated with region j

CA: Parameters of models of nouns

CR:Parameters of models of relationships

rl
i: Relationship represented by ith predicate

si: Index of noun which appears as argument1 in ith predicate

pi: Index of noun which appears as argument2 in ith predicate

I l
Al

i

: Image features for region assigned to noun nl
i

I l
Al

si
Al

pi

: Differential Image features from regions assigned to subject and predicate
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∝

|Pl|∏

i=1

P (I l
Al

si
Al

pi

|rl
i, CR)P (rl

i|CR)P (rl
i|nsi

, npi
)

Given the assignments, the probability of associating a predicate P l
i to the

image is the probability of associating the relationship rl
i to the differential features

associated with the pair of regions assigned to nsi
and npi

. Using Bayes rule, we

transform this into the differential feature likelihood given the relationship word and

the parameters of the classifier for that relationship word. P (rl
i|CR) represents the

prior on relationship words and is assumed uniform.

The second term in equation 2.1 evaluates the probability of an assignment of

image regions to nouns given the image and the classifier parameters. Using Bayes

rule, we rewrite this as:

P (Al|I l, θ) =
|Al|∏

i=1

P (nl
i|I

l
Al

i
, CA)

∝
|Al|∏

i=1

P (I l
Al

i
|nl

i, CA)P (nl
i|CA)

where |Al| is the number of annotated nouns in the image, P (I l
Al

i

|nl
i, CA) is the

image likelihood of the region assigned to the noun, given the noun and the param-

eters of the object model, P (nl
i|CA) is the prior over nouns given the parameters of

object models.
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2.4.2.1 EM-approach

We use an EM approach to simultaneously solve for the correspondence and

for learning the parameters of classifiers represented by θ.

1. E-step: Compute the noun assignment for a given set of parameters from

the previous iteration represented by θold. The probability of assignment in which

noun i corresponds to region j is given by:

P (Al
i = j|P l, I l, θold) =

∑
A′∈Al

ij
P (A′|P l, I l, θold)

∑
k

∑
A′∈Al

ik
P (A′|P l, I l, θold)

(2.2)

where Aij refers to the subset of the set of all possible assignments for an

image in which noun i is assigned to region j. The probability of any assignment A′

for the image can be computed using Bayes rule:

P (A′|P l, I l, θold) ∝ P (P l|A′, I l, θold)P (A′|I l, θold) (2.3)

2. M-step: For the noun assignment computed in the E-step, we find the new

ML parameters by learning both relationship and object classifiers. The ML param-

eters depend on the type of classifier used. For example, for a gaussian classifier we

estimate the mean and variance for each object class and relationship class.

For initialization of the EM approach, we can use any image annotation ap-

proach with localization such as the translation based model described in [28].
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Based on initial assignments, we initialize the parameters of both relationship and

object classifiers.

We also want to learn the priors on relationship types given the nouns rep-

resented by P (r|ns, np). After learning the maximum likelihood parameters, we

use the relationship classifier and the assignment to find possible relationships be-

tween all pairs of words. Using these generated relationship annotations we form a

co-occurrence table which is used to compute P (r|ns, np).

2.4.3 Inference

Similar to training, we first divide the test image into regions. Each region j

is associated with some features Ij and noun nj. In this case, Ij acts as an observed

variable and we have to estimate nj. Previous approaches estimate nouns for regions

independently of each other. We want to use priors on relationships between pair of

nouns to constrain the labeling problem. Therefore, the assignment of labels cannot

be done independently of each other. Searching the space of all possible assignments

is infeasible.

We use a Bayesian network to represent our labeling problem and use belief

propagation for inference. For each region, we have two nodes corresponding to the

noun and image features from that region. For all possible pairs of regions, we have

another two nodes representing a relationship word and differential features from

that pair of regions. Figure 2.6 shows an example of an image with three regions
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Figure 2.6: An example of a Bayesian network with 3 regions. The rjk represent the

possible words for the relationship between regions (j, k). Due to the non-symmetric

nature of relationships we consider both (j, k) and (k, j) pairs (in the figure only

one is shown). The magenta blocks in the image represent differential features (Ijk).

and its associated Bayesian network. The word likelihood is given by:

P (n1, n2..|I1, I2..I12, .., CA, CR) ∝
∏

i

P (Ii|ni, CA)
∏

(j,k)

∑

rjk

P (Ijk|rjk, CR)P (rjk|nj , nk)

(2.4)
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2.5 Experimental Results - Corel5K Dataset

In all the experiments, we use a nearest neighbor based likelihood model for

nouns and decision stump based likelihood model for relationships. We assume each

relationship model is based on one differential feature(for example, the relationship

“above” is based on difference in y locations of 2 regions). The parameter learn-

ing M-step therefore also involves feature selection for relationship classifiers. For

evaluation we use a subset of the Corel5k training and test dataset used in [28].

For training we use 850 images with nouns and hand-labeled the relationships be-

tween subsets of pairs of those nouns. We use a vocabulary of 173 nouns and 19

relationships 4.

2.5.1 Learning of Relationship Words

Sixteen relationship words were learned correctly - assigned to correct differ-

ential features. For example, words like above and left were assigned to differences

in y coordinates and x coordinates respectively. One of the interesting case was the

word behind. While our differential feature set did not have any features which cor-

respond to depth values, the word was associated with difference in texturedness 5.

Three relationship words were associated with the wrong features; words like in and

on are hard to capture with color, shape and location features. In the case of the

4above, behind, below, beside, more textured, brighter, in, greener, larger, left, near, far from,

ontopof, more blue, right, similar, smaller, taller, shorter.
5closer regions having higher texturedness than farther regions
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word taller, most of the tall objects are thin and our segmentation algorithm tends

to fragment them.

2.5.2 Resolution of Correspondence Ambiguities

We first evaluate the performance of our approach for the resolution of cor-

respondence ambiguities in the training dataset. To evaluate the localization per-

formance, we randomly sampled 150 images from the training dataset and compare

it to human labeling. Similar to [7], we evaluate the performance in terms of two

measures: “range of semantics identified” and “frequency correct”. The first mea-

sure counts the number of words that are labeled properly by the algorithm. In

this case, each word has similar importance regardless of the frequency with which

it occurs. In the second case, a word which occurs more frequently is given higher

importance. For example, suppose there are two algorithms one of which only labels

’car’ properly and other which only labels ’sky’ properly. Using the first measure,

both algorithms have similar performance because they can correctly label one word

each. However, using the second measure the latter algorithm is better as sky is

more common and hence the number of correctly identified regions would be higher

for the latter algorithm.

We compare our approach to image annotation algorithms which can be used

for localization of nouns as well. These approaches are used to bootstrap our EM-

algorithm. For our experiments, a co-occurrence based translation model [19] and
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Figure 2.7: Comparison of normalized “semantic range” and “frequency correct”

scores for the training dataset. The performance increases substantially by using

prepositions and comparative adjectives in addition to nouns. The green line shows

the performance when relationships are not learned but are defined by a human.

The two red blocks show the performance of our approach where relationships and

nouns are learned using the EM algorithm and bootstrapped by IBM Model1 or

Duygulu et. al respectively.

translation based model with mixing probabilities [28] form the baseline algorithms.

To show the importance of using “prepositions” and “comparative adjectives” for

resolution of correspondence ambiguities, we use both algorithms to bootstrap EM

and present our results. We also compare our performance with the algorithm where

relationships are defined by a human instead of learning them from the dataset itself.

Figure 2.7 compares the performance of all the algorithms with respect to the two

measures described above. Figure 2.8 shows some examples of how ambiguity is

removed using prepositions and comparative adjectives.
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(i) Duygulu et. al (2002) (ii) Our Approach
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grass

sky
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tree

buildings
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Figure 2.8: Some examples of how correspondence ambiguity can be reduced us-

ing prepositions and comparative adjectives. Some of the annotations for the im-

ages are: (a) near(birds,sea); below(birds,sun); above(sun, sea); larger(sea,sun);

brighter(sun, sea); below(waves,sun) (b) below(coyote, sky); below(bush, sky);

left(bush, coyote); greener(grass, coyote); below(grass,sky) (c) below(building, sky);

below(tree,building); below(tree, skyline); behind(buildings,tree) blueish(sky, tree)

2.5.3 Labeling New Images

We also tested our model on labeling new test images. We used a subset of

500 test images provided in the Corel5k dataset. The subset was chosen based on
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the vocabulary of nouns learned from the training set. The images were selected

randomly from those images which had been annotated with the words present in

our learned vocabulary. To find the missed labels we compute St\Sg, where St is the

set of annotations provided from the Corel dataset and Sg is the set of annotations

generated by the algorithm. However, to test the correctness of labels generated

by the algorithm we ask human observers to verify the annotations. We do not

use the annotations in the Corel dataset since they contain only a subset of all

possible nouns that describe an image. Using Corel annotations for evaluation can

be misleading, for example, if there is “sky” in an image and an algorithm generates

an annotation “sky” it may be labeled as incorrect because of the absence of sky

from the Corel annotations. Figure 2.9 shows the performance of the algorithm on

the test dataset. Using the proposed Bayesian model, the number of missed labels

decreases by 24% for IBM Model 1 and by 17% for Duygulu et. al [28]. Also, using

our approach 63% and 59% of false labels are removed respectively.

Figure 2.11 shows some examples of the labeling on the test set. The examples

show how Bayesian reasoning leads to better labeling by applying priors on relation-

ships between nouns. The recall and precision ratios for some common words in the

vocabulary are shown in Figure 2.10. The recall ratio of a word represents the ratio

of the number of images correctly annotated with that word using the algorithm

to the number of images that should have been annotated with that word. The

precision ratio of a word is the ratio of number of images that have been correctly

annotated with that word to the number of images which were annotated with the
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Figure 2.9: Labeling performance on set of 100 test images. We do not consider

localization errors in this evaluation. Each image has on average 4 labels in the

Corel dataset.

word by the algorithm. While recall rates are reported with respect to corel anno-

tations, precision rates are reported with respect to correctness defined by human

observers. The results show that using a constrained bayesian model leads to im-

provement in labeling performance of common words in terms of both recall and

precision rates.
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Figure 2.10: Precision-Recall ratios on common words in Corel-5K dataset.

2.6 Experimental Results - Perfect Segmentations

The results in the previous section show that our approach outperforms co-

occurrence based approach. However, the results in the previous experiments are

confounded by bad segmentations. We performed another small experiment to study

the effect of using prepositions and comparative adjectives when segmentations are

perfect. In this experiment, we used 75 training images from Berkeley and MSRC

datasets and we used a vocabulary of 8 nouns and 19 relationships. Figure 2.12

shows the comparative evaluation of our approach on perfect segmentation dataset.

Even in case of perfect segmentations, our approach outperforms the approach of

Duygulu et. al and the improvement margins are similar as in case of Corel-5k

dataset.
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(i) Duygulu et. al (2002) (ii) Our Approach

clouds

swimmers
people

water

people sky

water
beach

deer

water

mountain

people
water

grass

sky
birds

sky

grass

tree

water

stairs

sand
tree

sandlighthouse

sky

sky

sand
tree

people

Figure 2.11: Some examples of labeling on test dataset. By applying priors on

relationships between different nouns, we can improve the labeling performance. For

example, when labels are predicted independently, there can be labeling where region

labeled “water” is above region labeled “clouds” as shown in the first image. This

is however incongruent with the priors learned from training data where “clouds”

are mostly above “water”. Bayesian reasoning over such priors and likelihoods lead

to better labeling performance.
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Figure 2.12: Performance on dataset with perfect segmentations. The measure used

is the frequency correct measure.
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Chapter 3

Visually Grounded Storyline Model for Video Understanding

In the end all we haveare stories and methods of finding and using those stories

Roger C. Shank

Human actions are (typically) defined by their appearances/motion character-

istics and the complex and structured causal dependencies that relate them. These

causal dependencies define the goals and intentions of the agents. The storyline of a

video includes the actions that occur in that video and causal relationships [79] be-

tween them. A model that represents the set of storylines that can occur in a video

corpus and the general causal relationships amongst actions in the video corpus is

referred to as a “storyline model”. Storyline models also indicate the agents likely

to perform various actions and the visual appearance of actions. A storyline model

can be regarded as a (stochastic) grammar, whose language (individual storylines)

represents potential plausible “explanations” of new videos in a domain. Beyond

recognition of individual actions, understanding the causal relationships among them

provides information about the semantic meaning of the activity in video - the entire
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set of actions is greater than the sum of the individual actions. The causal rela-

tionships are often represented in terms of spatio-temporal relationships between

actions. These relationships provide semantic/spatio-temporal context useful for

inference of the storyline and recognition of individual actions in subsequent, unan-

notated videos.

The representational mechanism of the storyline model is very important; tra-

ditional action recognition has heavily utilized graphical models, most commonly

Dynamic Bayesian networks (DBNs). However, the fixed structure of such models

(often encoded by a domain expert) severely limits the storylines that can be rep-

resented by the model. At each time step, only a fixed set of actions and agents are

available to model the video, which is not sufficient for situations in which the num-

bers of agents and actions varies. For example, in sports, sequences of actions are

governed by the rules of the game and the goals of players/teams. These rules and

goals represent a structure that extends beyond a simple fixed structure of recurring

events. The set of possible or probable actions and/or agents at any given time

may vary substantially. An important contribution of this work is the introduction

of AND-OR graphs [80, 105] as a representation mechanism for storyline models.

In addition, unlike approaches where human experts design graphical models, we

learn the structure and parameters of the graph from weakly labeled videos using

linguistic annotations and visual data. Simultaneous learning of storyline models

and appearance models of actions constrains the learning process and leads to im-

proved visual appearance models. Finally, we show that the storyline model can be
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used as a contextual model for inference of the storyline and recognition of actions

in new videos.

Our approach to modeling and learning storyline models of actions from weakly

labeled data is summarized in Figure 3.1. The storyline models are represented

by AND-OR graphs, where selections are made at OR-nodes to generate storyline

variations. For example, in the AND-OR graph shown in the figure, the ‘pitching’

OR-node has two children ‘hit’ and ‘miss’ which represent two possibilities in the

storyline, i.e after pitching either a ‘hit’ or a ‘miss’ can occur. The edges in the

AND-OR graph represent causal relationships and are defined in terms of spatio-

temporal constraints. For example, an edge from ‘catch’ to ‘throw’ indicates that

‘throw’ is causally dependent on ‘catch’(a ball can be thrown only after it has been

caught). This causal relationship can be defined in terms of time as tcatch < tthrow.

The causal relationship has a spatial constraint also - someone typically throws to

another agent at a different location.

Our goal is to learn the storyline model and the visual groundings of each

action from the weakly labeled data - videos with captions. We exploit the fact that

actions have temporal orderings and spatial relationships, and that many actions

either “causally” influence or are “causally” dependent on other actions. Humans

learn these “causal” relationships between different actions by utilizing sources of

information including language, vision and direct experience (interaction with the

world). In our approach, we utilize human generated linguistic annotations of videos

to support learning of storyline models.

41



Figure 3.1: Visually Grounded Storyline-Model: Given annotated videos, we learn the

storyline model and the visual grounding of each action. The optimization function for

searching the storyline model has three terms: (1) Simple structure. (2) Connections

based on simple conditional distributions. (3) Provides explanations for visual and text

data in the training set. The figure also shows how our AND-OR graph can encode the

variations in storylines (three videos at the top with different storylines (bottom-right)),

not possible with graphical models like DBNs.
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3.1 Related Work

Existing datasets for learning action appearance models provide samples for a

few classes and in controlled and simplified settings. Such datasets fail to generalize

to actions with large intra-class variations and are unsuitable for learning contextual

models due to unnatural settings. On the other hand, using realistic videos would

require significant human labeling effort, making it infeasible to create such datasets

for learning contextual models. There has been recent interest in utilizing large

amounts of weakly labeled datasets, such as movies/TV shows in conjunction with

scripts/subtitles. Approaches such as [29, 57] provide assignment of frames/faces

to actions/names. Such approaches regard assignment and appearance learning

as separate processes. Therefore, these approaches do not utilize the co-occurrence

statistics of visual features and the internal structure of videos for assignment. Nitta

et al. [77] present an approach to annotate sports videos by associating text to images

based on previously specified knowledge of the game. In contrast we simultaneously

learn a storyline model of the video corpus and match tracked humans in the videos

to action verbs (i.e, solving the segmentation and correspondence problems).

Our approach is motivated by work in image annotation which typically model

the joint distribution of images and keywords to learn keyword appearance mod-

els [5]. Similar models have been applied to video retrieval, where annotation words

are actions instead of object names [34]. While such models exploit the co-occurrence

of image features and keywords, they fail to exploit the overall structure in the video.
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In the previous chapter, we presented an approach to simultaneously learn models of

both nouns and prepositions from weakly labeled data. Visually grounded models

of prepositions are used to learn a contextual model for improving labeling per-

formance. However, spatial reasoning is performed independently for each image.

Some spatial reasoning annotations in the images are not incidental and can be

shared across most images in the dataset (For example, for all the images in the

dataset sun is above water). In addition, the contextual model based on priors over

possible relationship words restricts the clique size of the Bayesian network used for

inference. Also, it requires a fully connected network, which can lead to intractable

inference. In contrast, our approach learns a computationally tractable storyline

model based on causal relationships that generally hold in the given video domain.

There has been significant research in using contextual models for action recog-

nition [41, 94, 39, 14, 74]. Much of this work has focused on the use of graphical

models such as Hidden Markov Models (HMMs) [99], Dynamic Bayesian Networks

(DBNs) [39] to model contextual relationships among actions. A drawback of these

approaches is their fixed structure, defined by human experts. The set of probable

actions and/or agents at any given time may vary greatly, so a fixed set of successor

actions is insufficient. Our AND-OR graph storyline model can model both contex-

tual relationships (like graphical models) while simultaneously modeling variation

in structure (like grammars [14]). For example, in sports, sequences of actions are

governed in part by the rules of the game. These rules represent a structure that

extends beyond a simple fixed structure of recurring events. The set of possible
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or probable actions and/or agents at any given time may depend on events that

occurred well in the past, so a fixed set of possible successor actions is insufficient.

Our AND-OR graph storyline model can model both contextual relationships (like

graphical models) while simultaneously modeling variation in structure (like gram-

mars).

In computer vision, AND-OR graphs have been used to represent composi-

tional patterns [105, 24]. Zhu and Mumford [105] used AND-OR graph to represent

a stochastic grammar of images. Zhu et. al [103] present an approach to learn

AND-OR graphs for representing an object shape directly from weakly supervised

data. Lin et. al [61] also used an AND-OR graph representation for modeling activ-

ity in an outdoor surveillance setting. While their approach assumes hand-labeled

annotations of spatio-temporal relationships and AND-OR structure is provided,

our approach learns the AND-OR graph structure and its parameters using text

based captions. Furthermore, [61] assumes one-one correspondence between nodes

and tracks as compared to one-many correspondence used in our approach.

Our work is similar in spirit to structure learning of Bayesian networks in

[36], which proposed a structural-EM algorithm for combining the standard EM-

algorithm for optimizing parameters with search over the Bayesian network struc-

ture. We also employ an iterative approach to search for parameters and structure.

The structure search in [36] was over the space of possible edges given a fixed set

of nodes. However, in our case, both the nodes and edges are unknown. This is

because a node can occur more than once in a network, depending upon the context
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in which it occurs (See figure 3.2). Therefore, the search space is much larger than

the one considered in [36].

3.2 Storyline Model

We model the storyline of a collection of videos as an AND-OR graph G =

(Vand, Vor, E). The graph has two types of nodes - OR-nodes, Vor and AND-nodes

Vand. Each OR-node v ∈ Vor represents an action which is described by its type

and agent. Each action-type has a visual appearance model which provides visual

grounding for OR-nodes. Each OR-node is connected to other OR-nodes either di-

rectly or via an AND-node. For example, in Fig 3.1, middle, the OR-node “Pitch”

has two OR-children which represents two possibilities after a pitch (i.e either the

batter hits the ball (“Hit-Batter”) or misses it (“Miss-Batter”). A path from an

OR-node vi to an OR-node vj (directly or via an AND-node) represents the causal

dependence of action vj upon action vi. Here, AND-nodes are dummy nodes and

only used when an activity can causally influence two or more simultaneous activi-

ties. The causal relationships between two OR-nodes are defined by spatio-temporal

constraints. For example, the causal relationship that ‘hitting’ depends on ‘pitching’

the ball can be defined temporally as tpitch < thit (hitting occurs after pitching) and

spatially as the pitcher must be some distance d′ from the batter d(pitch, hit) ≈ d′.

Figure 3.1 shows several examples (top) of videos whose actions are represented by

AND-OR graphs. Note that the AND-OR graph can simultaneously capture both
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Figure 3.2: An Overview of our approach; our storyline model (G, Θ) is initialized

using videos and captions, and we propose an iterative procedure to improve its

parameters Θ and the structure G.

long and short duration storylines in a single structure (bottom-right).

3.3 Learning the Storyline Model

Our goal is to learn a visually grounded storyline model from weakly labeled

data. Video annotations include names of actions in the videos and some subset of

the temporal and spatial relationships between those actions. These relationships

are provided by both spatial and temporal prepositions such as “before”, “left” and

“above”. Each temporal preposition is further modeled in terms of the relationships

described in Allen’s Interval Logic. As part of bottom-up processing, we assume

47



that each video has a set of human-tracks, some of which correspond to actions

of interest. The feature vector that describes each track is based on appearance

histograms of Spatio-Temporal Interest Points (STIPs) [56, 76] extracted from the

videos.

Establishing causal relationships between actions and learning groundings of

actions involves solving a matching problem. We need to know which human-tracks

in the training videos match to different action-verbs of the storyline to learn their

appearance models and the storyline-model of videos. However, matching of tracks

to action-verbs and storyline extraction of a particular video depends on the struc-

ture of the storyline-model, the appearances of actions and causal relationships

between them. This leads to yet another chicken-and-egg problem, and we employ

a structural EM-like iterative approach to simultaneously learn the storyline-model

and appearance models of actions from collections of annotated videos. Formally, we

want to learn the structure G and parameters of the storyline model Θ = (θ, A) (θ-

Conditional Distributions, A-Appearance models), given the set of videos (V1..Vn)

and their associated annotations (L1..Ln):

(G, Θ) = arg max
G′,Θ′

P (G′, Θ′|V1..Vn,L1..Ln)

∝ arg max
G′,Θ′

∏

i

∑

M i,Si

P (Vi,Li|G
′, Θ′, M i, Si)P (G′, Θ′)

• Si : Storyline for video i.

• M i : Matchings of tracks to actions for video i.
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We treat both S and M as missing data and formulate an EM-approach.

The prior, P (G, Θ), is based on simple structure (R(G)) and simple conditional

distributions terms (D(G, Θ)) and the likelihood terms are based on how well the

storyline model generates storylines which can explain both the videos and their

linguistic annotations(C(G, Θ)).

Figure 3.2 summarizes our approach for learning visually grounded storyline-

models of training videos. Given an AND-OR graph structure at the beginning

of an iteration, we fix the structure and iterate between learning parameters/visual

grounding of the AND-OR graph and the matching of tracks to action nodes(Sec. 3.3.1).

In the hard-E step, we estimate storyline and matchings for all training videos using

the current G, Θ. In the M step, we update Θ using the estimated storylines and

matchings for all videos. After convergence or a few iterations, we generate new

graph proposals by local modifications to the original graph (Sec. 3.3.2) and select

the modification that best represents the set of storylines for the videos(Sec. 3.3.3).

This new storyline model is then used for re-initializing the iterative approach, which

iterates between appearances and matchings. The new storyline model, which is a

better model of the variations in storylines across the training videos, allows better

interpretation. For example, in the figure, the “run-fielder” action after the “catch”

was labeled as “throw” since the initial storyline-model did not allow “run” after

“catch”. Subsequently, an updated storyline model allows for “run” after “catch-

ing”, and the assignments improve because of the new expanded storyline.

We begin by explaining our model, and parsing procedure we use to analyze
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a video using our model, inferring the storyline of the video and matching of video

segments to the actions in the storyline. Afterwards, we explain our procedure for

learning a model from weakly-labeled video.

3.3.1 Parsing Videos

We now describe how, an AND-OR storyline model is used to analyze, or

parse, videos and obtain their storylines and matchings of human tracks to storyline

actions. We provide a one-many matching formulation, where several human tracks

can be matched to a single action. Matching of tracks to actions also requires

making a selection at each OR-nodes to select one storyline out of the set of possible

storylines. While there have been several heuristic inference algorithms for AND-

OR graphs, we formulate an integer programming approach to obtain the storyline

and matchings, and solve a relaxed version of the problem in the form of a linear

program.

Given an AND-OR graph G, a valid instantiation, S(representing a storyline),

of the AND-OR graph is a function S : i ∈ Vand ∪ Vor → {0, 1} that obeys the

following constraints: (1) At each OR-node vi there is an associated variable Si

which represents whether the or-node has been selected for a particular storyline of

not. For example, in fig 3.3, ‘hit’ is a part of the storyline, therefore S3 = 1, and miss

is not a part of the storyline so S2 = 0. (2) Since OR-children represent alternate

possible storyline extensions, exactly one child can be selected at each OR-node.

(3) An OR-node, i, can be instantiated (i.e Si = 1) only when all the OR-nodes in
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the unique path from the root to node i have been instantiated. For example, since

the path from ‘pitching’ to ‘catching’ includes ‘hitting’, ‘catching’ can be part of a

storyline if and only if ‘hitting’ is part of the storyline.

Given T human tracks in a video, a matching of tracks and nodes is a mapping

M : i ∈ Vor, j ∈ {1, ..., T +1} → {0, 1}. Mij = 1 indicates that the action at the OR-

node i is matched with track j. Since some of the actions might not be visible due to

occlusion and camera-view, we add a dummy track which can be associated with any

action with some penalty. Depending on the constraints imposed on M , different

matchings between actions and tracks can be allowed: many-to-many, many-to-one,

one-to-many, or one-to-one. We consider those mappings that associate one action

to many tracks, which is represented by the constraint 1 ∗ MT = 1. Furthermore,

no tracks should be matched to an OR node that is not instantiated: ∀i ∈ Vor,

Mij ≤ Si.

Finally, to incorporate pairwise constraints (such as temporal ordering and

spatial relationships) between matches of two nodes i and k, Mij and Mkl, we

introduce variables X : xijkl ∈ {0, 1}; xijkl = 1 indicates that the action

at node i and track j are matched, and the action at node k and track

l are matched. Instead of enforcing a computationally difficult hard constraint

xijkl = Mij ∗ Mkl, we marginalize both sides over l and represent the constraint as:

∀k,
∑

l xijkl = Mij.

In parsing, we search for a “best” valid instantiation S (representing a storyline
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Figure 3.3: Given the upper left video, we show two possible parses and costs for each

parsing cost function component. The left parse is worse since it explains fewer tracks

(Explanation E(M)), matches actions to tracks with different appearance (Appearance

A(S, M)), and violates spatial and temporal constraints (the pitch-pitcher action should

be matched to a track which occurs before the miss-batter track, and the two tracks should

appear in the usual pitcher-batter configuration) (Spatio -Temporal T (X)). The correct

parse on the right scores well according to all three cost function components.
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from the storyline model) and a matching M of tracks and actions (representing

visual grounding of nodes). The optimization function for selection is based on

three terms: (1) Select a storyline consisting of nodes for which good matching

tracks can be found. (2) Select a storyline which can explain as many human tracks

as possible. (3) The matching of nodes to tracks should not violate spatio-temporal

constraints defined by the storyline model (See Figure 3.3). The three terms that

form the basis of the objective to be minimized, subject to the above constraints on

S, M and X, are:

Appearance Matching: The cost of a matching is based on the similarity

of the appearances of instantiated nodes and corresponding tracks. This cost can

be written as:

A(S, M) =
∑

i

||(
∑

j

Mij)tj − SiAi|| (3.1)

where tj represents the appearance histogram of track j and Ai represents the

appearance histogram model of the action at node i. In many to one matching,

multiple tracks combine to match to a single action node. Therefore, the first

term,(
∑

j Mijtj), sums the appearance histograms of human tracks that match to

node i. This is then compared to the appearance model at node i by measuring

the L1-norm. Figure 3.3 shows an example of parsing with high(left parse) and

low matching costs(right parse). The left parse has high matching cost since the

track of a batter running is assigned to the pitching node which are not similar in

appearance.
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Explanation Reward: Using only appearance matching would cause the

optimization algorithm to prefer small storylines, since they require less matching.

To remove this bias, we introduce a reward, E , for explaining as many of the STIPs

as possible. We compute E as:

E(M) = −
∑

j

min(
∑

i

Mij , 1)||tj || (3.2)

This term computes the number of tracks/STIPs that have been assigned to a node

in the AND-OR graph and therefore explained by the storyline model.

Spatio-Temporal Constraints: We also penalize matchings which violate

spatio-temporal constraints imposed by causal relationships. If pijkl encodes the

violation cost of having an incompatible pair of matches (node i to track j and node

k to track l), the term for spatio-temporal violation cost is represented as: T (X) =

∑
ijkl pijklxijkl. This term prefers matchings that do not violate the spatio-temporal

constraints imposed by the learned AND-OR graph. For example, the left parse in

Figure 3.3 matches the ‘pitching’ and ‘miss’ actions to incorrect tracks, resulting in

‘pitching’ starting after ‘batting’ in the video, which is physically impossible. The

tracks are also not in the typical pitcher-batter spatial configuration. Therefore, this

matching has a high cost as compared to the matching shown in the right parse.

The above objective and the constraints result in an Integer Program which

is a NP-Hard problem. We approximate the solution by relaxing the variables S,

M and X to lie in [0, 1]. The result is a linear program, which can be solved very
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quickly. For the learning procedure, we have the annotated list of actions that occur

in the video. We utilize these annotations to obtain a valid instantiation/storyline

S and then optimize the function over M,X only. For inference, given a new video

with no annotations, we simultaneously optimize the objective over S,M,X.

3.3.2 Generating new Storyline Model Proposals

After every few inner iterations of the algorithm, we search for a better story-

line model to explain the matchings and causal-relationships between actions. To do

this, we generate new graph proposals based on local modifications to the AND-OR

graph structure from the previous iteration.

The local modifications are: (1) Deletion of an edge and adding a new edge

(2) Adding a new edge (3) Adding a new node. The selection of edges to delete and

add is random and based on the importance sampling procedure, where deletion of

important edges are avoided and addition of an important edge is preferred. The

importance is defined on the basis of the likelihood that the head and tail of the

edge are related by a causal relationship.

3.3.3 Selecting the New Storyline Model

Each iteration selects the AND-OR graph from the set of modifications which

best represents the storylines of the training videos. The criteria for selection is
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based on four different terms:

Track Matching Likelihood: The first criteria measures how well a proposal

explains the matchings obtained in the previous parsing step. The matching of tracks

to actions from the previous step is used to obtain a likelihood of an AND-OR graph

generating such a matching. The likelihood of the pth graph proposal, Gp
r generating

the pairwise matchings Xr−1 (at iteration r−1) is given by 1
Z
exp(−TG

p
r
(Xr−1)). This

likelihood is based on the third term from the parsing cost, but here the penalty

terms are computed with respect to the individual graph proposals.

Annotation Likelihood: The AND-OR graph representing the storyline

model should not only explain the matching of tracks to actions, but also the lin-

guistic annotations associated with each video. The underlying idea is that the same

storyline model is used to generate the visual data and linguistic annotations. The

cost function measures how likely an instantiation of the AND-OR graph storyline

model accounts for the video’s actions annotations and how well the constraints spec-

ified by linguistic prepositions in annotations are satisfied by the AND-OR graph

constraints. For example, if the annotation for a training video includes ‘pitching

before hitting’, a good AND-OR graph would not only generate a storyline includ-

ing ‘pitching’ and ‘hitting’ but also have the conditional distribution for the edge

pitching → hitting, such that P (thit − tpitch > 0|θ) is high.

Structure Complexity If we only consider likelihoods based on linguistic

and visual data, more complex graphs which represent large numbers of possibilities
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will always be preferred over simple graphs. Therefore, an important criteria for

selection of an AND-OR graph is that it should be simple. This provides a prior

over the space of possible structures. We use a simplicity prior similar to [37], which

prefers linear chains over non-linear structures.

Distribution Complexity The complexity of an AND-OR graph depends

not only on its graph structure, but also the conditional distributions of children

actions given parent actions. For an action i (OR-node) in an AND-OR graph, we

form a distribution over all possible successors, or sets of actions that could appear

immediately after action i in a storyline. The individual spatio-temporal conditional

distributions between i and its successors are combined into a single distribution over

successors, and we compute the entropy of this combined distribution. The entropies

of the successor distributions for all OR-nodes in the graph are averaged, providing

a measure of the complexity of the conditional distributions contained in the AND-

OR graph. Our cost prefers higher entropy distributions; empirically, we have found

that this results in better ranking of structures. We can also draw intuition from

work on maximum entropy Markov models [65], where higher entropy distributions

are preferred in learning conditional distributions to prevent overfitting.

3.3.4 Initializing the Search

For initialization, we need some plausible AND-OR causal graph to represent

the storyline model and appearance models of actions. Establishing a causal se-
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Figure 3.4: Quantitative evaluation of training performance and how the storyline model

changes with iterations. Within each colored block, the storyline model remains fixed

and the algorithm iterates between parsing and parameter estimation. At the end of each

colored block, the structure of the AND-OR graph is modified and a new structure is

learned. The structural changes for the three iterations are shown.

quence of actions from passive visual data is a difficult problem. While one can

establish a statistical association between two variables X and Y , inferring causal-

ity - whether X → Y or Y → X- is difficult. For initialization, we use the linguistic

annotations of the videos. Based on psychological studies of causal learning, we use

‘time’ as a cue to generate the initial storyline model [55]. If an action A immedi-

ately precedes action B, then A is more likely to be the cause and B is more likely

to be the effect.

We initialize the AND-OR graph with the minimum number of nodes required

to represent all the actions in the annotations of the training videos. Some actions
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Figure 3.5: (a) Improvement in assignments with iterations: In the first iteration, the

true storyline for the video pitching → hit → catching, is not a valid instantiation of the

AND-OR graph. The closest plausible storyline involves activities like run which have to

be hallucinated in order to obtain assignments. However, as the storyline model improves

in iteration 2, the true storyline now becomes a valid storyline and is used for obtaining

the assignments. (b) Another example of the assignments obtained in training. The

assignments are shown by color-coding, each track is associated to the node which has

similar color in the instantiated AND-OR graph.
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might have more than one node due to their multiple occurrences in the same video

and due to different contexts under which the action occur. For example, ‘catch-

fielder’ can occur in a video under two different contexts. The action ’catching’ in

the outfield and ’catching’ at a base are different and require different nodes in the

AND-OR graph. Using Allen’s interval temporal logic, we obtain the weight of all

possible edges in the graph, which are then selected in a greedy manner such that

there is no cycle in the graph. Dummy AND-nodes are then inserted by predicting

the likelihood of two activities occurring simultaneously in a video.

For initialization of appearance models, we use the approach proposed in the

previous chapter. Using the spatio-temporal reasoning based on the prepositions

and the co-occurrence of visual features, we obtain a one-one matching of tracks to

actions which is used to learn the initial appearance models.

3.4 Experimental Evaluation

For our dataset, we manually chose video clips of a wide variety of individual

plays from a set of baseball DVDs for the 2007 World Series and processed them

as follows: We first detect humans using the human detector[25]. Applied to each

frame with a low detection threshold, the output of the detector is a set of de-

tection windows which potentially contain humans. To create tracks, we perform

agglomerative clustering of these detection windows over time, comparing windows

in nearby frames according to the distance between their centroids, and similarity of
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color histograms as measured by the Chi-square distance. The resulting tracks can

be improved by extending each track forwards and backwards in time using color

histogram matching. STIPs that fall within the detection window of a track in a

frame contribute to the track’s appearance histogram.

Training: We trained the storyline model on 39 videos (individual baseball

plays), consisting of approximately 8000 frames. The training videos contained

both very short and very long plays. We evaluate the performance of our training

algorithm in terms of number of actions correctly matched to tracks. Figure 3.4

shows how this accuracy changed over the training process. The figure is divided

into three colored blocks. Within each colored block, the structure of the storyline

model remains the same and the approach iterates between parsing and parameter

update. At the end of each colored block, we update our storyline model and select a

new storyline model which is then used to parse videos and estimate parameters. We

can see that the accuracy rises significantly over the course of training, well above

the initial baselines, validating our iterative approach to training. The percentage

improvement over the “Beyond Nouns” approach explained in previous chapter is

as much as 10%.

Figure 3.5 a) shows an example of how a parse for a video improves with

iterations. Figure 3.5 b) shows an additional example of a video with its inferred

storyline and matchings of actions to tracks; we can see that all but the run-fielder

action are correctly matched.
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Figure 3.6: Quantitative Evaluation of Labeling Accuracy

Figure 3.7: Storyline Extraction for New Videos: We show the instantiation of AND-OR

graph obtained for each training video and the story generated in text by our algorithm.

The assignments of tracks to action nodes are shown by color coding.
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Storyline Extraction for New Videos: Our test set includes 42 videos from

the same baseball corpus. Again, they ranged from very short and simple to longer

and more complicated. We first evaluated the performance in terms of storyline

extraction. Fig.3.7 shows some qualitative examples of the storyline extraction in

terms of the instantiation of AND-OR graphs, assignment of tracks to actions and

the text that is generated from the storyline model. We use recall and precision

values of action labeling to measure the performance of storyline extraction. We

compare the performance of our approach to the baseline methods of Gupta et.al [42]

and IBM Model 1[19]. Figure 3.6 shows two bar plots, one for recall (left) and the

other for precision (right). For the baseline methods, we show the average precision

and recall values and compare against our method’s performance (block of blue, red

and green bars). Our method nearly doubles the precision of the baseline methods

(.8 vs. .4), and has a much higher recall (.85 vs. 0.5 for [42] and 0.1 for [19]).

It performs well over most of the actions, with the exception of the action Swing-

Miss (low recall). We also evaluated the number of correct matchings obtained for

the actions in the predicted storylines. Quantitatively, we obtained 70% correct

assignments of tracks to actions.

We attribute the success of our approach to three reasons: (1) An important

reason for improvement in training compared to the previous chapter is that we did

not feedback the contextual models learned at the end of their single iterative loop

of training to relearning models of object appearances. (2) During inference, the

coupling of actions via the AND-OR graph model provides a more structured model
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than simple context from co-occurrence statistics and binary relationship words

can provide. (3) The one-many (action to track matching) framework used here is

more powerful than the one-one framework in the previous chapter and handles the

problem of fragmented segmentation.
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Chapter 4

Function Recognition - Linking Nouns and Verbs

In chapters 2 and 3, we presented contextual models which are based on

noun-noun spatial relationships and verb-verb causal relationships (characterized by

spatio-temporal distributions). In this chapter, we investigate how noun-verb rela-

tionships can be used in contextual models for constraining the recognition problem.

Specifically, we present a Bayesian approach for interpretation of human-object in-

teractions that integrates information from perceptual tasks such as scene analysis,

human motion/pose estimation 1, manipulable object detection and “object reac-

tion” determination 2. While each of these tasks can be conducted independently,

recognition rates improve when we integrate information from different perceptual

analysis and also consider spatial and functional constraints.

Integrating information from different perceptual analyses enables us to form

a coherent semantic interpretation of human object interactions. Such an interpre-

1Recognition of action in static images is based on “implied” motion. “Implied” motion refers

to the dynamic information implicit in the static image [52]. The inference of action from static

images depends on implied motion, which itself depends on the phase of the action [53, 95]. This

indicates that human pose provides important cues for action recognition in static images
2Object reaction is the effect of manipulation of an object by human actor

65



tation not only supports recognizing the interactions, but also the objects involved

in those interactions and the effect of those interactions on those objects.

Interactions between different perceptual analyses allows us to recognize ac-

tions and objects when appearances are not discriminative enough. Consider two

objects, such as the spray bottle and a drinking bottle shown in Figure 4.1. These

objects are similar in appearance and shape, but have different functionality. Due to

their functional dissimilarity, people’s interaction with these objects provides con-

text for their recognition. Similarly, two similar human movements/poses can serve

different purposes depending on the context in which they occur. For example, the

poses of the humans shown in Figure 4.2 are similar, but due to the difference in

context, the first action is inferred to be running and the second action to be kicking.

Another important element in the interpretation of human object interactions

is the effect of manipulation on objects. When interaction movements are too sub-

tle to observe using computer vision, the effects of these movements can provide

information on functional properties of the object. For example, when lighting a

flashlight, recognizing the pressing of a button might be very difficult. However, the

resulting illumination change can be used to infer the manipulation.

We present two computational models for interpretation of human object in-

teractions in videos and static images, respectively. Our approach combines action

recognition and object recognition in an integrated framework, and allows us to

apply spatial and functional constraints for recognition. The significance of our
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Figure 4.1: Importance of interaction context in recognition of object and vice-versa.

While the objects might be difficult to recognize using shape features alone, when interac-

tion context is applied the object is easy to recognize. Similarly, two actions might have

similar dynamics and trajectories. It is difficult to differentiate between two actions based

on shape of trajectories. However, when cues from object are used in conjunction with

cues from human dynamics it is easy to differentiate between two actions.

approach is threefold: (a)Human actions and object reactions are used to locate

and recognize objects which might be difficult to locate or recognize otherwise. (b)

Object context and object reactions are used to recognize actions which might oth-

erwise be too similar to distinguish or too difficult to observe. In some cases, such

as in recognition of actions from static images, there is no dynamic information;

however contextual information can be used in such cases for recognition. (c) We

provide an approach for recognition of actions from “static” images. The extraction
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(a)Running (b)Kicking

Figure 4.2: Action recognition from static images requires contextual information.

Same poses can have different meanings based on the context.

of “dynamic information” from static images has been well studied in the fields of

psychology and neuroscience, but has not been investigated by the computer vision

community.

4.1 Related Work

4.1.1 Psychological Studies

Milner and Goodale [66] proposed psychological theories of human informa-

tion processing where action execution and object perception are considered two

separate processes with their own pathways in the human brain. However, with the

discovery of mirror neurons in monkeys, there has been a renewed interest in study-

ing the relationships between object recognition, action understanding and action

execution [75, 38, 40]. With the same neurons involved in execution and perception,

a link between object recognition and action understanding has been established [75]

in humans. Gallese et. al [38] showed that movement analysis in humans depends
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on the presence of objects. The cortical responses for goal directed actions are dif-

ferent from the responses evoked when the same action is executed but without the

presence of the object. In another study, Frey et. al [48] showed that human inferior

frontal cortex responds to static pictures of human object interactions. The response

was only observed in the presence of congruent poses and objects, suggesting that

human poses are evaluated in the context of objects. On the other hand, the impor-

tance of action in perceiving and recognizing objects (especially manipulable objects

like tools) has been shown [23].

Recent studies in experimental psychology have also confirmed the role of

object recognition in action understanding and vice-versa. Helbig et. al [46] show the

role of action priming in object recognition and how recognition rates improve with

action-priming. Recognition rates of target objects were higher when the priming

object was used in a similar action as the target object. In another study, Bub et.

al [20] investigated the role of object priming in static gesture recognition. While

passive viewing of an object did not lead to priming effects, priming was observed

when humans were first asked to recognize the object and then recognize the image

of a related hand gesture. In a recent study, Bach et. al [4] showed that when actions

involving objects are perceived, spatial and functional relations provide context in

which these actions are judged. These studies suggest that humans perceive implied

motion from static poses under object and scene context.

While most of this work suggests interactions between object and action per-

ception in humans, they have not examined the nature of the interaction between
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action and object recognition. Vaina et. al [96] address this through the study of

pantomimes. They ranked the properties of objects that can be estimated robustly

by perception of pantomimes of human-object interaction. They discovered that the

weight of an object is most robustly estimated, while size and shape are harder to

estimate.

Our computational model for recognition from static image is motivated from

psychological studies of extraction of dynamic information from static images. The

human visual system is highly tuned to perceive motion and produce dynamic in-

formation. Psychophysical studies have shown that humans not only tend to infer

motion from static images, but they also store pose representations as if the ob-

ject/agent was indeed moving [35]. Neuro-psychological studies of monkeys have

shown that cortical cell responses to static posture were related to the implied

action rather than the static posture per se [49]. The responses of the cells are

different for implied human motions as compared to observation of non-biological

entities (e.g., flowing water) with implied motion. In the case of implied human

motion, TMS studies have shown the specific motor activation of muscles involved

in the execution of the very same action [95].

4.1.2 Computational Approaches

There has been a very large body of work carried out in both, object recog-

nition and action recognition. Most approaches, however, address one or both of
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these problems, independent of the other.

Computational approaches for object recognition typically use local static fea-

tures, based on shape and textural appearance [25, 70]. Berg et. al [11] proposed

the ’geometric blur’ feature that is robust under affine distortions. Bosch et. al [16]

proposed the Pyramidal Histogram of Oriented Gradients (PHOG) feature and the

Pyramidal Histogram of Visual Words (PHOW) feature to represent local image

shape and its spatial layout. Wu et.al [100] proposed a set of silhouette oriented

features, called edgelet features, which were learned in a boosting framework to

detect humans. Such approaches work well for detecting articulated/rigid objects,

but encounter difficulties in recognizing manipulable objects due to the lack of dis-

criminative power in these features. Todorovic et. al [92] model object categories

as characteristic configurations of parts that are themselves simpler subcategories,

allowing them to cope better with non-rigid objects. However, like all appearance

based approaches, they still cannot deal with the many real-world objects that are

similar in appearance but dissimilar in functionality. Functional properties of ob-

jects have also been used for object recognition. Functional capabilities of objects

are derived from shape [85, 89], physics and motion [27]. These approaches are

limited by the lack of generic models that can map static shape to function. There

has been recent interest in using contextual information for object recognition. The

performance of local recognition based approaches can be improved by modeling

object-object [71, 42] and object-scene relationships [90, 72]. Torralba et. al used

low level image cues [93] for providing context based on depth and viewpoint cues.
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Hoiem et. al [47] presented a unified approach for simultaneous estimation of ob-

ject locations and scene geometry. Rabinovich et. al [83] proposed incorporating

semantic object context as a post-processing step to any object category recognition

system using a conditional random field (CRF) framework.

There are a wide range of approaches to human action recognition [86, 67].

Analysing human dynamics from image sequences of actions is a common theme

to many of these approaches [15, 102, 84, 91]. While human dynamics provides

important clues for action recognition, they are not sufficient for recognition of ac-

tivities which involve action on objects. Many human actions involve similar move-

ments/dynamics, but due to their context sensitive nature have different meanings.

Vaina et. al [96] suggested that action comprehension requires understanding the

goal of an action. The properties necessary for achieving the goal were called Ac-

tion Requirements and are related to the compatibility of an object with human

movements such as grasps.

Compared to the large body of work carried out in human action recognition

from video sequences, there has been little work on recognition from single images.

Wang et. al [98] presented an approach for discovery of action classes from static

images using the shape of humans described by shape context histograms. Jia-

Li et. al [60] tackled a different, but related, problem of event recognition from

static images. They presented an approach to combine scene categorization and

object recognition for performing event classification such as badminton and tennis.

The problem of action recognition from static images is one level lower in the action
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hierarchy and corresponds to “verb” recognition in the hierarchy suggested by Nagel

et. al [73].

Attempts have been made before to model the contextual relationship between

object and action recognition. Wilson et. al [99] introduced parametric Hidden

Markov Model (PHMM) for human action recognition. They indirectly model the

effect of object properties on human actions. Davis et. al [26] presented an approach

to estimate the weight of a bag carried by a person using cues from the dynamics

of a walking person. Moore et. al [68] conduct action recognition based on scene

context derived from other objects in the scene. The scene context is also used to

facilitate object recognition of new objects introduced in the scene. Kuniyoshi et.

al [54] describe a neural network for recognition of “true” actions. The requirements

for a “true” action included spatial and temporal relationships between object and

movement patterns. Peursum et. al [81] studied the problem of object recognition

based on interactions. Regions in an image were classified as belonging to a partic-

ular object based on the relative position of the region to the human skeleton and

the class of action being performed. All of the above work models only one of the

possible interactions between two perceptual elements. Either they try to model

the dependence of object recognition on human actions or vice-versa. This assumes

that one of the problems can be solved independent of the other and the information

from one can be used to aid in recognition of the other.
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4.2 Video Interpretation Framework

We first describe a computational model for interpretation of human-object

interaction videos. We identify three classes of human movements involved in in-

teractions with manipulable objects. These movements are (a) Reaching for an

object of interest. (b) Grasping the object and (c) Manipulating the object. These

movements are ordered in time. The reach movement is followed by grasping which

precedes manipulation. In our model, we ignore the grasping motion since the hand

movements are too subtle to be perceived at the resolution of typical video cameras

when the whole body and context are imaged.

4.2.1 Overview

We present a graphical model for modeling human object interactions. The

nodes in the model correspond to the perceptual analyses corresponding to the recog-

nition of objects, reach motions, manipulation motions, object reactions. The edges

in the graphical model represent the interactions/dependencies between different

nodes.

Reach movements enable object localization since there is a high probability

of an object being present at the endpoint of a reach motion. Similarly, object

recognition disables false positives in reach motion detection, since there should be

an object present at the endpoint of a reach motion (See Figure 4.3). Reach motions
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also help to identify the possible segments of video corresponding to manipulation of

the object, since manipulation motion is preceded by reach motion. Manipulation

movements provide contextual information about the type of object being acted

on and object class provides contextual information on possible interactions with

them, depending on affordances and function. Therefore, a joint estimation of the

two perceptual elements provides better estimates as compared to the case when

the two are estimated independently(See Figure 4.4).

The object reaction to a human action, such as pouring liquid from a carafe into

a cup or pressing a button that activates a device, provides contextual information

about the object class and the manipulation motion. Our approach combines all

these types of evidence into a single video interpretation framework. In the next

section, we present a probabilistic model for describing the relationship between

different elements in human object interactions.

4.2.2 Our Bayesian Model

Our goal is to simultaneously estimate object type, location, movement seg-

ments corresponding to reach movements, manipulation movements, type of manip-

ulation movement and their effects on objects by taking advantage of the contextual

information provided by each element to the others. We do this using the graphical

model shown in Figure 4.5.

In the graphical model, objects are denoted by O, reach motions by Mr,
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(a) Original detector (b) Likelihood P (O|eO)

(c) Reach P (Mr|er) (d) P (O, Mr|eO, er)

Figure 4.3: Importance of contextual information involved in reach motions and object

perception. (a) Object Detectors tend to miss some objects completely (b) Lowering the

detection threshold can lead to false positives in detection. The likelihood of a pixel being

the center of the cup is shown by intensity of red. (c) Reach Motion Segmentation also

suffers from false positives. The trajectories are shown in green and blue with possible

end points of reach motion shown in red. (d) Joint probability distribution reduces the

false positives in reach motion and false negatives in object detection.

manipulation motions by Mm and object reactions by Or. The video evidence is

represented by e = {eO, er, em, eor} where eO represents object evidence, er and

em represent reach and manipulation motion evidence and eor represents object
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(a) Likelihood P (O|eO) (b) Interaction Motion

(c) Segmented Motion (d) Belief: Bel(O)

Figure 4.4: Importance of contextual information from interaction motion in object class

resolution. In this experiment, object detectors for cups and spray were used. (a) The

likelihood value of a pixel being the center of cup and spray bottle is shown by intensity of

red and green respectively. (b) Hand trajectory for interaction motion (includes reach and

manipulation). (c) The segmentation obtained. The green track shows the reach while

the red track shows the manipulation.(d) Likelihood values after belief propagation. By

using context from interaction with the object, it was inferred that since the object was

subjected to a wave like motion, it is more likely a spray bottle.
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Figure 4.5: Underlying Graphical Model for Human Object Interaction. The ob-

served and hidden nodes are shown in gray and white respectively.

reaction evidence. Using Bayes rule and conditional independence relations, the

joint probability distribution can be decomposed as3:

P (O, Mr, Mm, Or|e) ∝ P (O|eO)P (Mr|O)P (Mr|er) . . .

. . . P (Mm|Mr, O)P (Mm|em)P (Or|O, Mm)P (Or|eor)

We use loopy belief propagation algorithm for inference over the graphical

model. In next few subsections we discuss how to compute each of these terms.

Section 4.2.3 discusses how to compute the object likelihoods P (O|eO). In sec-

tion 4.2.4.1 we explain the computation of reach motion likelihood, P (Mr|er), and

the contextual term P (Mr|O). This is followed by a discussion on computation of

manipulation motion likelihood, P (Mm|em),and the term P (Mm|Mr, O) in sec-

3All the variables are assumed to be uniformly distributed and hence P (O), P (Mr), P (Mm),

P (Or), P (eO), P (er), P (em) and P (eor) are constant
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tion 4.2.4.2. In section 4.2.5, we discuss the object reaction likelihood P (Or|eor)

and the prior term, P (Or|O, Mm).

4.2.3 Object Perception

The object node in the graphical model represents the random variable O.

We want to estimate the likelihood of the type of object and the location of the

object. While our approach is independent of the likelihood model, we employ a

variant of the histogram of oriented gradient(HOG) approach from [25, 104] 4. Our

implementation uses a cascade of adaboost classifiers in which the weak classifiers

are Fischer Linear Discriminants. This is a window based detector; windows are

rejected at each cascade level and a window which passes all levels is classified as a

possible object location.

Based on the sum of votes from the weak classifiers, for each cascade level, i, we

compute the probability Pi(w) of a window, w, containing the object. If a window

were evaluated at all cascade levels, the probability of it containing an object would

be
∏L

i=1 Pi(w). However, for computational efficiency many windows are rejected

at each stage of the cascade 5. The probability of such a window containing an

object is computed based on the assumption that such windows would just exceed

4We use linear gradient voting with 9 orientation bins in 0-180; 12x12 pixel blocks of four 6x6

pixel cells.
5Our experiments indicate that in many cases locations rejected by a classifier in the cascade

are true object locations and selected by our framework
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the detection threshold of the remaining stages of the cascade. Therefore, we also

compute a threshold probability(Pti) for each cascade level i. This is the probability

of that window containing an object whose adaboost score was at the rejection

threshold. If a detector consists of L levels, but only the first lw levels classify a

window w as containing an object, then the overall likelihood is approximated by:

P (O = {obj, w}|eO) ≈
lw∏

i=1

Pi(w)
L∏

j=lw+1

(Ptj) (4.1)

4.2.4 Motion Analysis

We need to estimate the likelihoods of reach motion and manipulation motion.

Our likelihood model is based on hand trajectories and therefore requires estimation

of endpoints(hands in case of upperbody pose estimation) in each frame. While

one can use independent models for tracking the two hands, this could lead to

identity exchange and lost tracks during occlusions. Instead we pose the problem

as upperbody pose estimation. We implemented a variant of [30] for estimating

the 2D pose of the upper body. In our implementation, we use an edge [44] and

silhouette based likelihood representation for body parts. We also use detection

results of hands based on shape and appearance features and a temporal tracking

framework where smoothness constraints are employed to provide priors. Figure 4.6

shows the results of the algorithm on few poses.
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Figure 4.6: Results of Upper Body Pose Estimation Algorithm.

4.2.4.1 Reach Motion

The reach motion is described by three parameters: the start time (tr
s
), the end

time (tr
e
) and the 2D image location being reached for (lr). We want to estimate the

likelihood of reach motion (Mr = (tr
s
, tr

e
, lr)) given the hand trajectories. An ap-

proach for detecting reach motion was presented in [82]. It is based on psychological

studies which indicate that the hand movements corresponding to ballistic motion

such as reach/strike have distinct ’bell’ shaped velocity profiles [64, 87](See Fig-

ure 4.7). There is an initial impulse accelerating the hand/foot towards the target,

followed by a decelerating impulse to stop the movement. There is no mid-course

correction. Using features such as time to accelerate, peak velocity and magnitude of

acceleration and deceleration, the likelihoods of reach movements can be computed

from hand trajectories.

However, there are many false positives because of errors in measuring hand

trajectories. These false positives are removed using contextual information from

object location. In the case of point mass objects, the distance between object

location and the location being reached for should be zero. For a rigid body, the
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Figure 4.7: Plot on the left shows velocity profiles of some mass-spring motions and

the figure on the right shows some ballistic hand movements. The velocity remains

low and constant during mass-spring movements. It reduces to zero only at the end

of the movement. On the other hand, hand movements corresponding to ballistic

motion such as reach/strike have distinct ’bell’ shapes.
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distance from the center of the object depends on the grasp location. We represent

P (Mr|O) using a normal function, N (|lrlo|, µ, σ), where µ and σ are the average

distance and variance of the distances in a training database between grasp locations

and object centers.

4.2.4.2 Manipulation Motion

Manipulation motions also involve three parameters: start time (tm
s

), end time

(tm
e

) and the type of manipulation motion/action (Tm) (such as answering a phone,

drinking etc). We need to compute P (Mm|em), the likelihood of a manipulation

given the evidence from hand trajectories. While one can use any gesture recognition

approaches based on hand trajectories to estimate the likelihood, we use a simple

discrete HMM based approach to estimate it.

We need to first compute a discrete representation of the manipulation motion.

Towards this end, we obtain a temporal segmentation of the trajectory based on a

limb propulsion model. An approach for such a segmentation was presented in [82].

There are two models for limb propulsion in human movements: ballistic and mass-

spring models [87]. Ballistic movements, discussed previously, involve impulsive

propulsion of the limbs (acceleration towards the target followed by deceleration

to stop the movement). In the mass-spring model, the limb is modeled as a mass

connected to a springs. Therefore, the force is applied over a period of time.

To obtain the temporal segmentation of a velocity profile, it is observed that
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the endpoints of each ballistic segment correspond to a local minima in the velocity

profile. However, due to noise all local minimas are not the endpoints of atomic

segments. Therefore, the segmentation problem is treated as that of classifying the

points of local minima as being segmentation boundaries or not. The classification

is based on features such as accelerating impulse and its duration. Given confi-

dence values for each time instant to be a starting, ending or negligible movement,

we compute the most likely segmentation of the velocity profile using Maximum

Likelihood(See Figure 4.8).

Figure 4.8: Segmentation Procedure: The first graph shows the local minima of

velocity profile. These local minima are classified into possible endpoints of each

segment. This is followed by a maximum likelihood approach to obtain the segmen-

tation of the velocity profile.
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Each segment is then replaced by a discrete alphabet defined as the cross-

product of type of propulsion(ballistic/mass-spring) and the hand locations at the

end of the motion segments, represented with respect to the face. By using al-

phabets for atomic segments we transform a continuous observation into a discrete

symbol sequence. This is used as input to obtain the likelihoods of different types

of manipulation motion from their corresponding HMM’s.

In addition to computing the likelihood, we need to compute the term P (Mm|Mr, O).

Manipulation motion is defined as a 3-tuple, Mm = (tm
s

, tm
e

, Tm). The starting

and ending times, tm
s

and tm
e

, depend on Mr but are independent of O. Similarly,

the type of manipulation motion, Tm, depends on O but is independent of Mr
6.

Hence, we decompose the prior term as:

P (Mm|Mr, O) = P (tm
s , tm

e |Mr)P (Tm|O) (4.2)

Assuming grasping takes negligible time, the time difference between the end-

ing time of a reach motion and the starting time of a manipulation motion should be

zero. We model P (tm
s

, tm
e

|Mr) as a normal distribution N (tm
s

− tr
e
, 0, σt) where

σt is the observed variance in the training dataset. P (Tm = mtype|O = obj)

is computed based on the number of occurrences of manipulation mtype on object

obj in our training dataset.

6Type of manipulation also depends upon the direction of reach motion. This factor is, however,

ignored in this paper
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4.2.5 Object Reactions

Object reaction is defined as the effect of manipulation on the object. In many

cases, manipulation movements might be too subtle to observe using computer vision

approaches. For example, in the case of a flashlight, the manipulation involved is

pressing a button. While the manipulation motion is hard to detect, the effect

of such manipulation (the lighting of the flashlight) is easy to detect. Similarly,

the observation of object reaction can provide context on object properties. For

example, the observation of the effect of pouring can help in making the decision of

whether a cup was empty or not.

The parameters involved in object reaction are the time of reaction (treact)

and the type of reaction (Tor). However, measuring object reaction type is difficult.

Mann et. al [62] presented an approach for understanding observations of interacting

objects using Newtonian mechanics. This approach can only be used to explain rigid

body motions. Apart from rigid body interactions, the interactions which lead to

changes in appearances using other forces such as electrical are also of interest to

us.

We use the differences of appearance histograms (8 bins each in RGB space)

around the hand location as a simple representation for reaction type classification.

Such a representation is useful in recognizing reactions in which the appearance of

the object at the time of reaction, treact, would be different than appearance at the

start or the end of the interaction. Therefore, the two appearance histograms are
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Figure 4.9: Using appearance histograms around hand to estimate P (Or|eor). In

the case above, illumination change due to flashlight causes the change in intensity

histogram.

subtracted and compared with the difference histograms in the training database to

infer the likelihood of the type of reaction(Tor).

In addition, we need to compute the priors P (Or|Mm, O). Object reaction

is defined by a 2-tuple, Or = (Tor, treact). Using the independence of the two

variables:
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P (Or|Mm, O) = P (Tor|Mm, O)P (treact|Mm, O) (4.3)

The first term can be computed by counting the occurrences of Tor when

the manipulation motion is of type mtype and the object is of type obj. For

modeling the second term, we observed that the reaction time ratio, rr = treact−tms
(tm

e −tms )
,

is generally constant for a combination of object and manipulation. Hence, we model

the prior by a normal function N (rr, µr, σr) over the reaction-time ratio, where

µr and σr are the mean and variance of reaction-time ratios in the training dataset.

4.3 Recognizing Interactions from Static Images

While action recognition requires motion information, in the case of static

images, contextual information can be used in conjunction with human pose to infer

action. Figures 4.10 (a) and (b) show examples of reasoning involved in inference

of actions from a static image. In both cases, pose alone does not provide sufficient

information for identifying the action. However, when considered in the context of

the scene and the objects being manipulated, the pose become informative of the

goals and the action.

Relevant objects in the scene generally bear both a semantic7 and spatial

7By semantic relationships we refer to those relationships that are captured by co-occurrence

statistics
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(a)Tennis Forehand (b)Baseball Pitching

Figure 4.10: Examples depicting the reasoning process in action inference from static

images. The labels in red are the result of a scene categorization process, cyan

labels and blue labels represent scene and manipulable objects, respectively, and

the magenta label is the result of a pose estimation algorithm. For understanding

actions from static images, information is combined from all components. While the

pose is similar in both scenes, the presence of the racket and tennis ball, along with

the tennis court environment suggests that the first picture is a ‘tennis-forehand’

while the second is baseball pitching due to the presence of the pitching area and

the baseball field.

relationship with humans and their poses. For example, in a defensive stance of

a cricket batsman, the bat is facing down and is generally below or level with the

person’s centroid. Similarly, the location of the cricket ball is also constrained

by the person’s location and pose(See Figure 4.11). We describe how to apply

spatial constraints on locations of objects in the action recognition framework. By

combining action recognition from poses with object detection and scene analysis

we also improve the performance of standard object detection algorithms.
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(a)Without Spatial Constraints (b)With Spatial Constraints

Figure 4.11: Detection of manipulable objects can be improved using spatial con-

straints from human action. The ball detector detects two possible cricket balls.

In the case of defensive batting, the probability of possible locations of the ball is

shown by the shaded regions. Hence the region below the centroid, where the ball

is more likely to be present, is brighter. The ball denoted in box 4 lies in a darker

region, indicating it is less likely to be a cricket ball due to its location with respect

to the human. For objects such as bats, another important spatial constraint is con-

nectedness. A segment of the bat should be connected to a segment of the human;

therefore false positives, such as object 1, can be rejected.

We first present an overview of the approach in section 4.3.1. Section 4.3.2

describes our Bayesian model for recognition of actions and objects in static images.

This is followed by a description of individual likelihood models and interactions

between different perceptual elements in subsequent sections.
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4.3.1 Overview

Studies on human object perception suggest that people divide objects into

two broad categories: scene and manipulable objects. These objects differ in the

way inferences are made about them. Chao et. al [23] showed that when humans

see manipulable objects, there is cortical activity in the region that corresponds to

action execution. Such responses are absent when scene objects, such as grass and

house, are observed. Motivated by such studies, we treat the two classes differently

in terms of the role they play in inferring human location and pose and represent

them by two different types of nodes in the Bayesian model.

Our Bayesian model consists of four types of nodes, corresponding to scene/event,

scene objects, manipulable objects and human. The scene node corresponds to the

place where the action is being performed, such as a cricket ground or a tennis court.

The scene object nodes correspond to objects which do not have causal dependency

on the human actor and are mostly fixed in the scene, such as the net in the tennis

court. Manipulable objects correspond to the instruments of the game such as a

ball or a racket.

The interactions between these nodes are based on semantic and spatial con-

straints. The type of objects that occur in an image depends on the scene in which

the action takes place. For example, it is more likely for a pitch to occur in a cricket

ground than a tennis court. Therefore, there exist semantic relationships between

scene and scene objects.
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The type of action corresponding to a pose depends on the type of scene and

the scene objects present. The type of action also depends on the location of the

human with respect to the scene objects. For example, a pose with one hand up in

a tennis court can either be a serve or a smash. However, if the human is located at

the baseline it will more likely be a serve; otherwise, if he is near the net it will more

likely be a smash. While considering such spatial relationships is important, in this

paper we consider only the semantic relationships between actions and the scene

and scene objects. Since we are not modeling spatial relationships between scene

objects and human actions, we only consider the presence/absence of scene objects.

Therefore, each scene object node (representing a class such as cricket-stumps) is

characterized by a binary variable indicating the presence/absence of that scene

object class.

For manipulable objects, there exists both spatial and semantic constraints

between people and the objects. The type of manipulable objects in the image

depends on the type of action being performed. Also, the location of the manipulable

objects is constrained by the location of the human, the type of action and the types

of manipulable objects. For example, the location of a tennis ball is constrained by

the type of action (in the case of a forehand the ball is located to the side of a person

while in the case of a serve it appears above). Spatial constraints also depend on

the type of object; objects such as a tennis racket should be connected to the person

while objects such as a ball generally have no such connectivity relationships. We

describe an approach to represent such relationships in our Bayesian network.
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Figure 4.12: Graphical Model. The observed and hidden nodes are shown in gray

and white respectively.

4.3.2 Our Bayesian Model

The graphical model used for the scene interpretation framework is shown

in figure 4.12. We simultaneously estimate the scene type, scene objects, hu-

man action and manipulable object probabilities. Let S represent the scene vari-

able, SO1...SON represent the N type of scene objects, H represent the hu-

man and MO1..MOM represent the M possible manipulable objects. If e =

{eS, eSO1
..eSON

, eH, eMO1
..eMON

} represents the evidential variables, our goal

is to estimate P (S, H, SO1..SON, MO1..MOM|e). This can be decomposed as:

∏
j P (MOj|H)P (MOj|eMOj

)P (H|S, SO1..SON)P (H|eH) . . .

. . .
∏

i P (SOi|S)P (SOi|eSOi
)P (S|eS) (4.4)

We use loopy belief propagation algorithm for inference over the graphical
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model.

4.3.3 Scene Perception

A scene is mainly characterized as a place in which we can move [78]. In

this paper, the scene corresponds to the place where an action is being performed

such as tennis court and croquet field. Each image is associated with a probability

of belonging to one of the scene classes. Several experimental studies have shown

that when humans view a scene, they extract functional and categorical information

from the scene; whereas they tend to ignore information regarding specific objects

and their locations. In accordance, Oliva et. al [78] bypass the segmentation and

processing of individual objects in their scene classification framework. Rather than

looking at a scene as a configuration of objects, they propose to consider a scene

like an individual object, with a unitary shape. They show that scenes belonging to

the same category share a similar and stable spatial structure that can be extracted

at once, without segmenting the image. A set of holistic spatial properties of the

scene, together referred to as a Spatial Envelope, are used, which include naturalness,

openness, roughness, ruggedness and expansion. We use their approach to compute

the concatenated feature vector for every image in the dataset. Using the training

feature vectors we train a Support Vector Machine (SVM) for the classification task.

For a test image, the SVM returns a score dS which represents the distance of the

test point from the separating hyperplane. Based on this distance, we estimate the

probability P (S|eS) as:
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P (S|eS) =
1

ZScene

exp(−αScenedS) (4.5)

where αScene is the scaling parameter and Zscene is the normalization factor.

4.3.4 Scene Objects

Each scene object node corresponds to a class of scene objects and is rep-

resented by the probability of presence of that object class across the image. We

uniformly sample points across the image and extract a patch around each point

(For experiments, grid points are sampled at 25 pixels each in x,y direction and

the patch size of 50 × 50 is used). We classify each patch as belonging to one of

the N scene object classes, using an adaboost based classifier [97] based on features

such as histogram of oriented gradients (HOG), histograms of each color channel(8

bins each in color channel), and histograms of edge distance map values within the

neighborhood. We compute P (SOi|S) based on the conditional probability tables

learned using the co-occurrence relationships in the training dataset.

4.3.5 Human in Action

Every detected person in the image is characterized by the action (A) he is

performing, and location given by a bounding box (lH). For action classification,

we detect humans and employ the pose information. A similar approach has been
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proposed in a recent paper [32]. In our experiments, we detect humans using an

approach similar to [101]. Since the observed image shape of a human changes signif-

icantly with articulation, viewpoint and illumination, it is infeasible to train a single

human detector for all shapes. Instead, we first cluster the observed shapes from

our training data, and train multiple human detectors, one for each shape cluster.

Our human detectors closely match those proposed by [25]. Given a bounding box

around a detected human, we segment the human using GrabCut [12], an efficient

tool for foreground segmentation. Once we have a possible human segmentation,

we extract shape context features (5 radial bins and 12 orientation bins) from the

silhouette of the human. We then cluster shape context features [1] from the train-

ing database to build a dictionary of “shape context words”. A detected human in

an image is then characterized by the histogram of shape context words. The num-

ber of words/clusters determines the dimensionality of our pose feature vector. We

then use the K-Nearest Neighbor approach for classification, providing P (H|eH).

Given a test sample, we determine the K nearest neighbors in the training data.

Each of the K neighbors votes for the class it belongs to with a weight based on its

distance from the test sample. The final scores obtained for each class determine

the likelihoods for each pose category, P (H|eH). For the experiments used in the

paper we use K = 5.

We also need to compute P (H|S, SO1..SON). Assuming conditional inde-

pendence between scene object categories given human action, we rewrite as:

P (H|S, SO1..SON) =
N∏

i

P (H|S, SOi) (4.6)
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Each of these can be computed using co-occurrence statistics of human action-

scene-scene object combinations, independently for every scene object class.

4.3.6 Manipulable Objects

Each detected manipulable object in the image has the following attributes:

an associated class id (cm
i

) and location parameters given by a bounding box (lm
i

)

around the object. We use the object detector described in section 4.2.3. Using

this approach, however, we are unable to distinguish between objects that have

the same shape but a different dominant color; for example a cricket ball (often

red or white in color) as opposed to a tennis ball (often yellow in color). Thus,

we build appearance models of manipulable objects using non-parametric Kernel

Density Estimation (KDE) to also perform an appearance based classification. We

sample pixels from training images of the manipulable objects and build a 3D model

in the RGB space.

pModel(r, g, b) =
1

N

N∑

i=1

Kσr (r − ri)Kσg (g − gi)Kσb
(b − bi) (4.7)

Given a test image, we first use the shape based classifier to detect potential

object candidates. Within each candidate window, we sample pixels and build a den-

sity estimate using (KDE). This test density is compared to the color model of every

object category using the Kullback-Leibler distance. This provides the final manip-
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ulable object detection probabilities based on appearance given by P (MOi|e
ap
MOi

).

Therefore the probability P (MOi|eMOi
) is given by:

P (MOi|eMOi
) = P (MOi|e

sh
MOi

)P (MOi|e
ap
MOi

) (4.8)

where esh refers to shape and eap refers to appearance evidence. We also

need to compute P (MOi|H). Human actions and locations provide both semantic

and spatial constraints on manipulable objects. The spatial constraints given human

locations are with respect to the type of manipulable object and type of action being

performed. We model two kinds of spatial constraints: (a) Connectivity - Certain

manipulable objects like a tennis racket or a cricket bat should be connected to

the human in action. (b) Positional and Directional Constraints: These location

constraints are evaluated with respect to the centroid of the human that is acting

on them. The conditional probability densities are based on the type of action being

performed. For example, given a tennis serve action it is more likely that the ball

is above the player, while if the action is forehand it is more likely to the side of

the player. We model positional relations in terms of the displacement vector of the

object centroid from the centroid of the human body. Thus we obtain:

P (MOi = (cm
i , lmi )|H = (A, lH)) = P (lmi |cm

i , A, lH)P (cm
i |A) (4.9)
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The first term refers to the spatial constraints and can be learned by discretiz-

ing the space around the human as shown in figure 4.13. From the training images,

we learn the condition probability tables of the region in which the manipulable

object lies given the type of manipulable object and the type of action. The sec-

ond term is the semantic constraint and is modeled from co-occurrence statistics of

human action-manipulable objects combinations from training data.

Figure 4.13: Spatial Constraints between locations of manipulable objects and hu-

mans for different poses. In an idealized scenario, for a forehand pose, the ball is

more likely to be seen on the side; for a tennis serve, it is more likely to be seen

above the human. We use 2 radial bins and 8 orientation bins to specify position

of manipulable object with respect to the human body.
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4.4 Experimental Evaluation

4.4.1 Video Interpretation

We evaluated our video interpretation framework on test dataset 8 of 10 sub-

jects performing 6 possible interactions with 4 different objects. The objects in the

test-dataset included cup, spray bottle, phone and flashlight. The interactions with

these objects were: drinking from a cup, spraying from a spray bottle, answering a

phone call, making a phone call, pouring from a cup and lighting the flashlight.

Training: We used a fully-supervised approach for training the Bayesian

model for video interpretation. Training of the model requires training of a HOG

based detector for all object classes and HMM models for all classes of interac-

tions. Training for HOG based object detector was done using images from training

datasets obtained using Google image search(50 images for each object, negative im-

ages were used from INRIA and CALTECH datasets). HMM models were trained

using a separate training dataset of videos. The object reactions are learned using

the supervised training scheme. In training videos, the frames for the object re-

action were manually segmented and the appearance histograms around the hand

were used to learn the appearance of object reaction. Additionally our model re-

quires co-occurrence statistics of object-interaction-reaction combinations, distance

between grasp location and object center, and reaction time ratios. We used a train-

8The datasets used in all the experiments are available online and can be downloaded from

http://www.umiacs.umd.edu/∼agupta
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ing dataset of 30 videos of 5 actors performing different types of manipulations on

the objects. Training was done in a fully supervised manner. All the videos were

manually labeled with object locations, hand locations and the type of objects,

manipulation and object reactions.

Object Classification: Among the objects used, it is hard to discriminate

the spray bottle, flashlight and cup because all three are cylindrical (See Fig-

ures 4.16(a),(b)). Furthermore, the spray bottle detector also fired for the handset

of the cordless phone (See Figure 4.16(d)). Our approach was also able to detect

and classify objects of interest even in cluttered scenes (See Figure 4.16(c)). Fig-

ures 4.14(a) and 4.14(b) shows the likelihood confusion matrix for both the original

object detector and the object detector in the human-object interaction framework.

Using interaction context, the recognition rate of objects at the end of reach loca-

tions improved from 78.33% to 96.67%9.

Action Recognition: Of the six activities, it is very hard to discriminate

between pouring and lighting on the basis of hand trajectories(See Figure 4.16(a)

and (b)). While differentiating drinking from phone answering should be easy due to

the differences in endpoint locations, there was still substantial confusion between

the two due to errors in computation of hand trajectories. Figure 4.15(a) shows

the likelihoods of actions that were obtained for all the videos using hand-dynamics

alone. Figure 4.15(b) shows the confusion matrix when action recognition was con-

9The recognition rate depicts the correct classification of localized object into one of the five

classes: background, cup, spray-bottle, phone and flashlight
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(a) HOG Detector (b) Using Whole Framework

Figure 4.14: Object Likelihood Confusion Matrix: The ith row depicts the expected

likelihood values when ith type of object is present. The right table shows the

results of our whole framework, taking into account action, object reaction, and

reach motion.

ducted using our framework. The overall recognition rate increased from 76.67%

to 93.34% when action was recognized using the contextual information from ob-

jects and object reactions. While the trajectories might be similar in many cases,

the context from object provided cues to differentiate between confusing actions.

Similarly in the cases of lighting and pouring, contextual cues from object reaction

helped in differentiating between those two actions.

Segmentation Errors: Apart from errors in classification, we also evaluated

our framework with respect to segmentation of reach and manipulation motion.

The segmentation error was the difference between the actual frame number and
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(a) HMM based Action Recognition

(b) HMM based recognition in Interaction Context

Figure 4.15: Comparison of Action Likelihoods without and with contextual infor-

mation. Each Column represents the normalized likelihood values for six possible

actions.

the computed frame number for the end of a reach motion. We obtained the ground

truth for the data using manual labellings. Figure 4.17 shows the histogram of

segmentation errors in the videos of the test dataset. It can be seen that 90% of

detections were within 3 frames of actual end-frames of reach motion. The average

length of the video sequence was approximately 110 frames.
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4.4.2 Image Interpretation

Dataset:We evaluated our approach on a dataset which had 6 possible actions:

“tennis-forehand”, “tennis-serve”, “volleyball-smash”, “cricket-defensive shot”, “cricket-

bowling” and “croquet-shot”. The images for the first 5 classes were downloaded

from the internet and for the sixth class, we used a publicly available dataset [60].

A few images from the dataset are shown in figure 4.19. The classes were selected

so that they had significant confusion due to scene and pose. For example, the

poses during “volleyball-smash” and “tennis-serve” are quite similar and the scenes

in “tennis-forehand” and “tennis-serve” are exactly the same.

Training: We used a fully-supervised approach for training the Bayesian

model for image interpretation. We have to learn the parameters for individual

likelihood functions and parameters of the conditional probabilities which model the

interactions between different perceptual analyses. To learn parameters of individual

likelihood functions, we trained individual detectors separately using training images

from Google image search(50 images each for every object and 30 silhouettes each for

the pose likelihood). Learning parameters corresponding to conditional probabilities

requires a separate training dataset of images. Our training dataset consisted of 180

images (30 from each class).

Evaluation: We tested the performance of our algorithm on a dataset of 120

test images (20 from each class). We compared the performance of our algorithm

with the performance of models based on isolated components. Figure 4.20 shows
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the confusion matrix obtained using the full model described in the paper. We also

show some failure cases in the figure. Our approach gave some mis-classifications

when the scene involved is the same but actions are different such as bowling being

classified as batting. This occurs whenever the pose classification algorithm gives

a wrong action likelihood (mostly due to faulty segmentation by Grabcut) and the

manipulable object detector fails to find any discriminating manipulable object.

Figure 4.21(a) shows the performance of a pose based classification algorithm.

We used the pose component of our model to obtain the confusion matrix. As

expected, the performance of pose-only model is very low due to similar poses being

shared by different actions. For example, there is high confusion between “tennis-

serve” and “bowling”, since both actions share a high arm pose. Similarly we see

confusion between “bowling” and “volleyball”. The confusion between “volleyball

smash” and “tennis forehand” is mainly due to incorrect segmentations by grabcut.

The comparison between overall performance of our approach and the indi-

vidual components is shown in figure 4.21(b). The performance of our approach

was 78.86% as compared to 57.5% by the pose-only model and 65.83% by the

scene-only model.

Figures 4.22 and 4.23 shows some examples of correct classification by our

algorithm. In both cases, our approach rejects false positives because the belief in

the objects fall below the detection threshold when combined with other elements

like pose and scene information. For example, in Fig 4.22 the false positives of bats

105



are rejected as they fail to satisfy spatial constraints. Also, in both cases detections

related to objects incongruent with scene and action information are also rejected.

Influence of Parameters:We evaluated our system with respect to the pa-

rameters of each component of our system. We varied the parameter αScene used

to obtain the scene classification probabilities(Section 4.3.3). Fig 4.24(a) shows that

action recognition accuracy increases with increasing αScene, but flattens out after a

value of 5. The discriminative power of the scene component lowers with decreasing

αScene and therefore we observe a lower system performance. In our experiments,

we use αScene = 5.

Oliva et al. [78] use the WDST (Windowed Discriminant Spectral Template)

which describes how the spectral components at different spatial locations contribute

to a spatial envelope property, and sample it at regular intervals to obtain a discrete

representation. One of the components of their method, wScene, determines the

coarseness of this sampling interval. We varied the coarseness of the sampling where

smaller wScene refers to coarser sampling. Figure 4.24(b) shows our performance

accuracy with respect to wScene. Our action recognition accuracy reduces for a very

coarse sampling of the WDST, but is stable at finer scales. We use wScene = 4 for

the experiments.

Our object detection module detects multiple objects in the scene and passes

the top few detections on to the bayesian framework. We evaluated our system

accuracy with regards to the number of manipulable object detections passed to

106



the bayesian framework. For lower number of detections, the bayesian framework

has lower performance due to missing true detections. For higher number of de-

tections, the bayesian framework has lower performance due to the confusion from

false positives. This effect is more pronounced for lower αScene values where the

scene component has lower discriminativeness (See Figure 4.24(c)).

Finally, we evaluated our system with respect to the dimensionality of the

pose feature vector. This dimensionality is determined by the number of “shape

context words” formed in the shape dictionary. Figure 4.24(d) shows the accuracy

of our system against the dimensionality of the pose feature vector. As expected, our

performance reduces when using a very small number of words. In our experiments,

we use a dictionary of 100 visual words resulting in a 100 dimensional pose feature

vector.
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Interaction: Lighting Flashlight

(a) HOG Detector (a) HOG in Framework

Interaction: Lighting FlashlightInteraction: Making a Phone Call

(b) HOG Detector (c) HOG in Framework

Interaction: Answering Phone

(c) HOG Detector (d) HOG in Framework

Figure 4.16: Results of object detection in the human-object interaction framework.

The likelihoods of the centers of different objects are shown in different colors. The

colors red, green, cyan and magenta show the likelihoods of cup, spray bottle, flashlight

and phone respectively. (a) A flashlight is often confused as spray bottle by the HOG

detector. However, when context from the framework is used there is no confusion. (b)

Our detector can find and classify objects in clutter. (c) A spray bottle detector often

fires at the handset of cordless phones due to the presence of parallel lines. However, such

confusion can be removed using our framework.
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Figure 4.17: Segmentation Error Histogram

Figure 4.18: Object Recognition using contextual cues from reach, manipulation

and object reaction. As before, the colors red, green, cyan and magenta show the

likelihoods of cup, spray bottle, flashlight and phone respectively. The activities in

the four cases above are: drinking, pouring, lighting, spraying respectively.
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Figure 4.19: Our Dataset.
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Figure 4.20: Confusion Matrix (Full Model): The figure shows the confusion matrix

obtained using the full model. We also show some failure cases in the adjoining

boxes. (i) The scene in these cases are classified correctly as cricket ground however,

due to faulty segmentations the hands of the bowler are missed and the pose is mis-

classified as batting. (ii) The pose is again misclassified as that of forehand due

to some extra regions added to human segment. The missed detection (shown in

dotted blue) of croquet bat also contributes to the miss-classification. (iii) In both

the cases the segmentation fails, leading to inclusion of net with the human segment.

(iv) Apart from the error in the pose module, the racket is also missed and the ball

is not present in the scene.
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(a) Confusion Matrix (Pose Only)

(b) Comparison

Figure 4.21: (a) Confusion Matrix (Pose Only): The confusion matrix is only pose

information is used for action classification. (b) Comparative performance of our

approach with individual components.

112



Figure 4.22: Some illustrative examples showing the performance of the system. The

left column shows the likelihood of various objects using independent detectors. The

colors of the rectangles represent the likelihood probability (red meaning higher

probability and blue meaning lower probability). The middle column shows the

posterior probabilities after the framework was applied. The right column shows the

final result of our approach. In the first example, the detector detects four possible

mallets and three possible croquet balls. After applying the spatial constraints,

all the false positives are rejected as they fail to satisfy spatial constraints (the

other mallets are not connected to a human body and the other balls are above the

detected human centroid). In the second example, the false positives of bats are

rejected as they fail to satisfy spatial constraints. Also, in both cases detections

related to objects incongruent with scene and action information are also rejected.

(Note the abbreviations T-Ball,C-Ball,V-Ball and Cq-Ball refer to tennis, cricket,

volley and croquet balls respectively).
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Figure 4.23: Some other examples: In the first case, the tennis racket was detected

with a lower likelihood as compared to other objects. After combining information

from scene and action the belief in the tennis racket increases since the action and

the scene are tennis-serve and tennis court respectively. In the second case, our

approach rejects false positives of objects such as a mallet and bat. These objects

are rejected as they are not congruent to a volleyball-court and a volleyball-smash

action. The false positives in volleyballs are also rejected as they fail to satisfy

spatial constraints. Same abbreviations as in figure 4.22.
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Figure 4.24: Influence of parameters on the system performance.
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Chapter 5

Conclusion

In this thesis, I have explored how language can be integrated with visual

learning systems to improve reliability of learning object and action models. This

thesis explores how language beyond nouns and verbs can provide top-down group-

ing information or contextual information which can be used during learning from

weakly labeled data. Unlike current approaches, which harness co-occurrence of

visual features and nouns/verbs to constrain the learning, our approach uses the in-

ternal structure of images and videos to further constrain the learning. In Chapter

2, I have specifically shown how prepositions and comparative adjectives can pro-

vide relationship constraints which learned models should satisfy. I have also shown

how prepositions and comparative adjectives can be used as a contextual model

for scene analysis. In Chapter 3, we go beyond representing contextual model by

priors on relationship words and learn a storyline model for videos. This storyline

model is represented by an AND-OR graph and the edges in AND-OR graph are

based on causal-dependency. AND-OR graphs allow representation of higher order

constraints which are necessary for recognition of actions in videos. The storyline

model approach goes beyond the traditional paradigm of recognizing actions and

in this case the problem is simultaneous estimation of storyline and recognition of
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individual actions. Finally in Chapter 4, I present two Bayesian models for interpre-

tation of human object interactions from videos and static images respectively. Our

approach combines the processes of scene, object, action and object reaction recog-

nition. Our Bayesian model incorporates semantic/functional and spatial context

for both object and action recognition. Therefore, by enforcing global coherence

between different perceptual elements, we can improve the recognition performance

of each element substantially.
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