Thread Motion in Private L1 Chip
Multiprocessors

Athula Balachandran, Lavanya Subramanian

Abstract—Low power computing has become a topic of their requirement based on the variation of processors

great interest in the recent past. But computation limited by ~within the CMP can lead to significant performance
power budget can lead to suboptimal performance. How- improvement.

ever studies have shown that applications show very high . .
variability in their performance requirement and this could In the ConteXF of power S.aVIngS, PYnam'C VOlt_age
be exploited. Dynamic Voltage Frequency Scaling (DVFS) Frequency Scaling (DVFS) is a traditional technique
is a traditional technique that is used to exploit run time that is used to exploit run time variability and conserve
variability and conserve power with minimal performance power with minimum performance degradation. Intel’s

degradation. However due to practical limitations, DVFS XScale and Transmeta’s Crusoe are examples of the
cannot exploit the very fine grained variability shown by

various applications. In this context, thread motion was many m'CmprOC_essors that support DVFS funCt'ona“ty'
proposed as a mechanism that helps applications operate Typically DVFS is employed at the OS scheduler inter-
at frequencies and voltages that are appropriate for their vals. However recent research shows that applications’
performance levels, by migrating at very low granualarity. variability behaviour is more fine-grained. Hence this
However there is no work that looks at the performance onn6t pe exploited efficiently by performing DVFS at
degradation imposed by performing thread motion in case - .

of Chip MultiProcessors (CMP) with private L1 caches. In OS scheduler 'nterval.s'. The OS scheduler Sampl_'ngs
this project, we show the performance degradation that is are of the order of milliseconds whereas the applica-
incurred in a generic CMP with private L1 caches and also tion variations occur at nanoseconds time scale. But
present some interesting results on the energy trends, for employing per-core DVFS at fine grained intervals im-

dlfferent migration |n_tervals. We aIs_o evaluate the use of poses a huge delay overhead for the regular voltage
a moving average history IPC predictor over a last value

IPC predictor and show that the performance degradation level transistions and hence is practically impossible
is reduced by around 5%. with off-chip regulators. However the fact that multi-

Index Terms—Parallell architecture, Distributed Archi- cores run .processes .W.ith diﬁergnt Computgtion needs
tecture, Performance, Low power computing can be utilized to efficiently switch cores instead of
performing per-core DVFS. Hence by having different
cores assigned different voltage/performance levels and
employing an intelligent scheduling mechanism we can

There has been a lot of emphasis on low powetrchieve good performance in the multi core system.
computing in the near past. Low power computing i®ur project looks at the challenges and bottlenecks in
very essential in the case of battery-operated computiagplying this to a generic chip multiprocessor.
systems with limited power capabilities. It is also a key This is the basic idea that has been put forth in [1]. The
requirement in high end machines and data centers whetghors evaluate it in the context of an architecture where
cooling has become one of the major concerns. Eveores are clustered and the L1 cache is shared by the
in the multi-core chips power consumption seems beprocessors in that cluster. However, generic CMP archi-
very crucial design consideration. This is because higbctures are not built this way. The processors typically
power consumption can lead to side effects that affect theve private L1 caches and share a physically partitioned
reliabilty of the chip, performance and packaging costL2 cache. The main motivation for this project has been

In order to stay within the power budget, there iso evaluate how well thread motion works for this sort
a need to carefully constrain application performanasf a more generic architecture.
leading to suboptimal performance. However studies
have shown that applications show very high variability
in their performance requirement. Hence this can be used Related Vork
to optimize the performance requirement while staying Reducing power density and power-aware designs has
within the given power budget. Also die process variatiobeen the focus of much work in the past. DVFS is a
can cause the individual cores in a Chip Multi Processarell known traditional technique for performing power
(CMP) to significantly differ from the others. Thesemanagement in many of the contemporary microproces-
can lead to intelligently scheduling processes based sors. The power consumption can be reduced when the

I. INTRODUCTION



cores are idle by appropriately setting the voltage artd map applications ranked in the order of IPC to cores
frequency levels of the individual cores. In the case @anked in the order of frequency. A last value predictor is
single core microprocessors, it can be used to boost thged for the IPC. Migrations that are performed within a
performance by remapping the VF settings accordinglgluster do not suffer the impact of missing L1 cache data.
The application variability is tracked and is used télowever, in most Chip Multiprocessor Systems, each
arrive at the appropriate voltage/frequency setting f@rocessor has a private L1 cache. So, our project explores
the core. [2] looks at DVFS in the context of Chipthe effectiveness of the "Thread motion” scheme in this
Multi Processors and exploits this application variapilil scenario. Specifically, we try to quantify the performance
[3] looks at variation aware DVFS, where the DVFSlegradation, that would result from the L1 misses, when
algorithms also exploit the variability information of themigration is performed. We observe that the concept of
processors. intra and inter clusters does not apply in our scenario.
In the case of a multi-core set up, it is difficult to
maintain a per-core DVFS control based on the appfd. Contributions
cation requirement running on that core. Generally the The following are our contributions in the project.
individual needs of each of the cores are taken into, We quantify the performance degradation when the

consideration to arrive at a VF setting for the entire  mjgration overhead is not accounted for. This is the
core. This can lead to suboptimal performance and power baseline and clearly indicates the upper limit for

efficiency. The other option is to have control over per  thread motion.
core VF setting. However employing DVFS at fine- , We quantify and compare the performance degra-
grained intervals imposes a huge delay overhead for dation versus power savings for different migration

the regulator voltage level transitions and is practically  intervals, when the migration overhead is accounted
impossible, with off-chip regulators. The scalability and  for. We compare this against the baseline.

cost issues related to this are huge and hence this is nof We look at moving average IPC predictors, that
a viable solution. use different amounts of history to predict the IPC
Hence DVFS algorithms are implemented by the for the next interval. Specifically, we attempt to
operating system and the scheduling and application quantify how much history helps in better IPC
variability monitoring occur at millisecond time interval prediction. This is effectively quantified by the
of the OS scheduler. To exploit fine-grained application  resultant reduction in performance degradation and
variability, DVFS has to be performed at finer grained increase in power saving.
intervals. Hence there is a need to monitor application
phase monitoring at finer time scales. These require tak- Il. DESIGNDETAILS
ing decisions on DVFS decisions at intervals of the order We briefly describe the algorithm we use to carry
of hundreds of microseconds. This cannot however loait our analyses. The next section details the kind of
supported by even the state of the art power managemanthitecture we use and the migration effects we model.
schemes due to hardware limitations. These systefisis, we think, is the major part of our project, as
incur a huge VF transistion delay before reaching thtbe very idea is to look at thread motion from the
target power mode. Voltage transistion times are highperspective of a typical CMP architecture, when the
limited by off-chip voltage regulators that limit how effect of migration is modeled.
quickly the voltage can be changed. Similarly, PLL
relock times limit how fast the frequency can be changed. Algorithm
Because of the limitations that are mentioned above, The thread motion algorithm that we employ in the
it is almost impossible to evaluate application behavigine proposed in the [1] for the first set of experiments.
and remap VF at finer intervals. Previous work does d® last value predictor is used to predict the IPC of each
migration either at OS intervals, [4] for process variatiorapplication for the next migration interval.
aware application mapping combined with DVFS and [5] For the latter half of the evaluations, we employ a
during thermal hotspots/emergencies. However performmoving average IPC predictor. The impact of the choice
ing migration of processes based on their variability ansf « (the history parameter) on the resultant performance
mapping processes to the right processor with the agégradation and power savings are studied in detail.
VF setting can achieve the advantage offered by a finer-
grained DVFS scheme without hardware restrictions. In I1l. I MPLEMENTATION DETAILS
[1], the authors employ an architecture similar to the This section talks in detail about the architecture and
Sun ROCK processor to perform thread motion. Thisiodeling framework that we build to use in all our
architecture groups processors into clusters and theyaluations. The choice of architecture and the migration
share an L1 cache. The migration algorithm attempimipact we model, are critical to our evaluation.



A. Smulator evaluations. All results are averaged across 10 differ-

We use an inhouse x86 simulator called the BLES%’nt random application mixes. We_ ran _each s!mula-
simulator. This is CMP simulator which models the corgdon/évaluation for a span of 5 million instructions.
and caches at a coarse granularity and the interconni@ used 2 different voltage/frequency levels f and f/2,
network in finer detail. This would suit our purposesiwhere f is 3.0 GHz), to derive voltage/frequency con-
since quantifying the impact of migration is largely aboigurations for the different power budgets.
modeling the on-chip communication between the cores

and the various physically apart L2 banks. V. EVALUATION

T T T

H migration interval = 500 cycles Exx=
B. Power Macromodeling iotaon tenval = 1000 cydles
migration interval = 5000 cycles m—
migration interval = 10000 cycles 77

BLESS is a performance simulator. The power models
in this simulator are built out of static profiling of
SPEC2000 benchmarks in Wattch/simplescalar. 085 |-

Normalized MIPS

C. Migration Infrastructure

0.8
0.75 3
We built migration infrastructure into the BLESS sim- o+ |
ulator. The processors are ranked according to their fre-
guencies statically. We implement a scheduler/controller
that collects the IPCs of different applications every °'6§]i
migration interval. The IPCs are either the last values os“% . -
from the previous intervals or the values from the moving Power budget
average history p_red|.ctor, depending on the evaluatlolpl'. 1. NormalizedMIPS at different power budget for various
We map the apphca‘upns_ onto the processors such thadration intervals assuming no overhead during migration
teh highest IPC application gets onto the highest fre-
guency processor. The key component of the migration
infrastructure is the migration overhead. This consists of P o g
the following: mration iatzxg: §1§§§§55533§ —
migration interval = cycles CETE

« | Cache cold start effect 0s |

« D Cache cold start effect

o Register/Architectural state transfer latency

We model 2 and 3. However, we do not model 1g
as the simulator does not take in the instruction adk
dresses/Program counters. However, 2 and 3 are the
major components and we believe our results would be
reasonably accurate, despite not accounting for 1. We o
model a CMP with 16 cores arranged in a mesh network
(4x4). Each core has a private L1 and the L2 is in the ; !
form of physically separate banks, that are shared among ~ * %  cower bt % 10
all cores.

78 89 100

nergy

0.6 )

0.4

Fig. 2. NormalizedT otal Energy at different power budgets for
various migration intervals assuming no overhead during riiara
IV. EXPERIMENTAL SETUP

The key objective behind our evaluations is to As a baseline, we evaluate the performance degrada-
qguantify the performance degradation due to the miion and the power savings obtained, when there is no
grations cost. We useMIPS, TotalEnergy and overhead associated with migration. This represents the
Energy/(Throughput)? (as a proxy for ED2) normal- theoretical upper limit on what thread motion can deliver.
ized to to the 100% power budget case to quantify per-Fig. 1 shows the performance degradation for this
formance degradation and power reduction. We evaludiaseline case. The performance degradation suffered
these across different migration intervals of 500, 100@gre is minimal and is solely due to some cores op-
5000 and 10000. erating at lower frequencies. Fig. 2 shows the energy

All evaluations have been carried out with SPEC200%avings in this ideal scenario. There is not too much
benchmarks. We use a 4x4 CMP network for all owariation due to the migration interval. This is interegtin



T T T T T

migration interval = 500 cycles Exx<= migration interval = 500 cycles Exx=
migration interval = 1000 cycles oz migration interval = 1000 cycles oo
migration interval = 5000 cycles = migration mterval 500 cycles —

migration interval = 10000 cycles } i

62 78 89 100 ’ 25 50 62 78 89 100
Power budget Power budget

15 p5

Normalized Energy/(Throughput)2
Normalized total energy

50

Fig. 3. NormalizedEnergy/(Throughput)? at different power Fig. 5. NormalizedT otal Energy at different power budgets for
budgets for various migration intervals assuming no overtteathg various migration intervals
migration

40 T T

migration interval = 500 cycles
migration interval = 1000 cycles &
migration interval = 5000 cycles
35 migration interval = 10000 cycles B

because [1] clearly states that the motivation for fine
grained thread motion is that it exploits application | 1
variability at fine grained intervals, providing better:
scope for power savings. [1] presents the variability og 5
different applications in terms of their IPC and makeg =| 1
a case for using slower processors, with mstantaneogs = ‘
power savings in mind. However, it doesnt show hov@
much total energy savings this translates into. Fig. 3w
shows the overall energy/performance impact in terms
of Energy/(Throughput)? increase.

3 I I | § | o8|
50 62 78 89 100
1 . . Power budget
migration interval = 500 cycles EXxXx
migration interval = 1000 cycles o
migration interval = 5000 cycles

09 - migration interval = 10000 cycles - Fig. 6. NormalizedEnergy/(Throughput)? at different power
F budgets for various migration intervals

08

large increase (ranging from around 5% to 20% across
power budgets) as the migration interval is varied from
500 cycles to 10000 cycles. This is clearly due to the
migration cost, as this was not present in the baseline.
) - This shows that the cost of migration in terms of energy
§ E ! 3 is also huge when it is done at finer grained intervals
50 P e "o 200 and hence does not really translate into an energy
Power budget aware design choice. Fig. 6 shows the large increase in
Fig. 4. NormalizedMIPS at different power budget for various Energy/(Throughput)* when the migration interval is
migration intervals made very small.
All the results above are for a last value pre-
Fig. 4, 5 and 6 show the normalizet/ 7PS, dictor. Fig. 7, 8 and 9 show the normalized
Total Energy and Energy/(Throughput)? for differ-  MIPS, TotalEnergy and Energy/(Throughput)?
ent migration intervals respectively. Thé I PS clearly for a power budget of 78% but for different valuescaf
shows a very high degradation as the power budget dehe predicted IPC is assumed to be a moving average
creases, specifically as the migration interval decreasas.follows Predicted Avgl PC' = a x Previousl PC +
The length of the migration interval determines thél — a) x PredictedAvgI PC. PredictedAvgI PC' is
frequency of migrations. So, this trend is to be expectedsed to determine the core to which migration is to be
However, Fig. 5 shows an interesting trend. For differemtone. We use different values fer and look at the

05

Normalized MIPS

0.4
0.3

02 [

0.7
0| i ; | power budgets, the total energy consumed shows a

0.1



0.9

élpha =0.5 ExXx%
alpha=0.7 wamom
alpha=0.9 me—

08

0.7 -

Normalized MIPS
)
>
T

0.5

1000 5000
Migration cycles

Fig. 7. NormalizedM I PS at a power budget of 78% for different

« values and migration intervals

10000

Normalized Total Energy

alpha=0.5 xxm

alpha=0.9 me—

B

1000 5000
Migration cycles

Fig. 8. NormalizedT otal Energy at a power budget of 78% fo

different « values and migration intervals

10000

GRRRRRKK]
SRR

X
botetet

TIIRT
50585858

6%
KX
PQ.

Normalized Energy/(Thmughput)2
GIRRERIRAKK.
SRERRR

TS0
%

SIRTITITTS
Setoletetetetotete!

XX
XK

i |

%
[x

0%
KK

T
alpha =05 Exx=

alpha=0.9 m—

roiste |

1000 5000
Migration cycles

10000

=

Fig. 9. NormalizedEnergy/(Throughput)? at a power budget of

78% for differenta: values and migration intervals

0.7 yields the least performance degradation (around 5%
less than than for 0.9 and 0.5), as shown in Fig. 7 and
also marginally improves the power savings as shown
in Fig. 8. a of 0.9 is very similar to a last value
predictor. So, these results show that using a moving
average predictor with a balanced mix of recent and
past history (with arx of around 0.7), definitely reduces
the performance hit and also marginally improves power
savings.

VI. SURPRISES ANDLESSONS LEARNED

In terms of tools setup and what to expect in terms of
tool capabilities, there weren’t any major surprises. This
was because we were reasonably aware of the capabil-
ities and limitations of the simulator, when we started
on the project. However, the results were surprisingly
interesting.

« First of all, though we started with the knowledge
that there would be a larger performance degrada-
tion in a private L1 architecture, the kind of degra-
dation numbers we got with decreasing migration
intervals were much larger than we expected.

o Further, we expected to see a larger energy saving
with decreasing migration intervals. This again did
not hold true and basically kills the motivation to
perform thread motion at such fine granularities, if
the energy costs incurred are as huge.

VIlI. CONCLUSIONS ANDFUTURE WORK

In Conclusion, thread motion makes for an energy-

aware and performance effective design choice, only if

o the major hurdle of migration cost is studied and
mitigated.

« the number of migrations themselves is reduced
Using a moving average history predictor with a bal-
anced mix of recent and past history (with@wof around
0.7) would definitely reduce the performance hit to some
extent, by leveraging the second point discussed above.

We believe there is a huge research potential in
reducing the migration cost. One possible solution to
mitigate the migration cost is migrating within a limited
geographical distance. If this were to be done, then
the different voltage/frequency cores should be placed
strategically, to support this. Another option is to predic
where an application would migrate next and transfer the
L1 D cache contents to the L2 closest to it.

VIIl. A CKNOWLEDGEMENTS

We would like to thank Prof. Mowry for giving us the
opportunity to do the project. We also thank him for his

performance degradation and power savings. We presgatuable feedback. We are also indebted to Dr.Siddharth
the results only for a specific power budget, however thGarg for his valuable inputs and feedback, through the
trend is followed across all power budgets.value of course of the project.



REFERENCES

[1] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: fine
grained power management for multi-core systems,”|SCA
"09: Proceedings of the 36th annual international symposium on
Computer architecture.  New York, NY, USA: ACM, 2009, pp.
302-313.

[2] S. Herbert and D. Marculescu, “Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors,”|8.PED '07:
Proceedings of the 2007 international symposium on Low power
electronics and design. New York, NY, USA: ACM, 2007, pp.
38-43.

[3] ——, “Variation-aware dynamic voltage/frequency scglinin
High Performance Computer Architecture, 2009. HPCA 2009.
|EEE 15th International Symposium on, Feb. 2009, pp. 301-312.

[4] R. Teodorescu and J. Torrellas, “Variation-aware agtlon
scheduling and power management for chip multiprocessors,” in
ISCA '08: Proceedings of the 35th International Symposium on
Computer Architecture. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 363-374.

[5] A. K. Coskun, R. Strong, D. M. Tullsen, and T. Simunic Ragin
“Evaluating the impact of job scheduling and power management
on processor lifetime for chip multiprocessors,” $SIGMETRICS
'09: Proceedings of the eleventh international joint conference on
Measurement and modeling of computer systems. New York, NY,
USA: ACM, 2009, pp. 169-180.



