
1

Thread Motion in Private L1 Chip
Multiprocessors

Athula Balachandran, Lavanya Subramanian

Abstract—Low power computing has become a topic of
great interest in the recent past. But computation limited by
power budget can lead to suboptimal performance. How-
ever studies have shown that applications show very high
variability in their performance requirement and this could
be exploited. Dynamic Voltage Frequency Scaling (DVFS)
is a traditional technique that is used to exploit run time
variability and conserve power with minimal performance
degradation. However due to practical limitations, DVFS
cannot exploit the very fine grained variability shown by
various applications. In this context, thread motion was
proposed as a mechanism that helps applications operate
at frequencies and voltages that are appropriate for their
performance levels, by migrating at very low granualarity.
However there is no work that looks at the performance
degradation imposed by performing thread motion in case
of Chip MultiProcessors (CMP) with private L1 caches. In
this project, we show the performance degradation that is
incurred in a generic CMP with private L1 caches and also
present some interesting results on the energy trends, for
different migration intervals. We also evaluate the use of
a moving average history IPC predictor over a last value
IPC predictor and show that the performance degradation
is reduced by around 5%.

Index Terms—Parallell architecture, Distributed Archi-
tecture, Performance, Low power computing

I. I NTRODUCTION

There has been a lot of emphasis on low power
computing in the near past. Low power computing is
very essential in the case of battery-operated computing
systems with limited power capabilities. It is also a key
requirement in high end machines and data centers where
cooling has become one of the major concerns. Even
in the multi-core chips power consumption seems be a
very crucial design consideration. This is because high
power consumption can lead to side effects that affect the
reliabilty of the chip, performance and packaging cost.

In order to stay within the power budget, there is
a need to carefully constrain application performance
leading to suboptimal performance. However studies
have shown that applications show very high variability
in their performance requirement. Hence this can be used
to optimize the performance requirement while staying
within the given power budget. Also die process variation
can cause the individual cores in a Chip Multi Processor
(CMP) to significantly differ from the others. These
can lead to intelligently scheduling processes based on

their requirement based on the variation of processors
within the CMP can lead to significant performance
improvement.

In the context of power savings, Dynamic Voltage
Frequency Scaling (DVFS) is a traditional technique
that is used to exploit run time variability and conserve
power with minimum performance degradation. Intel’s
XScale and Transmeta’s Crusoe are examples of the
many microprocessors that support DVFS functionality.
Typically DVFS is employed at the OS scheduler inter-
vals. However recent research shows that applications’
variability behaviour is more fine-grained. Hence this
cannot be exploited efficiently by performing DVFS at
OS scheduler intervals. The OS scheduler samplings
are of the order of milliseconds whereas the applica-
tion variations occur at nanoseconds time scale. But
employing per-core DVFS at fine grained intervals im-
poses a huge delay overhead for the regular voltage
level transistions and hence is practically impossible
with off-chip regulators. However the fact that multi-
cores run processes with different computation needs
can be utilized to efficiently switch cores instead of
performing per-core DVFS. Hence by having different
cores assigned different voltage/performance levels and
employing an intelligent scheduling mechanism we can
achieve good performance in the multi core system.
Our project looks at the challenges and bottlenecks in
applying this to a generic chip multiprocessor.

This is the basic idea that has been put forth in [1]. The
authors evaluate it in the context of an architecture where
cores are clustered and the L1 cache is shared by the
processors in that cluster. However, generic CMP archi-
tectures are not built this way. The processors typically
have private L1 caches and share a physically partitioned
L2 cache. The main motivation for this project has been
to evaluate how well thread motion works for this sort
of a more generic architecture.

A. Related Work

Reducing power density and power-aware designs has
been the focus of much work in the past. DVFS is a
well known traditional technique for performing power
management in many of the contemporary microproces-
sors. The power consumption can be reduced when the



2

cores are idle by appropriately setting the voltage and
frequency levels of the individual cores. In the case of
single core microprocessors, it can be used to boost the
performance by remapping the VF settings accordingly.
The application variability is tracked and is used to
arrive at the appropriate voltage/frequency setting for
the core. [2] looks at DVFS in the context of Chip
Multi Processors and exploits this application variabilily.
[3] looks at variation aware DVFS, where the DVFS
algorithms also exploit the variability information of the
processors.

In the case of a multi-core set up, it is difficult to
maintain a per-core DVFS control based on the appli-
cation requirement running on that core. Generally the
individual needs of each of the cores are taken into
consideration to arrive at a VF setting for the entire
core. This can lead to suboptimal performance and power
efficiency. The other option is to have control over per
core VF setting. However employing DVFS at fine-
grained intervals imposes a huge delay overhead for
the regulator voltage level transitions and is practically
impossible, with off-chip regulators. The scalability and
cost issues related to this are huge and hence this is not
a viable solution.

Hence DVFS algorithms are implemented by the
operating system and the scheduling and application
variability monitoring occur at millisecond time interval
of the OS scheduler. To exploit fine-grained application
variability, DVFS has to be performed at finer grained
intervals. Hence there is a need to monitor application
phase monitoring at finer time scales. These require tak-
ing decisions on DVFS decisions at intervals of the order
of hundreds of microseconds. This cannot however be
supported by even the state of the art power management
schemes due to hardware limitations. These systems
incur a huge VF transistion delay before reaching the
target power mode. Voltage transistion times are highly
limited by off-chip voltage regulators that limit how
quickly the voltage can be changed. Similarly, PLL
relock times limit how fast the frequency can be changed.

Because of the limitations that are mentioned above,
it is almost impossible to evaluate application behavior
and remap VF at finer intervals. Previous work does do
migration either at OS intervals, [4] for process variation-
aware application mapping combined with DVFS and [5]
during thermal hotspots/emergencies. However perform-
ing migration of processes based on their variability and
mapping processes to the right processor with the apt
VF setting can achieve the advantage offered by a finer-
grained DVFS scheme without hardware restrictions. In
[1], the authors employ an architecture similar to the
Sun ROCK processor to perform thread motion. This
architecture groups processors into clusters and they
share an L1 cache. The migration algorithm attempts

to map applications ranked in the order of IPC to cores
ranked in the order of frequency. A last value predictor is
used for the IPC. Migrations that are performed within a
cluster do not suffer the impact of missing L1 cache data.
However, in most Chip Multiprocessor Systems, each
processor has a private L1 cache. So, our project explores
the effectiveness of the ”Thread motion” scheme in this
scenario. Specifically, we try to quantify the performance
degradation, that would result from the L1 misses, when
migration is performed. We observe that the concept of
intra and inter clusters does not apply in our scenario.

B. Contributions

The following are our contributions in the project.
• We quantify the performance degradation when the

migration overhead is not accounted for. This is the
baseline and clearly indicates the upper limit for
thread motion.

• We quantify and compare the performance degra-
dation versus power savings for different migration
intervals, when the migration overhead is accounted
for. We compare this against the baseline.

• We look at moving average IPC predictors, that
use different amounts of history to predict the IPC
for the next interval. Specifically, we attempt to
quantify how much history helps in better IPC
prediction. This is effectively quantified by the
resultant reduction in performance degradation and
increase in power saving.

II. D ESIGN DETAILS

We briefly describe the algorithm we use to carry
out our analyses. The next section details the kind of
architecture we use and the migration effects we model.
This, we think, is the major part of our project, as
the very idea is to look at thread motion from the
perspective of a typical CMP architecture, when the
effect of migration is modeled.

A. Algorithm

The thread motion algorithm that we employ in the
one proposed in the [1] for the first set of experiments.
A last value predictor is used to predict the IPC of each
application for the next migration interval.

For the latter half of the evaluations, we employ a
moving average IPC predictor. The impact of the choice
of α (the history parameter) on the resultant performance
degradation and power savings are studied in detail.

III. I MPLEMENTATION DETAILS

This section talks in detail about the architecture and
modeling framework that we build to use in all our
evaluations. The choice of architecture and the migration
impact we model, are critical to our evaluation.



3

A. Simulator

We use an inhouse x86 simulator called the BLESS
simulator. This is CMP simulator which models the cores
and caches at a coarse granularity and the interconnect
network in finer detail. This would suit our purposes,
since quantifying the impact of migration is largely about
modeling the on-chip communication between the cores
and the various physically apart L2 banks.

B. Power Macromodeling

BLESS is a performance simulator. The power models
in this simulator are built out of static profiling of
SPEC2000 benchmarks in Wattch/simplescalar.

C. Migration Infrastructure

We built migration infrastructure into the BLESS sim-
ulator. The processors are ranked according to their fre-
quencies statically. We implement a scheduler/controller
that collects the IPCs of different applications every
migration interval. The IPCs are either the last values
from the previous intervals or the values from the moving
average history predictor, depending on the evaluation.
We map the applications onto the processors such that
teh highest IPC application gets onto the highest fre-
quency processor. The key component of the migration
infrastructure is the migration overhead. This consists of
the following:

• I Cache cold start effect
• D Cache cold start effect
• Register/Architectural state transfer latency

We model 2 and 3. However, we do not model 1,
as the simulator does not take in the instruction ad-
dresses/Program counters. However, 2 and 3 are the
major components and we believe our results would be
reasonably accurate, despite not accounting for 1. We
model a CMP with 16 cores arranged in a mesh network
(4x4). Each core has a private L1 and the L2 is in the
form of physically separate banks, that are shared among
all cores.

IV. EXPERIMENTAL SETUP

The key objective behind our evaluations is to
quantify the performance degradation due to the mi-
grations cost. We useMIPS, TotalEnergy and
Energy/(Throughput)2 (as a proxy for ED2) normal-
ized to to the 100% power budget case to quantify per-
formance degradation and power reduction. We evaluate
these across different migration intervals of 500, 1000,
5000 and 10000.

All evaluations have been carried out with SPEC2006
benchmarks. We use a 4x4 CMP network for all our

evaluations. All results are averaged across 10 differ-
ent random application mixes. We ran each simula-
tion/evaluation for a span of 5 million instructions.
We used 2 different voltage/frequency levels f and f/2,
(where f is 3.0 GHz), to derive voltage/frequency con-
figurations for the different power budgets.

V. EVALUATION

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

25 50 62 78 89 100
N

or
m

al
iz

ed
 M

IP
S

Power budget

migration interval = 500 cycles
migration interval = 1000 cycles
migration interval = 5000 cycles

migration interval = 10000 cycles

Fig. 1. NormalizedMIPS at different power budget for various
migration intervals assuming no overhead during migration

 0

 0.2

 0.4

 0.6

 0.8

 1

25 50 62 78 89 100

N
or

m
al

iz
ed

 to
ta

l e
ne

rg
y

Power budget

migration interval = 500 cycles
migration interval = 1000 cycles
migration interval = 5000 cycles

migration interval = 10000 cycles

Fig. 2. NormalizedTotalEnergy at different power budgets for
various migration intervals assuming no overhead during migration

As a baseline, we evaluate the performance degrada-
tion and the power savings obtained, when there is no
overhead associated with migration. This represents the
theoretical upper limit on what thread motion can deliver.

Fig. 1 shows the performance degradation for this
baseline case. The performance degradation suffered
here is minimal and is solely due to some cores op-
erating at lower frequencies. Fig. 2 shows the energy
savings in this ideal scenario. There is not too much
variation due to the migration interval. This is interesting



4

 0

 0.5

 1

 1.5

 2

25 50 62 78 89 100

N
or

m
al

iz
ed

 E
ne

rg
y/

(T
hr

ou
gh

pu
t)

2

Power budget

migration interval = 500 cycles
migration interval = 1000 cycles
migration interval = 5000 cycles

migration interval = 10000 cycles

Fig. 3. NormalizedEnergy/(Throughput)2 at different power
budgets for various migration intervals assuming no overheadduring
migration

because [1] clearly states that the motivation for fine
grained thread motion is that it exploits application
variability at fine grained intervals, providing better
scope for power savings. [1] presents the variability of
different applications in terms of their IPC and makes
a case for using slower processors, with instantaneous
power savings in mind. However, it doesnt show how
much total energy savings this translates into. Fig. 3
shows the overall energy/performance impact in terms
of Energy/(Throughput)2 increase.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

25 50 62 78 89 100

N
or

m
al

iz
ed

 M
IP

S

Power budget

migration interval = 500 cycles
migration interval = 1000 cycles
migration interval = 5000 cycles

migration interval = 10000 cycles

Fig. 4. NormalizedMIPS at different power budget for various
migration intervals

Fig. 4, 5 and 6 show the normalizedMIPS,
TotalEnergy and Energy/(Throughput)2 for differ-
ent migration intervals respectively. TheMIPS clearly
shows a very high degradation as the power budget de-
creases, specifically as the migration interval decreases.
The length of the migration interval determines the
frequency of migrations. So, this trend is to be expected.
However, Fig. 5 shows an interesting trend. For different

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

25 50 62 78 89 100

N
or

m
al

iz
ed

 to
ta

l e
ne

rg
y

Power budget

migration interval = 500 cycles
migration interval = 1000 cycles
migration interval = 5000 cycles

migration interval = 10000 cycles

Fig. 5. NormalizedTotalEnergy at different power budgets for
various migration intervals

 0

 5

 10

 15

 20

 25

 30

 35

 40

25 50 62 78 89 100

N
or

m
al

iz
ed

 E
ne

rg
y/

(T
hr

ou
gh

pu
t)

2

Power budget

migration interval = 500 cycles
migration interval = 1000 cycles
migration interval = 5000 cycles

migration interval = 10000 cycles

Fig. 6. NormalizedEnergy/(Throughput)2 at different power
budgets for various migration intervals

power budgets, the total energy consumed shows a
large increase (ranging from around 5% to 20% across
power budgets) as the migration interval is varied from
500 cycles to 10000 cycles. This is clearly due to the
migration cost, as this was not present in the baseline.
This shows that the cost of migration in terms of energy
is also huge when it is done at finer grained intervals
and hence does not really translate into an energy
aware design choice. Fig. 6 shows the large increase in
Energy/(Throughput)2 when the migration interval is
made very small.

All the results above are for a last value pre-
dictor. Fig. 7, 8 and 9 show the normalized
MIPS, TotalEnergy and Energy/(Throughput)2

for a power budget of 78% but for different values ofα.
The predicted IPC is assumed to be a moving average
as followsPredictedAvgIPC = α×PreviousIPC +
(1 − α) × PredictedAvgIPC. PredictedAvgIPC is
used to determine the core to which migration is to be
done. We use different values forα and look at the



5

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

500 1000 5000 10000

N
or

m
al

iz
ed

 M
IP

S

Migration cycles

alpha = 0.5
alpha = 0.7
alpha = 0.9

Fig. 7. NormalizedMIPS at a power budget of 78% for different
α values and migration intervals

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

500 1000 5000 10000

N
or

m
al

iz
ed

 T
ot

al
 E

ne
rg

y

Migration cycles

alpha = 0.5
alpha = 0.7
alpha = 0.9

Fig. 8. NormalizedTotalEnergy at a power budget of 78% for
different α values and migration intervals

 1

 2

 3

 4

 5

 6

 7

 8

500 1000 5000 10000

N
or

m
al

iz
ed

 E
ne

rg
y/

(T
hr

ou
gh

pu
t)

2

Migration cycles

alpha = 0.5
alpha = 0.7
alpha = 0.9

Fig. 9. NormalizedEnergy/(Throughput)2 at a power budget of
78% for differentα values and migration intervals

performance degradation and power savings. We present
the results only for a specific power budget, however this
trend is followed across all power budgets.α value of

0.7 yields the least performance degradation (around 5%
less than than for 0.9 and 0.5), as shown in Fig. 7 and
also marginally improves the power savings as shown
in Fig. 8. α of 0.9 is very similar to a last value
predictor. So, these results show that using a moving
average predictor with a balanced mix of recent and
past history (with anα of around 0.7), definitely reduces
the performance hit and also marginally improves power
savings.

VI. SURPRISES ANDLESSONS LEARNED

In terms of tools setup and what to expect in terms of
tool capabilities, there weren’t any major surprises. This
was because we were reasonably aware of the capabil-
ities and limitations of the simulator, when we started
on the project. However, the results were surprisingly
interesting.

• First of all, though we started with the knowledge
that there would be a larger performance degrada-
tion in a private L1 architecture, the kind of degra-
dation numbers we got with decreasing migration
intervals were much larger than we expected.

• Further, we expected to see a larger energy saving
with decreasing migration intervals. This again did
not hold true and basically kills the motivation to
perform thread motion at such fine granularities, if
the energy costs incurred are as huge.

VII. C ONCLUSIONS ANDFUTURE WORK

In Conclusion, thread motion makes for an energy-
aware and performance effective design choice, only if

• the major hurdle of migration cost is studied and
mitigated.

• the number of migrations themselves is reduced
Using a moving average history predictor with a bal-
anced mix of recent and past history (with anα of around
0.7) would definitely reduce the performance hit to some
extent, by leveraging the second point discussed above.

We believe there is a huge research potential in
reducing the migration cost. One possible solution to
mitigate the migration cost is migrating within a limited
geographical distance. If this were to be done, then
the different voltage/frequency cores should be placed
strategically, to support this. Another option is to predict
where an application would migrate next and transfer the
L1 D cache contents to the L2 closest to it.

VIII. A CKNOWLEDGEMENTS

We would like to thank Prof. Mowry for giving us the
opportunity to do the project. We also thank him for his
valuable feedback. We are also indebted to Dr.Siddharth
Garg for his valuable inputs and feedback, through the
course of the project.



6

REFERENCES

[1] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: fine-
grained power management for multi-core systems,” inISCA
’09: Proceedings of the 36th annual international symposium on
Computer architecture. New York, NY, USA: ACM, 2009, pp.
302–313.

[2] S. Herbert and D. Marculescu, “Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors,” inISLPED ’07:
Proceedings of the 2007 international symposium on Low power
electronics and design. New York, NY, USA: ACM, 2007, pp.
38–43.

[3] ——, “Variation-aware dynamic voltage/frequency scaling,” in
High Performance Computer Architecture, 2009. HPCA 2009.
IEEE 15th International Symposium on, Feb. 2009, pp. 301–312.

[4] R. Teodorescu and J. Torrellas, “Variation-aware application
scheduling and power management for chip multiprocessors,” in
ISCA ’08: Proceedings of the 35th International Symposium on
Computer Architecture. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 363–374.

[5] A. K. Coskun, R. Strong, D. M. Tullsen, and T. Simunic Rosing,
“Evaluating the impact of job scheduling and power management
on processor lifetime for chip multiprocessors,” inSIGMETRICS
’09: Proceedings of the eleventh international joint conference on
Measurement and modeling of computer systems. New York, NY,
USA: ACM, 2009, pp. 169–180.


